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ABSTRACT

Edge networks connected to the Internet need effective mon-
itoring techniques to drive routing decisions and detect vi-
olations of Service Level Agreements (SLAs). However, ex-
isting measurement tools, like ping, traceroute, and trajec-
tory sampling, are vulnerable to attacks that can make a
path look better than it really is. In this paper, we design
and analyze path-quality monitoring protocols that reliably
raise an alarm when the packet-loss rate and delay exceed a
threshold, even when an adversary tries to bias monitoring
results by selectively delaying, dropping, modifying, inject-
ing, or preferentially treating packets.

Despite the strong threat model we consider in this pa-
per, our protocols are efficient enough to run at line rate on
high-speed routers. We present a secure sketching protocol
for identifying when packet loss and delay degrade beyond a
threshold. This protocol is extremely lightweight, requiring
only 250-600 bytes of storage and periodic transmission of
a comparably sized IP packet to monitor billions of pack-
ets. We also present secure sampling protocols that provide
faster feedback and accurate round-trip delay estimates, at
the expense of somewhat higher storage and communication
costs. We prove that all our protocols satisfy a precise defi-
nition of secure path-quality monitoring and derive analytic
expressions for the trade-off between statistical accuracy and
system overhead. We also compare how our protocols per-
form in the client-server setting, when paths are asymmetric,
and when packet marking is not permitted.

This is an extended and revised version of the paper [21]
“Path Quality Monitoring in the Presence of Adversaries”
that appeared in the Proceedings of ACM SIGMETRICS
2008.

1. INTRODUCTION

Path-quality monitoring is a crucial component of flexi-
ble routing techniques (e.g., intelligent route control, source
routing, and overlay routing) that give edge networks greater
control over path selection. Monitoring is also necessary to
verify that service providers deliver the performance speci-
fied in Service-Level Agreements (SLAs). In both applica-
tions, edge networks need to determine when path quality
degrades beyond some threshold, in order to switch from one
path to another or report an SLA violation. The problem is
complicated by the presence of nodes along the path who try
to interfere with the measurement process, out of greed, mal-
ice, or just misconfiguration. In this paper, we design and
analyze light-weight path-quality monitoring (PQM) proto-
cols that detect when packet loss or delay exceeds a thresh-

old, even when adversaries try to bias monitoring results.
Our solutions are efficient enough to run at line rate on the
high-speed routers connecting edge networks to the Internet.

1.1 The presence of adversaries

Today, path-quality monitoring relies on active measure-
ment techniques, like ping and traceroute, that inject special
“probe” packets into the network. In addition to imparting
extra load on the network, active measurements are vulner-
able to adversaries that try to bias the results by treating
probe packets preferentially. Instead, we want to design pro-
tocols that provide accurate information even when interme-
diate nodes may adversarially delay, drop, modify, inject or
preferentially treat packets in order to confound measure-
ment. Our motivations for studying this adversarial threat
model are threefold:

1. It covers active attacks. Our strong threat model covers
a broad class of malicious behavior. Malicious adversaries
can easily launch routing-protocol attacks that draw packets
to (or through) a node of their choosing [8], or compromise
one of the routers along an existing path through the In-
ternet [23, pg. 14]. Biasing path-quality measurements
allows the adversaries to evade detection, while continuing
to degrade performance or impersonate the legitimate des-
tination at will. In addition, ISPs have both the economic
incentive and the technical means to preferentially handle
probe packets, to hide discrimination against unwanted traf-
fic like Skype [37] or BitTorrent [1], and evade detection of
SLA violations. (In fact, commercial monitoring services,
like Keynote, claim to employ “anti-gaming” techniques to
prevent providers from biasing measurement results [2].) Fi-
nally, adversaries controlling arbitrary end hosts (such as
botnets) can add “spoofed” packets to the stream of traf-
fic from one edge network to another, to confound simplistic
measurement techniques (e.g., such as maintaining a counter
of received packets).

2. It covers all possible benign failures. By studying the ad-
versarial setting, we avoid making ad hoc assumptions about
the nature of failures caused by normal congestion, malfunc-
tion or misconfiguration. Even benign modification of pack-
ets may take place in a seemingly adversarial manner. For
example, an MTU (Maximum Transmission Unit) mismatch
may cause a router to drop large packets while continuing
to forward the small probe packets sent by ping or tracer-
oute [31]. As another example, link-level CRC checks are
surprisingly ineffective at detecting the kinds of errors that
corrupt IP packets [46]. Since the adversarial model is the
strongest possible model, any protocol that is robust in this



setting is automatically robust to all other kind of failures.

3. It is challenging to satisfy in high-speed routers. We
choose to work in a difficult space, where we assume the
strongest possible adversarial model, and yet design solu-
tions for high-speed routers on multi-Gbit/sec links, where
computation and storage resources are extremely limited.
We view it as an important research goal to understand
what can and cannot be done in this setting, to inform prac-
tical decisions about what level of threats future networks
should be designed to withstand. Furthermore, designing
protocols for this adversarial setting is not simply a mat-
ter of adding standard cryptographic tools to existing non-
adversarial measurement protocols. Indeed, naive ways of
combining such protocols with cryptographic tools may be
either insecure or very inefficient (e.g., encrypting and au-
thenticating all traffic).

Despite the strong threat model we consider in this pa-
per,we are still able to design secure PQM protocols that
can be implemented in the constrained environment of high-
speed routers. Our protocols are competitive, in terms of ef-
ficiency, with solutions designed for the non-adversarial set-
ting [19,24] and for weaker threat models. As such, we be-
lieve that our protocols are strong candidates for deployment
in future networks, even where our strong security guaran-
tees may not be essential.

1.2  Our results

We say that a packet delivery failure (failure for short)
has occurred on a path if a packet sent by the source was
dropped, modified, or delayed beyond a certain timeout pe-
riod, regardless of whether the drop is due to congestion,
malfunction or adversarial behavior. The goal of a PQM
protocol is to detect when the fraction of failures on a path
rises above a certain fraction 3 (say 8 = 0.01) of all packets
sent. We emphasize that a PQM protocol does not prevent
failures. A secure PQM protocol achieves its goal even when
there is an intermediate node on the path between source
and destination that can adversarially drop, modify, or in-
ject both data and protocol-related packets to the path in
order to bias the measurement results. Most existing PQM
protocols, such as ping, traceroute, and counter-based solu-
tions [47] completely break down in this setting (we show
why in Section 2.2).

To have efficient solutions that can run on high-speed
routers, we design secure PQM protocols based on two main
classes of data-reduction techniques:

Secure sketch. In Section 5, we present a protocol for
monitoring packet-loss rates that makes extremely efficient
use of communication and storage resources. Our secure
sketch protocol uses £2-norm estimation sketches [3,5,13,48|
to aggregate information about the failures that occur dur-
ing an interval, in which T packets are sent, into a sketch
of size O(logT') bits; the communication overhead is just a
single report packet per time interval. Assuming that about
107 packets are sent during an 100ms interval, our proto-
col requires between 250-600 bytes of storage at the source
and destination, and a report can easily fit into a single
IP packet. In the course of analyzing this protocol, we pro-
vide an improved formal analysis of the performance of [13]’s
sketching scheme that may be of independent interest.

