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Abstract

Selective opening attacks against commitment schemes occur when the commitment
scheme is repeated in parallel and an adversary can choose depending on the commit-phase
transcript to see the values and openings to some subset of the committed bits. Com-
mitments are secure under such attacks if one can prove that the remaining, unopened
commitments stay secret.

We prove the following black-box constructions and black-box lower bounds for commit-
ments secure against selective opening attacks for parallel composition:

1. 3 (resp. 4) rounds are necessary to build computationally (resp. statistically) binding
and computationally hiding commitments.

2. There is a black-box construction of (t+3)-round statistically binding commitments se-
cure against selective opening attacks based on t-round stand-alone statistically hiding
commitments.

3. O(1)-round statistically-hiding commitments are equivalent to O(1)-round statistically-
binding commitments.

Our lower bounds improve upon the parameters obtained by the impossibility results of
Bellare et al. (EUROCRYPT ’09), and are proved in a fundamentally different way, by
observing that essentially all known impossibility results for black-box zero-knowledge can
also be applied to the case of commitments secure against selective opening attacks.

In addition to the impossibility results mentioned above, we also rule out the existence
of commitments with zero statistical binding error and receiver public-coin commitments
for parallel composition.

Keywords: commitments, black-box lower bounds, zero knowledge, selective opening attacks, parallel

composition



1 Introduction

Commitment schemes have a wide array of applications in cryptography, one of the most notable
being the construction of zero knowledge protocols [13, 4]. A problem that arises in the use of
commitment schemes is whether their hiding property holds when composed in parallel: if some
subset of the committed messages are opened, do the remaining unopened messages remain
secure? This question arose early in the study of zero knowledge protocols, and is also natural
in other cryptographic contexts where commitments are used as building blocks for protocols
that might be then used in parallel (e.g. secure multi-party computation, etc.).

Although naively one might think that because commitments are hiding that no additional
information should be leaked by composing them, nevertheless it is unknown how to prove that
standard stand-alone commitments (e.g. [17]) remain hiding when composed.

More formally, a selective opening attack on a commitment scheme allows a cheating receiver
to interact in k parallel commitments, and then ask the sender to open some subset I C [k]
of the commitments. The question is whether the unopened messages remain hidden in the
following sense: is there a simulator strategy for every cheating receiver strategy that outputs a
commit-phase transcript, a set I C [k], and decommitments to (b;);er that is indistinguishable
from the output of the cheating receiver with an honest sender?

In this paper we show that techniques both for constructions and lower bounds from the study
of zero knowledge protocols can be applied to the study of commitments secure against selective
opening attacks. We study the minimal round complexity needed to construct such commit-
ments, and give solutions for commitments secure against selective opening attacks that are
optimal or nearly optimal up to small factors.

1.1 Our results

Throughout this work we consider parallel composition, which we denote by PAR. We let CB
(resp. SB, PB) denote computational (resp. statistical, perfect) binding and CH (resp. SH)
denote computational (resp. statistical) hiding. We give the following construction:

Theorem 1.1. There is a black-box construction that uses a t-round stand-alone SH commit-
ments to build a (t + 3)-round PAR-SB commitments exist.

In particular, this implies that collision-resistant hash functions (or even just 2-round statisti-
cally hiding commitments) suffice to construct 5-round PAR-SB commitments.

Assuming the proof of security for such a commitment scheme is given by a black-box simulator,
we prove the following lower bounds:

Theorem 1.2 (Impossibility results, informal). The following hold relative to any oracle:

1. There is no 2-round PAR-CBCH commitment.

2. There is no 3-round PAR-SB commitment.

3. There is a black-box reduction that uses a O(1)-round PAR-SB commitment to build a
O(1)-round statistically hiding commitment.

We stress that besides the constraint that the simulator be black-box, these results are otherwise
unconditional. Namely, Theorem 1.2 implies that no such commitments exist in the plain model
(without oracles), but also implies that such commitments do not exist even in say the random
oracle model (or stronger oracle models), where a priori one might have hoped to bypass
impossibility results in the plain model.



Combining the second item of Theorem 1.2 with the main theorem of [14], which proves that
there is no black-box reduction building a o(n/logn)-round statistically hiding commitment
from one-way permutations, we obtain the following corollary:

Corollary 1.3. There is no black-box reduction that uses a one-way permutation to build a
O(1)-round PAR-SB commitment.

Wee [20] independently proved via different techniques a theorem similar to Corollary 1.3 for
the very closely related case of trapdoor commitments.

In addition to the above impossibility results, we also prove:

Theorem 1.4 (Informal). Relative to any oracle, there exists no PAR-PB commitments nor
recetver public-coin PAR-CBCH commitments.

1.2 Comparison to previous constructions

Notions related to security against selective opening attacks have previously been studied in
the literature. Security against selective opening is closely related to chameleon blobs [5, 6],
trapdoor commitments [11], and equivocable commitments [2, 9, 8]. Roughly speaking, these
notions all allow a simulator that can generate commit-phase transcripts that can be opened in
many ways. Indeed, our construction will be based on the equivocable commitment of [8].

Security against selective opening may be weaker than the notions above, and was directly
studied in [10, 3]. Bellare et al. [3] give a construction of a scheme that is CC-SB secure,
but this construction is non-black-box and requires applying a concurrent zero knowledge proof
on a statement regarding the code implementing a one-way permutation. In contrast, our
construction is fully black-box.

Remark 1.5 (Equivalence of statistical hiding and statistical binding). In this work we only
study commitments with computational hiding. [3] already noted that stand-alone SH commit-
ments satisfy a notion of PAR-SH security based on indistinguishability (this notion is different
from ours). [18] a construction of 3-round PAR-SH commitments that uses black-box simulation
and assumes a (strong) version of trapdoor commitments that is realizable say from the discrete
logarithm assumption.

With Item 2 of Theorem 1.2, this implies that constant-round statistical hiding and constant-
round statistical binding are equivalent via black-box reductions when security against selective
opening attacks is required. This contrasts sharply with the stand-alone case, as 2-round sta-
tistically binding commitments are equivalent to one-way functions, but no black-box reduction
can build o(n/logn)-round statistically hiding commitment from one-way functions [14].

1.3 Comparison to previous lower bounds

Bellare et al. [3] proved that non-interactive commitments and perfectly binding commitments
secure against selective opening attacks cannot be based on any black-box cryptographic as-
sumption. Our lower bounds are stronger than theirs in that we can rule out 2- or 3-round
rather than non-interactive commitments, as well as ruling out certain types of commitment
with non-zero statistical binding error. However, our proof technique is incomparable to theirs.