Secure sampling. In certain settings, an edge-network
may require accurate round-trip delay measurements in ad-

dition to monitoring if the failure rate rises above a thresh-
old. Section 4 describes a secure PQM protocol that achieves
this by measuring performance for a sample of the traf-
fic that is obtained using a cryptographic hash function.
For PQM with threshold (3, this sampling-based protocol
requires O(n/f3) bits of storage at the source, where n is the
output length of the hash function. We present two variants:
(1) Symmetric Secure Sampling is designed for the setting
where source and destination can devote an equal amount
of resources to the running of the protocol, and (2) Asym-
metric Secure Sampling, which is designed for a client-server
setting where the client contributes the bulk of the resources,
and the server participates in path-quality monitoring with
many clients simultaneously.

Precise definition of security. Evaluating the security
of a protocol is challenging in practice. In many problem
domains, e.g., intrusion detection, the only viable approach
is to enumerate a set of possible attacks, and then show how
the protocol defends against these specific attacks. One way
to do this is to evaluate the protocol on, say, packet traces of
real-world attacks. However, there is always a risk that an
adversary might devise a new attack that we have not con-
sidered or that was not expressed in the trace. Fortunately,
in our problem domain, a more comprehensive security eval-
uation is possible. Namely, instead of enumerating ways the
protocol can break down (i.e., attacks), we can instead give
a precise definition of the functionality we require from the
protocol, and then guarantee that the protocol can carry out
these functions even in the face of all possible attacks by an
adversary with a specific set of capabilities.

To do this, in Section 2 we precisely define our require-
ments for a secure PQM protocol and the powers that we
give to the adversary. Then, to evaluate the security of our
protocols, we use formal analysis to prove that our protocols
achieve this functionality no matter what the adversary does,
short of breaking the security of the basic cryptographic
primitives (e.g., digital signatures and hash functions) from
which the protocol is constructed. In Section 6 we prove that
any secure PQM protocol (as per Definition 2.1) would need
to employ the same basic security machinery—secret keys
and cryptographic operations—used by our secure sketch-
ing and sampling protocols.

Evaluating performance. The performance and cost
of any particular implementation of our protocols would de-
pend on memory speed and the particular choice of crypto-
graphic primitives. As such, we count separately the differ-
ent resources—computation, storage and communication—
used by our protocols, bound the resource utilization us-
ing formal analysis, and also show somewhat better bounds
through numerical experiments. Our protocols use crypto-
graphic hash functions in an online setting, where an ad-
versary has very limited time to break the security before
the hash parameters are refreshed; this allows us to use
fast implementations of these hash functions (details in Ap-
pendix A). We emphasize that all except one of our pro-
tocols do not modify data packets in any way, and so they
may be implemented off the critical packet-processing path
in the router. Not marking packets also makes our protocols
backwards compatible with IP while minimizing latency at
the router, allows the parties to turn on/off PQM protocols
without the need to coordinate with each other, and avoids
problems with increasing packet size and possibly exceed-
ing the MTU. For efficiency reasons, we specifically avoid



solutions that require encryption and authentication of all
the traffic sent on the path, as in IPsec. We further dis-
cuss and compare the performance trade-offs for our sketch
and sampling protocols with known solutions like IPsec in
Section 7.

2. THE STATISTICAL SECURITY MODEL

In our model, a source Alice sends packets to a destina-
tion Bob over a path through the Internet. Fix a set of T
consecutive packets sent by Alice, which we call an interval,
we define a packet delivery failure to be any instance where
a packet that was sent by Alice during the interval fails to
arrive unmodified at Bob (before the last packet of interval
arrives at Bob). An adversary Fve can sit anywhere on the
path between Alice and Bob, and we empower Eve to drop,
modify, or delay every packet or add her own packets. A
path quality monitoring (PQM) protocol is a protocol that
Alice and Bob run to detect whether the number of failures
during the interval exceeds a certain fraction of total packets
transmitted.

DEFINITION 2.1. Given parameters 0 < a < 8 < 1 and
0 < § < 1, we say a protocol is a (a,3,9) secure PQM
protocol if, letting 7" be the number of packets sent during
the interval:

1. (Few false negatives.) If more than ST packet delivery
failures occur then the protocol raises an alarm with
probability at least 1 — &, no matter what FEve does.

2. (Few false positives.) If no intermediate node behaves
adversarially (i.e., no packets are added or modified
on the path, but packets may be reordered or dropped
due to congestion) and at most a7 failures occur then
the protocol raises an alarm with probability at most

d.

We assume that the T' packets sent during an interval are
distinct, because of natural variation in packet contents, and
the fact that even successive packets sent by the same host
have different ID fields in the IP header [19] (note that even
retransmissions of the same TCP segment correspond to dis-
tinct IP packets, because of the IP ID field).

2.1 Properties of our security definition

Our definition is strongly motivated by our intended appli-
cation of enabling routing decisions or SLA violation detec-
tion. The most important security guarantee it provides is
that no matter what Eve does she cannot prevent Alice from
raising an alarm when the failure rate for packets that Alice
sent to Bob exceeds 3. As such, our definition encompasses
attacks by nodes on the data path that include (but of course
are not limited to): colluding nodes that work together in
order to hide packet loss, an adversarial node that intelli-
gently injects packets based on timing observations or deep
packet inspection, a node that preferentially treats packets
that it knows are part of the PQM protocol, and a node
that masks packet loss by injecting an equal number of non-
sense packets onto the data path. We emphasize that we
never make any assumptions on the distribution of packet
loss on the path; our model allows for any possible ‘failure
model’, including one where, say, packet loss is correlated
across different packets.

On the other hand, as a routing-decision enabling tool,
we do not require PQM protocols to prevent packet deliv-
ery failures but rather only detect them. Second, rather
than determining exactly how many failures occurred, the
protocol is only required to detect if the number of failures
exceeds a certain threshold. (While solutions that exactly
count failures certainly exist, e.g., see discussion on I[Psec in
Section 7, they typically require cryptographically authenti-
cating and/or encrypting all traffic and hence are more ex-
pensive to operate in high-speed routers.) Third, we do not
require our protocols to distinguish between packet failures
occurring due to adversarial tampering or due to “benign”
congestion or malfunction.

Next, while our security definition requires that our pro-
tocols do not raise a (false) alarm when the one-way failure
rate is less than « for the benign setting, we do allow for the
possibility of raising an alarm due to adversarial tampering
even when fewer than an « fraction of failures occur. This
is because an adversarial node has the power to arbitrarily
tamper not just with data packets, but also with any pack-
ets that are sent as part of the PQM protocol; thus Eve can
always make a path look worse by selectively dropping all
acknowledgment or report messages that Bob sends to Al-
ice, even if all the original packets that Alice sent to Bob
were actually delivered. (In this paper, we will assume that
any acknowledgment or report messages that Bob sends to
Alice are sent repeatedly to ensure that, with high probabil-
ity, they are not dropped due to normal congestion.) When
this happens, it may very well make sense for the protocol
to raise an alarm, and the router to look for a different path.

While we allow adversarial nodes to add an arbitrary num-
ber of packets to the path, we ignore denial of service (DoS)
attacks in which an adversary exhausts the computational
capacity of Alice or Bob by flooding the path with packets.
That is, we will assume that the adversary cannot exhaust
the computational capacities of Alice and Bob; in practice,
there are standard techniques, e.g., rate limiting, that deal
with these sorts of DoS attacks. See also the discussion of
monotonicity in Section 7.1.

Finally, while in principle «, 3 can be chosen arbitrarily,
there are a number of practical issues involved in the choice
of these parameters. Firstly, we shall show in Sections 4-5
that the (communication, and storage) overhead of our pro-
tocols is related to the ratio £; a smaller ratio leads to less
overhead. Furthermore, the absolute value of « is sometimes
constrained by interval synchronization; we discuss these is-
sues further in Appendix B.

2.2 Related works

The literature on path-quality monitoring typically deals
only with the benign setting; most approaches either have
the destination return a count of the number packets he
receives from the source, or are based on active probing
(ping, traceroute, [25,43,44] and others). However, both ap-
proaches fail to satisfy our security definition. The counter
approach is vulnerable to attack by an adversary who hides
packet loss by adding new, nonsense packets to the data
path. Active probing fails when an adversary preferentially
treats probe packets while degrading performance for reg-
ular traffic, or when an adversary sends forged reports or
acknowledgments to mask packet loss. Even known pas-
sive measurement techniques, where normal data packets
are marked as probes, either explicitly as in IPPM [25] and



Orchid [36] or implicitly as in Trajectory Sampling [19] and
PSAMP [24], are vulnerable to the same attacks as active
probing techniques if the adversary can distinguish the probe
packets from the non-probe packets (e.g., see [20] for attacks
on PSAMP).

To obtain path-quality monitoring protocols that work in
the adversarial setting, we have developed protocols that
are more closely related to those used for traffic characteriza-
tion. For example, our secure sampling protocol uses passive
measurement techniques similar to those of [19,24], that are
designed for characterizing traffic mix. Similarly, our secure
sketch protocol draws on f2-norm estimation schemes [3,5,
13,48] that are typically uses to characterize data streams.
(See e.g., [50] for a survey of data streaming algorithms used
in networking.) Because our protocols are designed for the
adversarial setting, they require the use of keys and cryp-
tographic hash functions (see sections 3 and 6) in order to
prevent an adversary from selectively adding and dropping
packets in a manner that skews the estimate returned from
the sketch. On the other hand, we can use the special struc-
ture of the path-quality monitoring setting to prove new
analytical bounds which result in provably lower communi-
cation and storage requirements than those typically needed
in traffic characterization applications. Also, at the end of
Section 5.4 we discuss how the new result of [34] for sketch-
ing adversarially-chosen sets could be applied to our setting.

Our results are also related to works in the cryptography
and security literature. In the security literature, traditional
works on providing availability typically give guarantees on
a per-packet basis, resulting in schemes with very high over-
head, see e.g., [18] [39] and later works. While statistical
PQM protocols have been considered in the security litera-
ture [7,35,47], ours is the first work in this area to provide
a formal security definition and to prove the security of our
protocols within this model. We argue that such a model
is crucial to understanding the security guarantees provided
by a protocol. Indeed, one of Fatih’s [35] PQM approaches
is based on a simple counter (and is therefore vulnerable
to the attack described above), while Listen [47] is a proto-
col that does not use cryptographic operations, and is thus
vulnerable to attack by an intermediate node that injects
false acknowledgments onto the path. Finally, while Stealth
Probing [7] is secure in our model, it incurs the extra over-
head of encrypting and authenticating all traffic.

3. CRYPTOGRAPHIC PRIMITIVES

Our PQM protocols use several cryptographic primitives,
with different security properties and performance. We de-
scribe the security properties of these primitives below:

Keys. Each of our protocols require some sort of key infras-
tructure; the secure sketch (Section 5) and symmetric secure
sampling (Section 4.1) protocols require parties to share a
pairwise secret key, while the asymmetric secure sampling
protocol (Section 4.2) require public-keys. Notice that the
requirement for pairwise secret keys, does not imply that we
must maintain an infrastructure of pairwise keys for the In-
ternet. All of our protocols require participation of only two
parties. Parties can derive pairwise keys via, e.g., authenti-
cated Diffie-Hellman key exchange (as used in TLS/SSL [17])
using Public Key Infrastructure such as DNSSEC or some
out-of-band secure channel. Furthermore, an organization
owning multiple routers running PQM might have an incen-

tive to assign pairwise secret keys. Our protocols require two
types of keys: master keys, and interval keys. Master keys
are strong keys that are set up when the protocol initial-
izes, and must remain secure for the lifetime of the protocol.
Interval keys are ephemeral keys that are derived at the be-
ginning of each interval, and must remain secret only while
packets belonging to that interval are in flight on the path
between Alice and Bob.

Collision-Resistant Hash (CRH) function is a func-
tion H for which it is infeasible (for any computationally-
bounded algorithm) to find a collision, i.e., m # m’ fulfill-
ing H(m) = H(m'). (This informal definition suffices for
the purposes of this paper. For a more precise definition of
CRH see [41].) Typical choices of H are SHA-1 and (trun-
cated) SHA-256. The output of H(x) is called the digest of
z, and we assume it is 160 bits long.

PseudoRandom Function (PRF) [22] is a keyed func-
tion hy(-) that maps an arbitrary length string to an n-bit
string using a key k; in our case, n = 64 or 96 usually suf-
fice. If the key k is chosen at random, then to an adversary
with no knowledge of k the function hy(-) looks totally un-
predictable and cannot be distinguished (except with an in-
significant probability) from a truly random function (where
each input is mapped independently to a uniformly random
output). Hence, in our analysis we may treat hy as if it is
truly random. Our protocols use PRFs in two ways.

e A PRF h is used to derive interval keys from the pair-
wise shared master key and the interval number. To
derive interval key k., for interval w from master key
k, each party need only compute k, = hi(u). Notice
that as long as parties have synchronized their interval
numbers u, they can use their knowledge of the master
key k to independently compute k, (without requiring
a key-agreement protocol or a handshake).

Because the PRF h is used only once per interval, and
also needs to be resilient against many queries, we will
let h be traditional conservative pseudorandom func-
tion. The most common way to (heuristically) realize
pseudorandom hash functions (PRFs) is using a full-
fledged cryptographic hash functions such as SHA-1 in
HMAC mode [28], or with a block cipher like AES in
a MAC mode of operation. Their typical performance
in a software implementation is 10-20 cycles per input
byte, which suffices for many applications.

e All our protocols require a hash computation on the
entire contents of every sent packet,® and all subse-
quent processing of the packet relies only on this hash
value. For packet hashing, we will use a PRF keyed
with the interval key k,. The k, is used only for the
duration of single interval (typically about 100ms);
once the interval ends, the key no longer needs to be
kept secret. It follows that the security requirement on
this PRF is weaker than is typically required for most
applications. Thus, our packet-hashing PRF should be
(a) fast enough to keep up with multi-Gbit/sec packet
streams, (b) remain secure after T = 107 applications

1For convenience, we abuse notation and say that whenever
the PRF is applied to a packet, the non-invariant fields of the
packet header are discarded from the input. In the case of
IPv4, this means excluding the ToS, TTL and IP checksum
(see [19, Section II.A]).



and/or for about 100ms. While designing PRFs that
are especially suited to this purpose remains an in-
teresting area for future research, in Appendix A we
discuss some realizations of our packet-hashing PRF
in both hardware and software based on known cryp-
tographic hash functions.