Ways in which our lower bounds are stronger: first, the lower bounds of [3] assume black-
box access to a cryptographic primitive, and therefore do not apply to constructions based on
concrete assumptions (e.g. factoring, discrete log, lattice problems) where one might hope to
exploit the specific structure of those problems to achieve security. In contrast, our results
immediately rule out all constructions in the plain model.



Second, the lower bounds of [3] prove that non-interactive and perfectly binding commitments
secure against selective opening attacks are impossible with respect to a very specific message
distribution that is defined in terms of a random oracle. One could argue that the message
distribution they consider is artificial and would not arise in applications of these commitments.
In particular, it may suffice for applications to build commitments that are secure only for
particular natural message distributions, such as the uniform distribution or the distributions
encountered when using commitments to build zero knowledge proofs for NP. [3] does not rule
out the existence of commitments that are secure only for these message distributions, while our
impossibility results do and in fact apply simultaneously to all message distributions satisfying
what we argue are very natural constraints (see Definition 2.5). In particular, the results of [3]
also use the assumptions in Definition 2.5.

Ways in which our lower bounds are weaker: our results are weaker because they only
apply to constructions with black-box simulators, i.e. we require that there exists a single
simulator that works given black-box access to any cheating receiver. The results of [3] hold
even for slightly non-black-box simulation techniques: they only require that for every cheating
receiver oracle algorithm (Rec')(') that accesses the underlying crypto primitive as a black-box,
there exists an efficient oracle algorithm Sim() that accesses the underling crypto primitive as
a black box that generates an indistinguishable transcript.’

1.4 Our techniques

Our construction for parallel composition is based on the equivocable commitment scheme
of [8].

Our lower bounds are proven by observing that most known lower bounds for zero knowledge
(e.g. [12, 16, 7, 15, 19]) extend naturally to the case of commitment schemes. Lower bounds
for zero knowledge show that if a zero knowledge proof for L satisfies certain restrictions (e.g.
3 rounds, constant-round public coin [12], etc.), then L € BPP.

As was observed by [10, 3], plugging a t-round PAR-CBCH commitment into the GMW zero
knowledge protocol for NP allows the zero knowledge property to be preserved under parallel
repetition, thus allowing one to reduce soundness error while preserving zero knowledge and
without increasing round complexity. Furthermore, the resulting protocol has ¢ + 2 rounds,
and has a black-box simulator if the commitment had a black-box simulator. This immediately
implies the following:

Proposition 1.6 ([12], weak impossibility of PAR-CBCH, informal). In the plain model, there
exist mo black-box simulator non-interactive or constant-round public-coin PAR-CBCH commit-
ment schemes.

To see why, suppose there were such a scheme, then by the above discussion one would obtain
either a 3-round or constant-round public-coin zero knowledge argument for NP with a black-
box simulator that remains zero knowledge under parallel repetition. By [12], this implies that
NP = BPP. But this contradicts the existence of a PAR-CBCH commitment scheme, since by
the Cook-Levin reduction we can use an algorithm solving NP to break any commitment.

Our results improve upon Proposition 1.6 as they apply to broader categories of commitments
(e.g. 2-round vs. non-interactive). In addition, Proposition 1.6 uses the Cook-Levin reduction

'Because it still requires that the crypto primitive be treated as an oracle, [3] do not rule out techniques such
as Barak’s simulator for constant-round public-coin zero-knowledge [1], because the simulator there includes a
PCP encoding of the code of the underlying cryptographic primitive, and thus treats the crypto primitive itself
(and not just the receiver algorithm calling the crypto primitive) in a non-black-box way.



and therefore does not apply when considering schemes that might use random oracles. In
contrast, Theorem 1.2 does hold relative to any oracle, and in the case of Item 3 of Theorem 1.2,
is black-boz. This is important for two reasons: first, Proposition 1.6 does not say whether such
constructions are possible in the random oracle model, which is often used to prove the security
of schemes for which we cannot prove security in the plain model. Second, if we want to compose
our impossibility result with other black-box lower bounds, then our impossibility result had
better also be black-box. For example, in order to obtain Corollary 1.3 we must combine Item
3 of Theorem 1.2 with the black-box lower bound of Haitner et al.. This is only possible if Item
3 of Theorem 1.2 is a black-box reduction, which would not be true using the approach of the
weak impossibility result Proposition 1.6.

To prove Theorem 1.2, we construct what we call “equivocal senders”: senders that run the
commit phase without knowing the bits that must be revealed. We show that the existence
of such equivocal senders implies that binding can be broken. We then construct equivocal
senders for various kinds of protocols by applying the proof strategy for zero knowledge lower
bounds originally outlined by Goldreich and Krawczyk [12]. By arguing directly, we avoid the
Cook-Levin step in Proposition 1.6 and therefore our results hold relative to any oracle.

1.5 Subsequent work

The original version of this paper [21] claimed stronger versions of the results that were subse-
quently shown to be incorrect Ostrovsky et al. [18]. In particular, the original version claimed
that 4 rounds (resp. 5 rounds) are necessary for PAR-CBCH (resp. PAR-SH), but this implicitly
assumed that the sender sends the last message of the commit phase. As was shown in [18],
one can reduce the number of rounds by allowing the receiver to speak last in the commit
phase. Namely, it was proved in [18] that 3 rounds suffice for computational binding, and it
was subsequently shown by the author in [22] that 4 rounds suffice for statistical binding.

The original version of this paper claimed a construction of 4-round PAR-CBCH commitments,
but a problem in the proof of binding leaves open whether the construction works. The orig-
inal version also claimed w(tlogn) concurrently-secure commitments under a strong definition
of concurrent selective-opening attack security, but it was shown in [18] that this notion is
not achievable. The original also claimed lower bounds for concurrent security, but these are
superseded by the impossibility result of [18].