Universal hash functions are keyed hash functions simi-
lar to PRFs, but have a weaker security requirement; PRF's
are indistinguishable from functions that map every input to
an random independent outputs, while universal hash func-
tions only require independence between some small num-
ber of outputs [12]. In Sections 5.4 and 5.4.4, we shall show
that packet hashing can sometimes be performed using these
weaker hash functions, instead of PRFs.

In this work, we consider two types of universal hash func-
tions.

e cy,-almost universal hash function g producing n-
bit outputs guarantees that for any pair of distinct
inputs x, z’, then

Prgx, (z) = gk, (z')] <€ (1)

where the probability is over the choice of k, used to
key g. There are many possible realizations of such
hash functions, see for example [10] for a survey. In
this work, we sometimes use GHASH [32] to compute
sample parameters for our constructions. GHASH is
an eg-almost universal hash function that produces n
bit outputs. GHASH hashes variable-length packets
by breaking the packet into blocks of length m and
iteratively hashing each block. For a packet of length
¢, GHASH has g, = £27".

e 4-wise independent hash function g producing n-
bit outputs guarantees that for any four distinct in-
puts x1,x2,x3,x4 and (not necessarily) distinct out-
puts y1, Y2, Y3, ya, then

Prgr, (z:) = y,¥i = 1..4] = (;%)* (2)

where the probability is over the choice of k., used to
key g. We shall use 4-wise independent hash func-
tions to realize (theoretically)-faster packet hashing in
our ‘secure sketch’ protocol. To realize a 4-wise in-
dependent hash function, we use polynomials of de-
gree 3 [12], for example, to compute gg,(z) set key
ku = (a0, a1, a2, as) and output a3z +asx’ 4+ a1z +ao.
This computation can be done in three multiplications
using Horner’s rule.

Notice that a PRF provides a strictly stronger theoretical
guarantees that a universal hash function (since every PRF
is also a universal hash function). However, in practice a
PRF could be faster than a 4-wise independent function!
While this certainly seems counterintuitive, it follows be-
cause in practice we typically realize 4-wise independent
functions based on constructions that come with rigorous
proofs of correctness (e.g., polynomials of degree 3 [12]),
while we use PRFs that come with only heuristic guaran-
tees of correctness (e.g., GHASH-AES [32] is a PRF under
the heuristic assumption that AES is a fixed-input-length
PRF, see Appendix A). However, even fast (heuristic) con-
structions of PRF's are typically based on €4-almost univer-
sal hash functions (see Appendix A), and as such, we can

safely assume that eg-almost universal hash functions are
always faster than PRFs.

Message Authentication Code (MAC) is a basic cryp-
tographic primitive that can be realized using a PRF: us-
ing a shared key k, for a message m, one party will send
(m, hi(m)) and the other party can verify that a pair (m,t)
satisfies t = hi(m). The value hi(m), called the tag, cannot
be feasibly forged by an adversary that does not know k.
We denote MACy(m) = (m, hi(m)). We shall assume that
the MAC tag (i.e., PRF output) is n = 96 bits.

Digital signatures provide authenticity in the public-key
setting. Here a private key SK is used to sign a mes-
sage m and obtain a signature o; we denote this with o =
Signg (m). A public key PK is known to all parties and is
used to verify the signature; the Verify , ;- (o) operation out-
puts a message m for valid signatures and aborts otherwise.
Digital signatures are more computationally expensive than
MACs, so we use them only for infrequent synchronization
data.

4. SECURE SAMPLING PQM

In a sampling-based protocol, Alice and Bob agree on a
small set of packets (the probes) for which Alice expects
acknowledgments from Bob. Then, Alice can detect when
the path quality is unacceptable when too many probes are
unacknowledged. These protocols limit the storage and com-
munication overhead because only a small fraction of traffic
is monitored, and also allow Alice to measure round-trip
delay by monitoring arrival time of acks.

However, such protocols are inherently vulnerable to ad-
versaries that preferentially allow probes to travel unharmed,
but drop, delay, or modify other packets. Since most pack-
ets are not probes, such an adversary can disrupt traffic
without Alice realizing that something went wrong. To pre-
vent such attacks, in our secure sampling protocols Alice
and Bob use a shared PRF to coordinate their sampling.
The cryptographic properties of the PRF, discussed in Sec-
tion 3, prevent an adversary from distinguishing probes from
non-probes.? Use of a PRF in our setting is necessary for
security; in Appendix C we show an example of why a non-
cryptographic hash function (e.g., CRC) is insufficient.

We present three protocols. The Symmetric Secure Sam-
pling protocol is designed for the setting where Alice and
Bob share pairwise secret keys. The two Asymmetric Se-
cure Sampling protocols (one for senders and one for re-
ceivers) use a variant of delayed-exposure techniques (c.f.,
TESLA [40] [9,11, 14] and the references therein) to elimi-
nate the need for pairwise keys, at the cost of some increased
storage at Alice or Bob. The asymmetric protocols are es-
pecially advantageous when one of the parties is a server
that needs to engage in simultaneous PQM sessions with
many clients. These protocols also have some nice scaling
properties (Section 4.2.3).

4.1 Symmetric Secure Sampling

2We stress that probes are ordinary data packets that are
part of the data stream and are not explicitly marked.
Marking/modifying ordinary packets is undesirable for sev-
eral reasons: (a) it must be undone by the receiver prior
to processing or forwarding, (b) it may cause backward-
compatibility problems by introducing packet formats that
is are unrecognized by devices along the path, (c) it may run
into MTU limitations, etc.
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Figure 1: Secure Sampling.

We assume Alice and Bob share a secret (master) key k.
They also know a parameter p, called the probe frequency.
During each interval, our symmetric secure sampling proto-
col operates as follows:

1. Alice and Bob derive an interval-specific secret key by
applying a PRF keyed with the master key k to the in-
terval number u, i.e., (k1, k2) = hj,(u). In Appendix B,
we give a detailed treatment of techniques that can be
used to achieve interval synchronization between Alice
and Bob.

2. After transmitting each packet d, Alice decides whether
d is a probe. Specifically, she uses k1 and the probe fre-
quency p to run a Probe function that is implemented
using a (packet-hashing) PRF h keyed with ki and

outputting an integer in {0,...,2" — 1}, as follows:
. hiq (d)
_ ) YEs, if — < p;
Probeg, (d) = ’ 2" ’ 3
ta(d) { No, else. ®)

If Probeg, (d) outputs YES then Alice stores the tag
2 = hg,(d) in a table.?

3. Bob receives d’ and computes Probey, (d'). If it outputs
No then do nothing; if it outputs YES then transmit
the tag 2" = hy,(d') back to Alice.

4. Alice receives the acknowledgment 2z’ and removes it
from her table if it is present in her table. If the ac-
knowledgement is invalidly MAC’d or not present in
her table, Alice ignores it.

At the end of an interval, Alice raises an alarm if and only
if her table contains more than pT+/af remaining entries.*
Otherwise she does not raise an alarm.

THEOREM 4.1. The symmetric secure sampling protocol
s an («, B,0)-secure PQM protocol for o < B < 4a as per

$When h uses a modified Wegman-Carter construction (see
Appendix A),the computation of hg,(d’) can reuse the uni-
versal hash already computed for hy, (d'), and thus amounts
to a single AES or DES invocation.

4To obtain this threshold, we could have used the mid point
between paT and pBT. However to get much better param-
eters for our protocols, we can apply maximum likelihood
estimation to obtain the threshold above, since (from proof
of Theorem 4.1) V', or the number of unacknowledged probes
in Alice’s table, is a binomial random variable. We obtain
the threshold above using maximum likelihood estimation
as (a0 + 1oa)/(0a + o) where po = paT is the mean
of V when the loss rate is aT and 02 = (1 — p)paT is
the variance of V' when the loss rate is a7, and og and
pp are defined analogously. Then, we get the threshold

pT%f = pT/ap.

Definition 2.1, whenever the probe frequency p and number
of packets per interval T satisfy

1 3
When o = 3/2 we can use [4, Thm. 19] to obtain a slightly
better bound pT" > In(}) —222 so that when § = 1%,

(VB—Va)?’
we require pT > 75/0.

PROOF PROOF OF THEOREM 4.1. First, we observe that
regardless of any strateqy FEve adopts, and independently
of all other packets, the probability each dropped/modified
packet is a probe is p. Suppose that hk, (-) in Probe were
replaced by an independent truly random function (for each
choice of k1). We claim that every sent packet would be a
probe independently with probability p. To see why, first
consider a single interval. Recall that within a single in-
terval, we assumed that packets sent by Alice are unique.
Furthermore, Eve cannot use her observations of past pack-
ets and acks to determine if a given packet is a probe. Next,
recall that the interval key is refreshed at the end of an inter-
val; it follows that the packets selected as probes in a given
interval are independent of the packets selected as probes
in all other intervals (even if packets are not unique across
intervals). Next, notice that the above must hold for the
real implementation of Probe using hy, , since otherwise Eve
could distinguish between the PRF and a truly random func-
tion, contradicting the security of the PRF. Notice also that
if Eve wants to use Bob to test if a given packet is a non-
probe (and thus may be dropped), she must first send (a
test copy) of that packet to Bob. However, once the packet
is received by Bob, Eve cannot do any more damage; since
we assume that sent packets are unique, it follows that Bob
has already received a copy of the packet, and Eve gains
nothing by dropping it. Recall also that, here, we do not
consider denial of service attacks in which Eve exhausts the
computational resources of Alice or Bob by flooding the link
with packets.

For the false positives condition of Definition 2.1, suppose
the failure rate is less than «. Notice also the false positives
condition of Definition 2.1 is conditioned on the fact that
no node behaves adversarially, i.e., maliciously drops ACks
(or synchronization messages, see Section B). Thus, the
probability of misdetection is the probability that a larger
than +/aB-fraction of the samples are dropped. Let V be
the number of remaining (unacknowledged) entries in Alice’s
table. When each packet is independently sampled with
probability p, then if 8 < 4a we can find the false positive
probability

Pry =Pr[V > pT'\/apf | failure rate = o]
=Pr[V > paT(1+ 7\/3\;5/5” E[V] = paT|
_ /o2
< OB )

where the equality follows from the fact that when the failure
rate is a, we expect that the estimator V' to be a p-fraction of
the number of dropped packets, aI". The inequality follows
from the fact that V is a binomial random variable B(aT, p),
and the Chernoff bound®of [6, Fact 4], which holds when
0< % <lora< f<4a. By our observation above,
this inequality still holds (up to a negligible additive factor)
when we sample probes using a pseudorandom function.

We use the following Chernoff bounds. Let X; be i.i.d




Next, consider the false negatives condition of Definition 2.1.

First note that Eve cannot forge a valid ACK to a packet that
was not received by Bob, since she only sees the output of
the PRF hy, on packets that Bob receives, and cannot pre-
dict its value on any other input. Therefore all that Eve can
do is to bias the measurement by preferentially dropping
non-probes. Using [6, Fact 4]again, if probes are sampled
independently with probability p then

Prp =Pr[V > pT\/af | failure rate > 3]
=Pr[V > ppT(1 - YE/%)| E[V] = pT ]

VB—v@)?
< SRR ®)
where the equality follows from simple algebra and the fact
that when the drop rate is 3, V' is a binomial random vari-
able B(BT,p), and the inequality again follows from the

Chernoff bound of [6, Fact 4], which holds when 0 < % <

1 or when o < 3. As observed above, (8) still, holds up to
a negligible factor, when the probes are sampled using a
PRF. Notice that dropping ACKs (or synchronization mes-
sages, see Section B) cannot help Eve, as it only makes the
source more likely to raise an alarm. It follows from equa-
tions (5), (8) and Definition 2.1 that, given «, § and ¢, such
that 8 < 4, the protocol is secure whenever (4) holds. [

4.2 Asymmetric Secure Sampling

This section describes variants of the above protocol for
the case where a single router (the server) deals with a large
number of other routers (the clients). Our protocols support
server scalability by minimizing the per-client cost of the
server. In particular, the server will not need to establish
a separate key for every client. We will, however, assume
that the clients can dedicate more resources to the PQM
protocol. We provide two different protocols, depending on
whether the server is receiving from, or sending to, its clients
(of course, the two PQM protocols can be applied jointly to
monitor both directions).

We again divide time into intervals, and the idea is that
the server performs his operations (as either sender or re-
ceiver) with private keys, which we call the salt, unknown
to anyone except himself until the end of the interval, at
which time he releases the salt to all interested clients. The
point is that by the time the server releases the salt it is too
late to cheat; note that even dishonest clients cannot cheat
honest clients because no one except the server knows the
salt until the end of the interval.

Instead of using symmetric keys between each pair of par-
ties, here we assume that the server has a public/private
key pair (PK,SK) where the public key PK is known to
all parties (e.g., through a Public Key Infrastructure). To
ensure that the computationally-expensive public-key op-
erations are used infrequently, we will use cryptographic

indicator variables with mean u, and let

Pr Z X; <(1- V)N,u:| < eV NK/C1 (6)
i=1

Pr |3 X > (1+7)Np| <e 7 N/ (7)
=1

If 0 < v < 1 then [6, Fact 4] gives C1 = 2 and C> = 3. If
0 <~ < % then [4, Thm. 19] gives C1 = C2 = 2In2.

delayed-exposure techniques (c.f., TESLA [40] [9,11,14] and
the references therein) that require secure clock synchroniza-
tion. We assume that each client securely synchronizes her
clock so that it lags behind the server’s clock by at most 7
seconds, where 7 is a constant known to all parties. In Ap-
pendix B.2 we present a simple secure protocol for achieving
this synchronization.