2 Preliminaries

For a random variable X, we let  <—; X denote a sample drawn according to X. We let Uy
denote the uniform distribution over {0,1}*. For a set S, we let <5 S denote a uniform
element of S. Let 2% denote the set of all subsets of S. All security definitions in this paper
are with respect to non-uniform circuits. We say that an event occurs with overwhelming
probability if it occurs with probability 1 —n~«(), and that it occurs with negligible probability
if it occurs with probability n=“(1). Two families of random variables (X, )nen, (Yn)nen over
{0,1}™ are computationally indistinguishable, or equivalently X . Y, if for all circuits C' of
size poly(n) it holds that | Pr[C(X) = 1] — Pr[C(Y) = 1]| < n~«(),

2.1 Commitment schemes

A commitment scheme is a two-phase interactive protocol between a sender and a receiver.
They are a digital analogue of locked safes: in the commit phase, the sender puts his message
inside the safe, locks the safe, and sends it to the receiver without the key. Thus, after the
commit phase the sender can only reveal the message he committed to (the commitment is



binding), but without the key the receiver has no idea what that message is (the commitment
is hiding). In the opening or decommit phase, the sender reveals the key to the receiver who
can then learn the value of the message and be assured that it was exactly what the sender
originally committed to. It is well-known that a commitment can be statistically binding or
statistically hiding (i.e. secure even against unbounded adversaries), but not both.

We formally define commitments for single-bit messages; since we will be concerned with com-
mitments that are composable, multi-bit messages can be handled by just repeating the single-
bit protocol in parallel.

Definition 2.1. A ¢-round (stand-alone) commitment protocol is a pair of efficient algorithms
Send and Rec. Given a sender input b € {0,1}, we define:

1. The commit phase transcript is 7 = (Send(b; wsend), Rec(wRrec)) Where wsend, wrec are the
random coins of the sender and receiver, respectively. Exactly ¢ messages are exchanged
in the commit phase t.

2. The decommit phase transcript consists of Send sending (b, open) to Rec. Rec(7, b, open) =
1 if open is a valid opening, and outputs 0 otherwise.

Notation and variable definitions: We assume that a commitment scheme is put in a
canonical form, where each party alternates speaking. We assume the number of rounds is even
and the receiver speaks first. If the number of rounds is 2¢, then we label the sender’s messages
a1, ..., and the receiver’s messages f1,. .., 8, and we let aj;) = (a1, ..., ;) and likewise for
Bj- For a commitment protocol (Send, Rec), we write that the receiver’s i’th response ; is
given by computing fj; = Rec(a[i_l};w) where aj;_q) are the first ¢ — 1 sender messages, and w
are the receiver’s random coins. We let Rec(L;w) = /31 denote the first receiver message.

Let k denote the number of parallel repetitions of a commitment protocol. Let n denote the
security parameter of the protocol. Given a stand-alone commitment (Send,Rec), let Send”
denote the k-fold repeated sender. Let Rec® denote the k-fold parallel receiver. Underlined
variables denote vectors of message bits (e.g. b € {0,1}¥) and plain letters with indices the bit
at each coordinate (e.g. b; is the i’th bit of b).

2.1.1 Binding

Definition 2.2 (Binding). A commitment scheme (Send, Rec) is computationally (resp. sta-
tistically) binding if for all polynomial-time (resp. unbounded) sender strategies Send’, only
with negligible probability can Send’ interact with an honest Rec to generate a commit-phase
transcript 7 and then produce open, open’ such Rec(r,0,0pen) = 1 and Rec(r,1,0pen’) = 1. A
scheme is perfectly binding if the above probability of cheating is 0.

It is straight-forward to prove that all the variants of the binding property are preserved under
parallel composition.

2.1.2 Hiding under selective opening attacks

We only study the case of computational hiding (see Remark 1.5). In the following, Z C 2k ig a
family of subsets of [k], which denotes the set of legal subsets of commitments that the receiver
is allowed to ask to be opened.

Definition 2.3 (Hiding under selective opening: k-fold parallel composition security game).
Sender input: b € {0,1}*. Let Rec’ be the (possibly cheating) sender.

1. Send”®,Rec’ run k executions of the commit phase in parallel using independent random
coins, obtaining k commit-phase transcripts 7% = (71,..., 7).



2. Rec’ chooses a set I <5 Z and sends it to Send”.
3. Send” sends (bi,w;) for all i € I, where w; is an opening of the i’th commitment.

In Item 2, the honest receiver is defined to pick I € Z uniformly, while a malicious receiver may
pick I adversarially.

Definition 2.4 (Hiding under selective opening, parallel composition). Let Z C 2[K be a family
of subsets and B be a family of message distributions over {0, 1}* for all k. Let (Send, Rec) be
a commitment and Simy be a simulator. We say that (Send,Rec) is secure against selective
opening attacks for (Z, B) if for all k£ < poly(n):

e Let (Send®(b), Rec’) = (7%, I,{(b;,w;)}icr) be the complete interaction between Rec’ and
the honest sender, including the commit-phase transcript 7, the subset I of coordinates
to be opened and the openings (b;, w;)icr-

e Let (SimRe | b) denote the following: first, SimRe interacts with Rec’ (without knowledge
of b) and outputs a subset I of bits to be opened. Then Simy, is given {b; };c;. Using this,
Sim;, interacts with Rec’ some more and outputs a commit-phase transcript 7%, the set I,
and the openings {(b;, w;)}icr-

e It holds that (SimRe | b) ~. (Send”(b), Rec’) where b < B

Definition 2.5. We say that (Z,B) is non-trivial if (the uniform distribution over) Z, B are
efficiently samplable, it holds that (1) |Z| = n“() and (2) Prr. 7[Heo(B;) > 1/poly(n)] >
1/poly(n).

Here B; is the joint distribution of bits B, for ¢ € I. Property 1 says that if the receiver
asks for a random set in Z to be opened, then the sender cannot guess the set with noticeable
probability. This restriction is natural because in many contexts if the sender can guess the set
to be opened then it can cheat in the larger protocol where the commitment is being used (e.g.
in a zero knowledge proof). Property 2 says that with noticeable probability over the choice
of I, there is non-negligible entropy in the bits revealed. This is very natural as otherwise any
receiver is trivially simulable since it always sees the same constant bits. This non-triviality
condition suffices for all our lower bounds except Item 3 of Theorem 1.2; see Section 4 for further
discussion.

Stronger definitions of hiding Our definitions are chosen to be as weak as possible in order
to make our lower bounds stronger. Nevertheless, our positive results also satisfy a stronger
definition of security, where security holds simultaneously for all Z, B. For such a notion, we
prepend STR to the name of the security property (e.g. STR-PAR-SB).

2.2 Inaccessible entropy

All our definitions here are taken from [15], and we refer the reader there for motivation,
intuition, and lemmas regarding how they are manipulated. Let A, B denote interactive TM’s,
and let A;, B; be the random variable describing i’th message sent by A, B respectively. We note
that [15] denote “smoothed” versions of entropy that take into account A, B that can abort; for
simplicity we define our notions without this subtlety.