4.2.1 Receiving-Server Secure Sampling (RSSS)

We first consider the case where a single server (Bob) is
receiving traffic from multiple clients (each playing the role
of Alice). The following protocol allows every client to mon-
itor the path quality for traffic that it sends to the server,
while the server requires no storage and can use the same
key to engage in PQM with every client. During the u-th
interval, the RSSS protocol operates as follows:

1. (Interval Setup.) Bob, the receiver, randomly chooses
a pair of salt values (s1(u),s2(u)) that he keeps secret
until the very end of the interval.

2. (Packet Transmission.) Packet transmission during
the interval proceeds as follows:

e For each packet d Alice wishes to send, she stores
the digest H(d) (computed using a collision-resistant
hash) in her table. Suppose Alice sends T' pack-
ets in the interval. (This means Alice stores T
digests. In Section 4.3 we discuss how Alice can
independently subsample packets to reduce her
storage requirements.)

e Upon receiving each packet d’, Bob computes its
digest 2’ = H(d'). He then evaluates Probes, () (z');
if NO then he does nothing, and if YES then
he transmits an ACK of the form MAC,, ) (2, u)
back to Alice.

e Each sender (Alice) stores all the ACKs received
which included the current interval u.

3. (Salt Release.) Bob maintains the secrecy of the salt
until 7 seconds after interval u ends. At that time he
reveals the salt (s1(u),s2(u)) to all clients by sending a

SALTRELEASE packet containing Signg . (u,s1(u), s2(u))(see

Figure 4.2.1).

4. (Security check.) If Alice fails to receive a SALTRE-
LEASE containing a signature o within 1 RTT after
the interval u ends, or if Verify p (o) doesn’t return a
tuple (u,s1(u),s2(u)), then Alice raises an alarm. Oth-
erwise, she uses salt s1(u) to run the Probe function on
the packet digests in her table, and salt s2(u) to verify
the ACKs in her table. Then Alice counts the number
of packets for which Probe;, (,)(2) = YES and no valid
AcK is stored in her table; call this count V. Finally,
Alice raises an alarm if V' > pTv/aB. Notice that this
step of the protocol can be computed offline.

Notice that our protocol does not require Bob to send out
the salt immediately at the end of the interval. However, we
observe from Step 5 above, that there is a tradeoff between
frequency of salt release messages and storage at Alice; the
longer Bob delays sending out the salt, the longer Alice has
to wait before she can clear her table.

Assume for now that all parties’ clocks are perfectly syn-
chronized. Then Eve cannot cheat within any single interval:
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Figure 2: Timing for Asymmetric Secure Sampling.

packet digest Ack Probe
z1 = H(d1) YES
29 = H(d2) | MAG;, (B, 22,u,) | Yes
z3 = H(d3) No
Z4 = H(d4) No
25 = H(d5) No
zZ6 = H(d(}) No
z7 = H(d7) No
zg = H(dg) MAC;, () (B, 28, u) YESs
z9 = H(dg) No
z10 = H(d1o) No
zZ11 = H(dll) MACSQ(H) (B, le,u) YES
z12 = H(d12) YES
Z13 = H(dlg) No

Figure 3: Alice’s table after at the end of interval
u. Here Alice observes packet-delivery failures for
packets 1,12.

THEOREM 4.2. The RSSS protocol is an («, 3,0)-secure
PQM protocol for a < 8 < 4o as per Definition 2.1, when-
ever the probe frequency p and number of packets per interval
T satisfy
When 8 = 2a we can use a tighter bound of [4, Thm.
19](instead of (9)) to find that when § = 1%, we require
pT > T75/0.

When clocks are perfectly synchronized, we omit the proof,
since it is almost identical to that of Theorem 4.1 (because
the salt is kept secret until the end of the interval). Fur-
thermore, notice that even dishonest senders cannot bias
an honest sender’s measurements, since they learn nothing
about the salt until the interval is over. Now suppose that
Alice’s clock lags Bob’s clock by at most 7 seconds. It fol-
lows that there will be period of time of length < 7 where
Alice is operating in interval u — 1 while Bob has already
moved into interval u. To deal with this, during the first 7
seconds of each interval, Bob uses both the salt of the current
interval s(u) and the salt from the previous interval s(u — 1)
in order to create his ACKs. While most Internet routers are
able to maintain a clock with accuracy of 21ms or less [33],
secure clock synchronization is a non-trivial problem. In Ap-
pendix B.2 we show a simple stateless protocol that allows
Alice and Bob synchronize their clocks to within 1.5 round
trip times.

4.2.2  Transmitting-Server Secure Sampling (TSSS)

We now turn our attention to the case where a single
server is sending to multiple clients, and each client wants to
monitor the traffic it receives from the server while imposing
minimal cost on the server. Note that the server is now Alice
and the client is Bob. Here the server keeps a single counter
per client, and modifies the packets it sends by appending a
short MAC tag, that is keyed with same key for each client.

The TSSS protocol proceeds as follows. As before, the
server picks random salt values (si(u),s2(u)) at the begin-
ning of the interval, and releases them at the end of the
interval. Here, however, the server will keep, for each client
B, a count Tx(B) of the number of packets it sends to B
during the interval. The server also authenticates all traf-
fic that she sends using the (client-independent) salt: for a
packet d, the server will compute a packet digest z = H(d)
and then appends the tag hg,(u, z) to the packet that he
sends the client.

The client will randomly sample a p-fraction of the packets
received. For each such packet d’, he stores the correspond-
ing digests 2z’ = H(d') and the received tag. At the end of
the interval, the server reveals the salt as above, and also
sends Signg (Ta(B)) to B. Each client B verifies the elec-
tronic signature and checks all its stored packet digests and
tags using this salt. Let T be the number of valid packets
thus found by Bj; then B estimates the number of failures
as V = pTa(B) — Tg. As before, the client raises an alarm
if V> pTa(B)v/afB. Using an argument similar to Theo-
rem 4.1, the protocol is secure if § < 4a and

PTA(B) > In(}) (10)

(\/373\/5)2 ’
4.2.3 A note on the scalability of RSSS

Our Receiving-Server Secure Sampling protocol has useful
scaling properties, that make it attractive even outside the
client-server setting. Consider a network with M routers,
where each router would like to run a pairwise PQM pro-
tocol (acting as both a sender and receiver) with all other
routers. Then, while the Receiving-Server Secure Sampling
protocol requires that each router to store the M — 1 public-
keys, the storage and online computation overhead at each
router is independent of the number of routers M! To see
why, first notice from Section 4.2.1 that when the router
acts as a receiver, its incurs no storage overhead, while its
computation/communication overhead depends only on the
total volume of traffic it receives, and not on the number
of senders M — 1. Next, when the router acts as a sender,
it only needs to keep a table of digests of the packets it
sends (see e.g., Figure 3) that additionally specifies the re-
ceiver the each packet stored in table was sent to. The size
of this table depends on the volume of sent traffic, but is
independent of M. Furthermore, it is computed (using a
collision resistant hash) independently of the keys of any of
the M — 1 receivers. Indeed, receiver-specific computations
are only required during the offline ‘security check’ step of
the protocol.

4.3 Some sample parameters

Suppose a = %ﬂ and 8 = 1%. We assume a fully utilized 5
Gbps link with an average packet of 3000 bits and an average
round trip time (RTT) of 100 msec. Then about 7' = 107
packets are sent during an RTT.

Symmetric Secure Sampling.  Using the improved bound
from [4, Thm. 19] in Theorem 4.1 our symmetric sampling
75

protocol is secure when the probe frequency is p > 5T =

7.5 x 10~*. This p is also the communication overhead, i.e.,
the amount of added ACK packets as a fraction of the data
traffic. Using 96-bit packet digests (see Section 3), Alice
needs about pT' ~ 90 KB of storage during a single round
trip time. The amount of storage required for Alice can be
reduced without compromising security by noting that (4)



gives a tradeoff p and T. Alice can decrease her sampling
rate to p’ if she is willing to use a longer interval 7" = Tp/p’.
Since almost every probe packet tag will be deleted after 1
RTT, this nominally reduces Alice’s storage to p/p’ - 90 KB.
This comes at the cost of reduced PQM temporal resolution,
due to the longer intervals. (Notice that Alice can arbitrarily
decrease her sampling rate without coordinating with Bob
simply by changing the parameter p in her Probe function.)

RSSS. As described above, the Receiving-Server Secure
Sampling protocol requires the sending client to store in-
formation about every packet she sends to Bob for the du-
ration of a interval (which may last from a few milliseconds
to a few RTTs depending on synchronization quality). In
case the intervals last an RTT or more, it is not practi-
cal to expect the sender to keep digests of over 107 pack-
ets in her storage, and so we apply subsampling here to re-
duce the fraction of packets stored: each sender only stores
a q fraction of the packets she sent, where each packet is
stored independently with probability g. In term of mon-
itoring this is essentially the same as reducing the packet
stream by a factor of ¢, so when 8 = 2« from the im-
proved version of (9) we can see that pgT" > % suffices,
giving a tradeoff between storage at Alice ¢7', and probe
frequency and communication overhead p. For example,
suppose that the probe frequency is p = 0.2. Then, by
(9), Alice should store ¢T = % = ;50 = 3.75 x 10*
packet digests (160 bits each), and about p times as many
corresponding ACK tags (96 bits each). Overall, this takes
3.75 x 10* - (160 4 0.2 - 96) /8 ~ 840 KB of storage. Thus, if
intervals last for 1 RTT, so that T~ 107, then the subsam-
pling rate must be at least ¢ = 3.7 x 1075.

TSSS. Here, the sending server stores one 32-bit counter per

client, and attaches a 96-bit tag to each message. Following

(10), and using same parameters as above, the client needs
75

to store qT =~ T = 7.5 x 10® digests and tags, for a total

storage of 7.5 x 10® - (160 + 96)/8 ~ 240 KB.

5. SECURE SKETCH PQM

In our secure sketch PQM protocol, Alice and Bob aggre-
gate all traffic Alice sends to Bob into a short data struc-
ture called a sketch. (The difference between a sketch and a
sample is that a sketch, although short, usually provides ap-
proximate information about the aggregate stream of pack-
ets, while a sample provides exact information about a single
packet in the stream.) At the end of the interval, Bob sends
his sketch to Alice and she compares the sketches to decide
whether the failure rate exceeded [3.

We can apply several sketching techniques [3,5,13,48] for
second moment estimation (or £2-norm estimation) into our
framework to give secure PQM protocols. While sketches
have been used before in the networking community (to
estimate properties of data streams that are too long to
be stored in their entirety; c.f. [13,48] and the references
in [50]), to the best of our knowledge this is the first time
that they have been applied to the problem of path-quality
monitoring. Furthermore, the special structure in the PQM
problem allows us to obtain new and improved analytical
bounds on the performance of these schemes. Also, it turns
out that the path-quality setting has particular properties
that enable us to achieve better performance for some of
these schemes; indeed, we prove a new bound on the perfor-
mance of [13]’s scheme that may be of independent interest.

In this section we start by explaining the relationship be-
tween moment estimation and path-quality monitoring, and
then present our PQM protocol and discuss its security. We
then show how the protocol works with several known mo-
ment estimation sketches and give settings of parameters
based on both analytical guarantees and numerical experi-
ments. Our results show that the secure sketch protocol is
almost as lightweight, in terms of storage and communica-
tion, as the trivial (but insecure) idea of keeping counters of
the number of packets sent and received.

5.1 PQM as moment estimation

We now show how why p!*-moment estimation (for p >
1) is sufficient to realize PQM. Later on, we will use this
argument to how show second-moment estimation (for which
a number of highly efficient and simple schemes are known
[3,5,13,48]) can be used to realize PQM.

Preliminaries. Recall that Alice sends a stream of T
packets to Bob during an interval and let U be the “universe”
of all possible packets (e.g., if packets are 1500 bytes long
then |U| ~ 2'59%) We define the characteristic vector of
a stream to be a U-dimensional vector that has ¢ in the
position corresponding to packet x if packet x appears in
the stream c¢ times (e.g., for the stream 1,2,4,2,2 of packets
drawn from universe U = [4] the characteristic vector is [1
3 0 4].) In our setting, a characteristic vector is too long
(215908) to be represented explicitly; we will use it only for
the purpose of explaining our protocols. Also, recall that
p"-moment of a vector v is vl? = >;(vi)?. (Note that

the £,-norm is just the p'* root of p*® moment of the vector.)

Relationship between PQM and the p'* moment for
p > 1. Let va be the characteristic vector for the stream of
packets sent by Alice, and let v be the characteristic vector
for the stream of packets received by Bob. Now consider the
characteristic vector x = vg —va. We can decompose any x
into two vectors x = d+4a. The vector d is the characteristic
vector of packets dropped on the path from Alice to Bob, and
contains the non-negative components of x. The vector a is
the characteristic vector of packets added on the path from
Alice to Bob, and contains the non-positive components of
x. Also notice that the non-zero coordinates of d and a are
disjoint.

Now let D be the number of packets dropped on the path
from Alice to Bob during the interval, and let A be the
number of packets added during the interval. (We count a
single packet that was modified on the path from Alice to
Bob as a single dropped packet plus a single added packet.)
Thus, we have the following simple, but very useful identity:

x5 = 4l + llall; = D+ llal; = D+ A (11)

The first equality follows because the non-zero coordinates
of d and a are disjoint. The second equality follows because
every packet that Alice send is unique so that that d is a
{0, 1}-vector for every i € [K+1]. Finally, the last inequality
follows because a is an integer vector, so that for any p > 1,
it follows that [lal|? > |a|, = A with equality when p = 1.