Definition 2.6. Given a 2t-round interactive protocol (A, B), we define the sample-entropy of
a transcript 7 = (A, B) = (a1, b1, ..., a4 b)) from A’s point of view to be

t
RealHA(T) = Z - log(Pr[Ai = a; ‘ A1 = ai, Bl = bl, e 7Az‘—1 = Q;—1, Bi—l = bi—l])
=1



We say that the A has real min-entropy k if

Pr [RealHa(7) > k] > 1 —n W
7=(A,B)

In our setting, typically A will be the receiver and B will be the sender. We write A before B
as this is the convention used in [15].

To define accessible entropy for interactive protocols, we first need to define a failure-insensitive

measure of entropy as follows:

Definition 2.7. For random variables X,Y where X may be a special failure symbol L, we
define for each = € supp(X),y € supp(Y):

HX(SU) — Pr[X=z|X#1] .
0 ifx=_1
. log % L ifx # L

Definition 2.8. Let (A,B) be a 2t-round interactive protocol. Let A* be an interactive TM,
which tosses random coins s; in round . A* expects queries (af;_1),bj;—1)) from B, and replies
with (a;, w;) where aj;) = A(g; w;) is consistent with the aj;_;) contained inside . Define a view
v = (s0,b1,a1,w1,81,...,bt, ar, wy, s¢). Define

a; if A*(sg,b1,a1,w1,81,...,bi—1,ai—1,wi—1,8i—1,bi; 8;) = (a;, w;) and
AA* . . )
" (v,s) = wj is an A-consistent witness for (b1, a1, s1,...,b;, a;)
1 else

Define the accessible sample-entropy of a view v as follows:

t
AccHpp-(v) = Y Hi oo (TP (v, 855))
i=1

We say that A has context-independent accessible max-entropy at most k if there is no efficient
A* and efficient predicate success such that:

1. For any view v, success(v) implies that v is consistent with A (i.e. for all i, A(by;w;) =
2. Pr,_(a« py[success(v)] > 1/poly(n).
3. For all (possibly inefficient) B*, it holds that

<1:1"B >[ﬁsuccess(v) or AccHp a+(v) > k] > 1 — n~e

3 Constructions

Di Crescenzo and Ostrovsky [8] (see also [9]) showed how to build an equivocable commitment
scheme. Equivocable means that for every cheating receiver Rec’, there exists a simulator
that generates a commit-phase transcript that is computationally indistinguishable from a real
transcript, but which the simulator can decommit to both 0 and 1. Equivocation seems even



stronger than STR-PAR-CBCH security, except that STR-PAR-CBCH explicitly requires security
to hold in many parallel sessions. Although it is not clear how to generically convert any stand-
alone equivocable commitment to an equivocable commitment that is composable in parallel,
the particular construction of Di Crescenzo and Ostrovsky can be composed by using a suitable
preamble.

The DO construction consists of a preamble, which is a coin-flipping scheme that outputs a
random string, followed by running Naor’s commitment based on OWF [17] using the random
string of the preamble as the receiver’s first message.

Protocol 3.1 ([8, 9, 17]). Sender’s bit: b. Let G : {0,1}" — {0,1}*" be a PRG.

Preamble: Use a coin-flipping protocol to obtain o < {0, 1}*".

Commit phase: The sender picks random s < {0,1}" and sends ¢ = (6 Ab)BG(s)
(where we use the notation (o A b); = o; A b).

Decommit phase: The sender sends b, s. Receiver checks that ¢ = (o Ab) ® G(s).

We now present a preamble that when used in the protocol above, produces a STR-PAR-SB
commitment.

Protocol 3.2 ([8]). Preamble:

1. Using a t-round stand-alone SH commitment, the receiver sends a commitment to 3 <
{0,133

2. The sender replies with a < {0, 1}3.
3. The receiver opens £3.
4. Output 0 = a & 5.

Theorem 3.3. ([8]) Protocol 3.1 with the preamble of Protocol 3.2 gives a STR-PAR-SB com-
mitment.

Proof of Theorem 3.3. The binding properties are easy to verify, given the fact that Naor’s
commitment scheme is statistically binding.

The simulator given in Algorithm 3.4 proves security against selective opening attacks. The
analysis uses a simulation strategy similar to the analysis given in [22]. Since the simulation
strategy is essentially the same as [22] and that result supersedes ours by improving the round
complexity by 1, we omit the proof here and refer the reader to [22]. |

4 Lower bounds on round complexity

We now define our main tool for proving lower bounds, equivocal senders. Intuitively, an equiv-
ocal sender must run its commit phase without knowing what it is committing to, so if it can
cause the receiver to accept with non-negligible probability, then it must be able to open its
commitments in many ways.

4.1 Equivocal senders

For a pair of algorithms T' = (Teom, Tdecom), define the following game:



Given oracle access to a cheating k-fold receiver Rec™:

1.

Initialize X,Y = &. Define variables 1, ..., 8r and set them to initially be empty. Define a counter
variable ¢ initialized to 0 and a timeout variable T' initialized to O.

. Sample random coins for Rec” and fix them. Sample coins for the honest sender and execute the

initial commitment in the coin-flipping protocol with Rec*. Write Rec™’s random coins and the initial
commitment phase transcript to the output.

Let ¥ C [k] denote the set of sessions in which Rec* does not abort in the initial commitment. In the
following, only continue interaction in the sessions in X.

. In the following, if Rec” ever outputs an invalid opening of a commitment in some session j, the

simulator interprets this as the receiver aborting in session j. The simulator also checks the value of
each opening and if Rec™ ever successfully opens a commitment that was already opened in a previous
iteration, but to a different value, then the simulator outputs “binding broken” and halts.

First loop: Repeat the following:

(a) Sample a; <r {0,1}*" for j € ¥ and send them to Rec*.

(b) Read Rec™’s response, call this s. Let S C 3 be the set of non-aborting sessions in s. Do the
following;:

i. If S=X =Y = @ (this can only occur in the first iteration), write the o; and s to the
output and halt.
ii. If S C Y, continue the loop.
iii. If SZY and S C X then break the loop.

iv. If S ¢ X then update variables: set Y <— X, X <~ X U S, and for all j € S\ X, set 3; to
be the value that was opened by Rec*. Continue the loop.

Calculate timeout: Repeat the following trial until (nk)? successes occur: sample a; < {0, 1}*" for
j € ¥ and send them to Rec*, and let S’ denote the set of sessions in Rec*’s response that are not

aborted; the trial is a success if S" Z Y and S’ C X. Let £ denote the number of repetitions that

were used to obtain (nk)® successes. Set T = min(-5,nk2"*) and set t = 0.

Second loop: Repeat the following while ¢t < T

(a) For j € X, construct and send «; to the receiver, where the a; are defined as:
i. For each j € ¥\ X, sample a; «r {0,1}*".
ii. For j € X, sample rJ, 7} <—r {0,1}" and set a;; = G(rJ) ® G(r}) ® B;.
(b) Let s be Rec™’s response and S the set of non-aborted sessions in s.

i. If SCY or S¢Z X then increment ¢ and continue the loop.

ii. Otherwise, it must be that S € Y and S C X. Write all the a; and s to the output.
Complete the simulation as follows:
A. For each j € S, the simulator sends G(r}) to Rec* as the j'th commitment. Write
G(r)) to the output.
B. If Rec™ aborts, then the simulator halts. Otherwise, Rec™ picks a subset I € Z,1 C S
to be revealed and the simulator asks for the values {b; };cr. Write I to the output.

C. For each i € I, the simulator writes rf‘ to the output as the opening of the i’th session.
D. Halt.

8. We exceeded the timeout, so output “timeout”.

Algorithm 3.4. Simulator Simy for Theorem 3.3




L. (Teom, Reck> = (7%, I,state o). Here, state oy, is the internal state of Ti, to be transmit-
ted to Tgecom- I is the set Rec® asks to be opened. Notice T, runs without knowledge
of b, hence T is “equivocal” during the commit phase.

2. Tdecom(ba Tka I, Statecom) — {(bu Openi)}iel-

The overall transcript is ((T,Rec®) | b, NoAborty) = (7%, I,{(b;,open;)}icr), where NoAborty
denotes the event that 7' does not abort. Say that (7%, I,state ) is 6-openable if with proba-
bility at least & over the choice of b, Rec* accepts (7%, I, {(b;, open;)}icr), where {(b;, open;)}ics =
Taecom(b, 7%, I, state o).

Definition 4.1 (Equivocal sender). We say that T' = (Teom, Tdecom) is a (k, €, d)-equivocal
sender for (Send, Rec, Simy) if it holds that

PI“[(Tk,I, statecom) = (Teoms Reck> is 0-openable A NoAborty] > ¢
We say T is a k-equivocal sender if it is a (k, 1/poly(n), 1 — n~=“())-equivocal sender.

Using equivocal senders to break binding. Here we show that secure commitments can-
not admit equivocal senders. In the next few sections, we will show that certain kinds of
commitments (e.g. 2-round) must admit equivocal senders, which, combined with the following
theorem, imply that those kinds of commitments cannot be secure. All of these theorems are
proven via black-box reductions.

Theorem 4.2. Fiz any non-trivial (I, B) and k-fold repeated commitment scheme (Send®, Rect)
with a simulator Simy that proves computational hiding. If this commitment has a k-equivocal
sender T' = (Teoms Tagecom) for any k < poly(n), then this commitment cannot be statistically
binding. If furthermore T is efficient, then this commitment cannot be computationally binding.

Proof. The idea is to convert a k-equivocal T sender into a sender Send’ that breaks binding
in a single execution of the commitment, Send’ emulates T" internally and chooses one of the k
parallel instances to insert its interaction with the real receiver Rec. By the non-triviality of
(Z,B), with high probability over I <—x Z the coordinates in I have significant min-entropy, and
in particular some coordinate must have significant min-entropy. Therefore if Send’ picks this
coordinate, then since T is able to open its commitment with non-trivial probability for I <y Z
and b < B, it follows that Send’ can open its commitment to both 0 and 1 with non-negligible
probability.

We now proceed formally by constructing a malicious sender Send” and proving that this sender
breaks binding.

Algorithm 4.3.
Malicious sender Send’, interacting with a single honest receiver Rec:

1. Pick a random j. For each j' # j, sample random coins w'’) to run an honest receiver.

2. Respond to the i’th message 3; from Rec as follows.

(a) If i > 1, let (O‘[(z‘l—)ﬂ’ - ,oz[(f_)”) be T,om’s response from previous queries.

(b) For j' # j, compute BZ-(j/) = Rec(a[(gi)l];w(j/)). Set ﬁi(j) = .

(c) Feed (Bi(l), e Bi(k)) to Teom to obtain response (a%), e O‘[(g)) (assuming T, does
not abort).
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(d) Forward ozl(j ) back to Rec.

3. If T,pm does not abort, Send” successfully generates a commit-phase transcript distributed
according to (Teom, Rec®). Send’ picks a random I < T to be opened.

4. If j ¢ I, Send’ aborts. Otherwise, it independently picks two b,b’ < B, and runs
Taecom(b, I) to obtain a decommitment for (b;);e; and runs Tijecom (b, I) to obtain openings
for (b})icr. In particular, the malicious sender obtains openings for b; and b/.

Analyzing Send’: By hypothesis, T is a (k,e,1 — n‘“’(l))—equivocal server for some ¢ =
1/poly(n). This implies that with probability at least &, (T,om, Rec’) produces an (1 —n~—«))-
openable (Tk, I,state ym). Therefore, since the probability of producing an accepting opening
for a random b at least (1 —n~*(), it holds with probability at least £(1 — n~“(1))2 that Rec”
accepts both openings Tiyecom(b, 7F, I, stateom) and Tgecom (b, 7F, I, state om).

Since (Z, B) is non-trivial, a straightforward calculation implies that Pry s ;[Vi € I, b; = ] <
n~“() Therefore with probability (1 — n=“1)2 — n=«() T produces accepting openings
for b and b’ and furthermore there exists i such that b, # b}. Since the sender picked at
random the coordinate j that contains the real interaction, with probability 1/k it chooses
j =1 and therefore with non-negligible probability produces decommitments for both 0 and 1
in an interaction with the real receiver, breaking binding. |

4.1.1 Strong non-triviality

Item 3 of Theorem 1.2 requires the following stronger notion of non-triviality.

Definition 4.4. (Z, B) is strong non-trivial if:

1. Z is a product of vk large sets: formally, there exists some partition IT = (Iy, . .. L)
of [k] into vk subsets, and T = Z; x ... Z s and for each i, it holds that Z; C 2 and
|Iz‘ = n“’(l).

2. For each i € [V/k], let I; be the projection of I onto the coordinates in II;. It holds that

Pr [Vi, Hy(B;,) > w(logn)] > 1/poly(n)

I(—RI

This definition strengthens the non-triviality condition on (Z,B) in two ways: first we require
that Z be a product of vk sets, each of which is large. (Here, Vk is arbitrary, any n° would
be equivalent for our purposes.) Second, we require the amount of entropy in B to be large
(w(logn) rather than just 1/poly(n)) simultaneously for all i. Notice that it is still satisfied
by natural (Z,B), for instance T = 2% the set of all subsets of [k], and B = U}, the uniform
distribution over {0, 1}*.

Theorem 4.5. Fiz any strong non-trivial (I, B) and k-fold repeated commitment scheme (Send®, Rect)

with a simulator Simy, that proves computational hiding. If this commitment has a (k,1/poly(n), 1/poly(n))-
equivocal sender T = (Teom, Tdecom) for any k = w(logn), then this commitment cannot be sta-

tistically binding. If furthermore T is efficient, then this commitment cannot be computationally

binding.

Proof sketch. The proof is identical to Theorem 4.5, the only additional observation is that

because T only guarantees with noticeable probability that the commit-phase (7%, I, state o)
is 1/poly(n)-openable (rather than (1 — n~“(1)-openable), we need the stronger non-trivial
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guarantee to say that even sampling only from the 1/poly(n) fraction of the message distribution
B that causes Rec® to accept, still we will find b, b that differ on the subset I of bits to be opened.

[
We construct equivocal senders using the strategy of Goldreich and Krawczyk [12]. Intuitively,
the idea is to construct a sender 7' whose output distribution is the same as Sim,'jech. Here,

Recy, is intuitively a cheating receiver that, for each sender message, uses its hash function A
to generate a response that looks completely random, and therefore Simj gains no advantage
by rewinding Recy. From this cheating property, we will be able to conclude that T satisfies
Definition 4.1

Goldreich and Krawczyk [12] observe that we can make the following simplifying assumptions
w.l.o.g.: (1) Simj, makes exactly p(n) = poly(n) queries to its receiver black box, (2) all queries
made by Simy, are distinct, and (3) Simj always outputs a transcript 7 that consists of queries
it made to the receiver and the corresponding receiver responses.

The following lemma from [12] says that simply by guessing uniformly at random, one can pick
with some noticeable probability the queries/responses that the simulator outputs as its final
transcript.

Lemma 4.6 ([12]). Fiz a black-box simulator Simy for a protocol with t sender messages,
and suppose Simy makes p(n) queries. Draw ui,...,u; <z [p(n)], then with probability >
1/p(n)t, the final transcript output by Simy, consists of the uy, ..., u; th queries (along with the
corresponding receiver responses).

4.1.2 2-round commitments

Theorem 4.7. For all non-trivial (Z,B) and relative to any oracle, there exists no 2-round
PAR-CBCH commitment protocol secure for (Z,B).

Proof. We construct a polynomial-time k-equivocal sender for (Send,Rec) for k& = n. By
Theorem 4.2, this contradicts the binding property of the commitment. In fact, we prove a
stronger statement: we rule out any 3-round commitment where the sender speaks last. This
is strictly more general than 2-round commitments, since one can add dummy messages to a
2-round commitment to arrive at such a 3-round commitment.

Algorithm 4.8.
Equivocal sender T' = (T¢om, Tdecom) for 3-round commitments where the sender speaks last:

1. Teom picks ug,ug <5 [p(n)].
2. Tiom internally runs Simy, answering its queries as follows:

e For the uy, us’'th queries, if the u;’th query is a first sender message «; and the us’th
query is a second sender message g that extends v, then Tt forwards them to
the real receiver and forwards the receiver’s responses to the simulator. Otherwise,
T.om aborts.

e For all other queries: if the query is o, then Ty, returns Rec®(a;;w) for uniform
w. If the query is ay) then T returns a random [ <5 Z.

3. When Sim;, requests that a subset I of bits be revealed, T,,,, checks to see if I equals the
set that the real receiver asked to be opened. If not, T, aborts.
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4. In the opening phase, Tyecom receives b and feeds (b;);e; to the simulator and obtains
(7%, 1, (b;,0pen;)icr). Taecom checks that 7% and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs these openings.

Analyzing equivocal sender T'. It is clear that T runs in polynomial time.

Lemma 4.6 implies that with probability 1/p(n)?, Sim, picks the set to be revealed I using the
guessed queries w1, us.

Claim 4.9. The probability that Simy, makes two queries oy, a’[z] that are both answered with
the same I is negligible

This claim holds because |Z| = n") and Simj, makes at most p(n) = poly(n) queries. Claim 4.9
implies that when T emulates Simy, Simj cannot pick I using the real receiver’s messages but
then find a different commit-phase transcript that leads to the same set I. Therefore the
probability that T does not abort and outputs the queries to and responses from the real
receiver is at least 1/p(n)? — n=*0) > 1/poly(n).

Claim 4.10. Rec® accepts ((T, Rec’) | b, NoAbortr) with overwhelming probability.

This claim combined with the above assertion that 1" does not abort with non-negligible prob-
ability implies that 1" satisfies Definition 4.1.

We now prove Claim 4.10 by comparing the output of T to (Sim,rjech | b) where Recy, is defined
as follows: h is a p(n)-wise independent hash function, it responds to first sender queries a; by
computing 31 = Rec(ai;h(a1)) and to second sender queries ajy) by sampling uniform I < 7
using h(apy) as random coins.?

As observed by [12], ((T, Rec) | b, NoAborty) = (SimF*" | b) for a uniform choice of h. Since Recy,
is efficient, by the hiding property this is indistinguishable from (Send®(b), Rec). This in turn
is equal to a true interaction (Send®(b), Rec”), since by the definition of Rec;, the two receivers
Rec;, and Rec® behave identically when there is no rewinding. Since Rec® always accepts a real
interaction, therefore Rec® accepts ((T', Rec) | b, NoAborty) with overwhelming probability. M

4.1.3 3-round commitments

Theorem 4.11. For all non-trivial (Z,B) and relative to any oracle, there exists no 3-round
PAR-SB commitment protocol secure for (I,B).

Proof. As before, it suffices to construct a k-equivocal sender for k = n. Also, as before,
we rule out 4-round commitments where the sender speaks last, and this handles all 3-round
commitments because we can add dummy messages.

Algorithm 4.12.
1E)qyivocal sender T' = (Teom, Taecom) for 4-round PAR-SB commitments where the sender speaks
ast:

1. Teom picks uj, ug <5 [p(n)].
2. Teom receives the first message 81 from the receiver.

3. Teom internally runs Simg, answering its queries as follows:

2The message 1 and the set I are independent, so there is no consistency constraint to ensure between S;
and I. This is why we can handle 2 rounds and not just non-interactive commitments as a naive application of
[12] might suggest.
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e For the simulator’s uy, us’th queries, if the u1’th query is a first sender message o1 and
the ug’th query is a second sender message oy that extends oy, then Ty, forwards
them to the real receiver and forwards the receiver’s responses to the simulator.
Otherwise, T, aborts.

e For all other queries: if the query is oy then T, samples a random w’ 5 {w |
Rec(L;w) = 1} and returns B2 = Rec(B1, a1;w’) to the simulator. If the query is
9] then the simulator picks a random I <y Z and returns it to the simulator.

4. When Sim;, requests that a subset I of bits be revealed, T,,,, checks to see if I equals the
set that the real receiver asked to be opened. If not, T, aborts.

5. In the opening phase, Tyecom receives b and feeds (b;);er to the simulator and obtains
(7%, 1, (b;,0pen;)icr). Taecom checks that 7% and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs the openings.

Analyzing equivocal sender 7. T may not run in polynomial time because sampling w’ <y
{w | B1 = Rec(L;w)} may be inefficient. This implies the sender breaking binding given by
Theorem 4.2 may be inefficient, which is why we can only handle PAR-SB commitments.

Applying Lemma 4.6, T' does not abort with probability > 1/p(n)?. Claim 4.9 applies here for
the same reason as in the proof of Theorem 4.7, therefore it holds with probability 1/p(n)? —
n~“(M > 1/poly(n) that T’s messages to/from the receiver are exactly those in the output of
its emulation of Simy.

We claim that Claim 4.10 holds in this case as well, which would imply that T" satisfies Definition 4.1.

,,,,,,

we use the cheating receiver strategy Rec;'"** defined by Katz [16]: s will be set below, and
the w; are random coins for the honest receiver algorithm such that Rec(L;w;) = Rec(L;w;) for
all 7,7 € [s], and h is a p(n)-wise independent hash function with output range [s]. The first
message of Rec;il""’ws is /1 = Rec(L;w;) and given sender message oy, the second message is
B2 = Rec(B1, ag; wh(ﬁl,al))- Given sender messages oo, the set I to be opened is sampled using
Wh(Bgap) 88 random coins.

As observed in [16], for s = 50p(n)?/§ it holds that the statistical distance between ((T, Rec*) |

,,,,,

. R . . . .
b, NoAbort7) and (Sim kech | b) is at most 0, where the randomness is over uniform p(n)-wise

independent A, uniform w; and uniform ws, . .., w, conditioned on Rec(L;w;) = Rec(L;w,) for all
j € [s]. By the commitment’s hiding property this is indistinguishable from (Send”(b), Rec)>*),
which in turn is equal to (Send”(b),Rec’) by the definition of Rec;*“*. Finally, since Rec”
always accepts a real interaction, therefore it accepts ({7 Reck> | b, NoAborty) with probability
1—6—nvl),

We can apply the above argument for any 6 > 1/poly(n) to conclude that Rec® accepts
((T, Rec®) | b, NoAbort7) with probability 1 — & — n () for all § > 1/poly(n).

Therefore Rec® must accept ((T,Rec*) | b, NoAborty) with probability 1 — n~“() and so T
satisfies Definition 4.1. |

4.1.4 Perfectly binding commitments

Theorem 4.13. For all non-trivial (Z,B) and relative to any oracle, there exists no PAR-PB
commitment protocol secure for (Z,B).
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Proof. Let (Send, Rec) be the scheme and let m denote the number of random bits used by Rec.
We construct a (k, 2™ 1)-equivocal sender for (Send, Rec,Simy). This suffices to prove the
theorem: although Theorem 4.2 is for the case of statistically binding, looking at its proof the
reduction employed in fact shows that one can use a (k, g—mkt 1)-equivocal sender to build a
sender strategy that breaks binding with non-zero probability, contradicting perfect binding.
Suppose without loss of generality that Rec sends its random coins as the very last message in
the commit phase.

Building equivocal sender T: Let p(n) denote the maximum number of queries made by
Simj,. Let ¢ be the number of rounds in the commitment.

1. T¢om guesse random coins w of the real receiver, and also picks a random subset U C [p(n)]
of size t, let u1 < uo < ... < uy be its elements.

2. Teom internally executes Simy, answering its queries as follows:

e For the u;’th query, T, forwards the query to the real receiver and forwards the
response back to Simg.

e For other queries, T¢,,,, computes responses using the coins w that the sender guessed.

3. At the end of the commit-phase Rec® sends all its random coins. T.om checks whether it
guessed the random coins correctly, and if not it aborts.

4. Simj outputs a set I of bits to be opened. T, checks that I was the real receiver’s
response to a query in U, and that the query consists only of simulator queries in U and
the corresponding real receiver responses. If not, T¢,., aborts.

5. In the opening phase, Tyecom receives b and feeds (b;);er to the simulator and obtains
(7%, 1, (b;,0pen;)icr). Taiecom checks that 7% and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs the openings.

Analyzing equivocal sender T: with probability 27, T,,,, correctly guesses the receiver’s
random coins. By Lemma 4.6, with probability 1/p(n)?, all messages in the transcript that the
simulator outputs correspond to queries in U, and so Ty, does not abort. Therefore the
probability that 7' does not abort is at least 27 /p(n)* > 27™*and from the definition of T

it is clear that ((T', Rec®) | b, NoAbortr) is identical to (Sim,?eck | b), so T satisfies Definition 4.1.
[

4.1.5 Public-coin commitments

Theorem 4.14. For all strong non-trivial (Z,B) and relative to any oracle, there exists no
public-coin PAR-CBCH commitment protocol secure for (Z,B).

Proof. Given any public-coin commitment protocol (Send,Rec,Simy) for a strong non-trivial
Z, we construct a (w(logn),1/poly(n),1/poly(n))-equivocal sender, which is implicit in [19].
Combined with Theorem 4.5 this implies that (Send, Rec, Simy) is not PAR-CBCH secure.

Building the equivocal sender T: following [19], our equivocal sender will require k =
poly(t) parallel sessions. Look at the partition of [k] into subsets I = (IIy, ..., Il 7). Because

Z; C 2" and |Z;| = n*™), therefore it holds that |II;| = w(logn).

We consider the coordinates in a single subset of the partition to belong to one session. T,
internally execute Simj by randomly choosing one j € [\/E] of the sessions to forward to the
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real receiver, while the rest are internally simulated. [19] describe a strategy for Ty, to rewind
the simulator such that, with high probability, Simj; outputs with non-negligible probability
exactly the session that was forwarded to the real receiver. Roughly, for each of the ¢ rounds
of the protocol, T, forwards the next message from session k to the receiver and returns the
response to the simulator. It then repeatedly runs many continuations of the simulator until it
finds a continuation where the real receiver’s response is likely to be included in the final output
(and if no such continuation exists, T,om aborts). We refer the reader to [19] for details.

Teom also checks that the subset I that Simj asks to be opened is in response to a query that
consists of simulator queries and real receiver responses, and if not T, aborts. Otherwise,
T jecom outputs an opening using the simulator.

Analyzing the equivocal sender 7' for computational binding: [19] prove that the
equivocal sender causes the receiver to accept with non-negligible probability, say > . Then
by a standard averaging argument, with probability > €/2, the (T, Rec) produces an (¢/2)-
openable commit-phase transcript. Therefore T' is a (w(logn), 1/poly(n),1/poly(n))-equivocal
server. [

4.2 PAR-SB commitments imply (stand-alone) SH commitments

To prove Item 2 of Theorem 1.2, we show that PAR-SB commitments can be used to generate
a gap between real and accessible entropy [15]. Then we apply the transformation of [15] that
converts an entropy gap into a statistically hiding commitment.

Theorem 4.15. For strong non-trivial (Z,B), if there exists O(1)-round (Send, Rec) that is
PAR-SB secure for (I,B), then there exists O(1)-round statistically hiding commitments.

Proof. Assume without loss of generality that Rec’ sends all his random coins at the end of the
opening phase, and that Rec uses m random coins in a single stand-alone instance.

Lemma 4.16. Rec® has real min-entropy at least km(1 — 1/kY3) and has context-independent
accessible maz-entropy < km — k/4.

Let I be the partition such that 7 = 71 x ... X Z  and Z; C 2l For sufficiently large
k, Lemma 4.16 implies there is an entropy gap for the coordinates in II;, and by the entropy
gap amplification lemma (Lemma 3.8) of [15] implies that the entropy gap sums over all of
the coordinates. Therefore for large enough k the gap is sufficient to apply the black-box
construction of statistically hiding commitments from entropy gaps given by Lemmas 6.7, 4.7,
and 4.18 of [15]. [ |

Proof of Lemma 4.16. The real min-entropy part of the claim follows from the definitions and
amplification by parallel repetition (Proposition 3.8 in [15]). For the accessible entropy part,
we use the following:

Lemma 4.17. If there exists efficient A* (and efficient predicate success, see Definition 2.8)
sampling high context-independent maz-entropy for Reck, then there exists a (k,1/poly(n), 1/poly(n))-
equivocal sender.

By Theorem 4.5 this contradicts the binding property of the commitment and so A* cannot
exist.
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Proof of Lemma 4.17. This lemma holds intuitively because we can use A* to perform the
same role as Rec, and Recz}l"“’ws in the analysis of the equivocal senders in Theorem 4.7 and
Theorem 4.11. The fact that A* can access high accessible entropy essentially means that it
can sample the i’th message conditioned on a partial transcript of first ¢ — 1 messages. Apply-
ing Theorem 4.2 implies that such an equivocal sender T" would break binding property of the

commitment, and therefore such A* cannot exist.
We now proceed formally.

Algorithm 4.18.
Equivocal sender T' = (T¢om, Tdecom) for PAR-SB commitments.

1. Teom picks a random subset U C [p(n)] of size t, let u; < ug < ... < u; be its elements.
Teom stores a table (initially empty) that associates strings with every simulator query.

2. Teom internally executes the simulator Simy. Let Simy’s j’th query be denoted ay;. First
T'com looks up sj;_1) corresponding to a;_qj in its table (or aborts if no such entry exists).

e For j = w;’'th, Teopm checks the query ay; satisfies ¢ = [ and aj_;) was the w;—1’th
query. If not, T, aborts. Otherwise, it forwards the query ay; to the real receiver
and gets as response ;. Tcom samples s; uniformly conditioned on the last output of
A*(ag; s0, - - -5 8i) being (B, w;) for some w;. (Note this sampling may be inefficient,
and therefore T, may be inefficient.)

e For j & U, Teom samples uniform s;, computes A*(ay;; sp;)), letting (5;,w;) denote its
last output.

Then, Teom returns 3; to Simg and adds an entry into its table associating sj; with ay.

3. When Simj requests that a subset I of bits be revealed, T, checks to see if I was the
set that the real receiver asked to be opened. If not, T, aborts.

4. In the opening phase, Tgecom receives b and feeds (b;);er to the simulator and obtains
(7%, 1, (b;,0pen;)icr). Taecom checks that 7% and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs these openings.

Analyzing T: we require the following lemmas:

Lemma 4.19 ([15], Lemma 6.10).

Pr [AccHg ok ax (V) > km — k/4 and v is rejecting] < n~«W)
v=(Send” (b),A*) ’
By the definition of success(v), this lemma implies
Pr [success(v) and v is accepting] > 1/poly(n) — n~*M > 1/poly(n) (4.1)

v=(Send" (b),A*)

Also, as observed in [15], T is essentially answering queries j ¢ U according to the following
cheating receiver strategy Recp, where h is a uniformly chosen p(n)-wise independent hash
function:

Algorithm 4.20.
Cheating receiver Recy:

1. Generate a first receiver message 1 by computing so = h(0) and A*(L;sg) = (81, w1).
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2. On sender message a;), generate a response 3; by computing s; = h(ap;)) and A* (s so, - - -, 8i) =

(Biywi)-
It is clear from the definitions that

((T, A*) | b, NoAborty) = (Sim*" | b) (4.2)

From Equation 4.1 and the the commitment’s hiding property which says that (Simgech | b) ~.
(Send®(b), A*), we deduce

Pr [success(v) and v is accepting] > 1/poly(n)
v=(Simy" |b)

By Equation 4.2 it follows that

1 ; def
P success d t > 1/v0l lef
v:(<T,A*)\Q,rNoAbortT)[ ! (v) and v is accepting] > 1/poly(n)

But success(v) and v is accepting means precisely that Rec” accepts v as a valid transcript. Also,
Lemma 4.6 implies that Pr[NoAborty] > 1/p(n)!. Therefore, T is a (k,1/p(n)t,§)-equivocal
sender.
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