Now, recall Definition 2.1. To satisfy the “few false posi-
tives” condition we need to consider the benign case in which
at most D < o1 packets are dropped during the interval,
and no packets are added so that |la||® = 0. From (11) it
follows that satisfying the “few false positives” condition (in
the benign case), just requires that Alice should not raise an
alarm if [|x|? = D + 0 < oT.



To satisfy the “few false negatives” condition we need to
consider the malicious case in which Eve drops D > T
packets, and adds an arbitrary number of (potentially non-
unique) packets A > 0. (We think of a packet modification
as a dropped packet plus an added packet.) From (11) it
follows that satisfying the “few false positives” condition (in
the malicious case), requires that Alice raise an alarm if
Ix|l? > 6T

The discussion above suggests the following ridiculous PQM
protocol: Have Bob and Alice maintain va and vp, and have
Bob send Alice vi at the end of the interval. Then define
a decision threshold I' € [T, 8T, and have Alice raise an
alarm if the first moment ||va — vg||? > I'. Notice that, in
the malicious case, adding packets doesn’t help Eve; when-
ever Eve adds packets, she simply increases ||[va —vs]|,, and
makes Alice more likely to raise an alarm.

Sketches. Of course, the PQM protocol described above
are completely ridiculous because the va,vp vectors are
much too large to be stored or transmitted explicitly. This is
where sketching comes in. A p**-moment estimation sketch
is a set of probabilistic algorithms that allows us to estimate
the p*"-moment of a vector v of length |U| from a shorter
sketch w of length NV; typically, the length of the sketch is
depends only on the number of packets in the stream, and
not on the size of the universe U.

We will concern ourselves with moment estimation schemes
where the sketch may be derived from v via a random lin-
ear map, i.e., w = Rv where R is a random N X |U| matrix
drawn from some distribution S. Then an estimator V for
p" moment of v is computed from w; in the all schemes we
consider here, the estimator will simply be ||w/||”.

Of course, since R is also as long as |U]|, in our setting R is
too large to store explicitly. However, notice that ‘sketching’
a packet x is exactly equivalent to adding the ! column
of R to the sketch w. This suggests the following efficient
approach to sketching: initialize w = 0, and for every packet
z in the stream, generate the z*® column of R by hashing
the packet with h and adding the hash value h(z) to the
sketch w. As long h can generate length N-vectors that
are distributed identically to the column vectors of matrices
drawn from S, these is exactly equivalent to computing the
sketch via an explicit random linear map w = Rv.

Thus, we now have a practical PQM protocol based on p*"-
moment estimation for p > 1: Alice and Bob share a hash
function h and compute wa = Rva and wg = Rvgp on their
streams using the hashing approach described above. Bob
then securely transmits wg to Alice. Since ||wa — wg||, =
|R(va —vB)||,; thus, if the sketches accurately estimate the
first moment, it suffices to raise an alarm if [[wa —wgl|? > T
for I' € [oT, BT).

Dealing with adversaries. @ However, our work is not
complete. Recall that we would like our PQM protocol to
operate correctly in the presence of adversaries on the path.
Thus, we still need to discuss what we mean by the terms
secure transmission and accurate estimation in protocol we
described above.

Recall that Eve occupies the path between Alice and Bob,
and consider the practical PQM protocol that we described
above. In the malicious case, there are a number of ways
that Eve could attempt to bias the results of this protocol.

e Eve could try to convince Alice than 7T packet drops
occurred by altering the sketch wg that Bob sends to

Alice. Preventing this attack is simple; we shall require
that Bob send his sketch wg to Alice in a message that
is authenticated with a MAC.

e Next, observe that because Eve occupies the path be-
tween Alice and Bob, she has the power to choose
which packets Bob receives in his stream. Thus, if the
adversary can predict the outputs of the hash function
h used to map packets to the sketch, she can choose
to add and drop packets to Bob’s stream in a way
that cannot be detected by Alice! For instance, Eve
could drop some set of packets and replace them with
a different set of packets that map to the sketch in an
identical way.

Typically, the correctness of p!*-moment estimation
schemes relies on the fact that the randomness used for
sketching (i.e., to choose the hash function h) is cho-
sen independently of the stream to be sketched. How-
ever, in our setting, this is not necessarily the case; if
the hash function h is public, then adversary choice of
Bob’s stream v can depend on the randomness used
for sketching, h. (This observation was independently
made by Mironov, Naor, and Segev [34].) For this rea-
son, we replace the public hash function h used for
sketching with a keyed hash function hy,, keyed with
a secret key k,, is shared between Alice and Bob, and
is refreshed every interval.

5.2 The secure sketch protocol

We are finally ready to describe our secure sketch PQM
protocol. Our protocol works in intervals. We assume Alice
and Bob share a secret (master) key (ki,k2), and derive
an interval key k, for each interval u (see Section 3). In
Appendix B, we provide a detailed treatment of techniques
that Alice and Bob can use to synchronize their intervals.
Within interval u, our secure sketch protocol operates as
follows:

1. (Sketch.) Alice runs a sketching algorithm, using a
keyed hash hg, (1) keyed with secret interval key ki,
to incrementally compute a sketch wa of the vector
va induced by the packet it sends. Bob similarly uses
hk, (+) to compute sketch wg of the vector vg induced
by the packets he receives.

2. (Interval End.) After sending the T packet in the
interval, Alice sends an ‘Interval End’ message to Bob,
authenticated with the master key k1, and containing
her sketch wa and the next interval number u + 1.
She then refreshes her sketch (i.e., sets wg = 0 ) and
refreshes the interval key (i.e., computes ky4+1 using
a PRF keyed with the master key k2 as described in
Section 3).

3. (Report.) Upon receiving the ‘Interval End’ message
and verifying the correctness of its MAC, Bob com-
putes the ‘difference sketch’ wa — wg, and sends a
‘Report’ message to Alice, authenticated with the mas-
ter key k1, containing the ‘difference sketch’ wa — wg,
and the current interval number u. Bob then refreshes
his sketch and computes the interval key for the next
interval v + 1.

4. (Security Check.) Upon verifying the MAC on the
"Report Message’, Alice uses the difference sketch wa —



wpg to compute an estimate V of ||va —vg||? and raises
an alarm if and only if V > I' = 2a8T/(8 + «) or if
the report is missing or has an invalid MAC.

Our protocol has a number of attractive properties. First,
notice the we require the transmission of only two control
messages (‘Interval End’; and ‘Report’), and no packet mod-
ifications. Second, notice that the ‘Security Check’ phase
can be computed offline. Finally, notice that Alice and Bob
need only store single sketch at any given time; at the end
of each interval, Alice and Bob immediate transmit their
sketches as control messages, refresh their sketches, and be-
gin monitoring a new interval.

5.3 Security of the secure sketch protocol

We formalize the intuition of Section 5.1 with the following
theorem.

THEOREM 5.1. Suppose that the sketch algorithm guaran-
tees, that if the hash function used for sketching is chosen
randomly and independently of v, then with probability at
least 1 —6, the estimate of the p'"-moment [IvI2 forp>1is

within (1t¢) fore= Z_Tg Then, the secure sketch protocol

is a (a, B8, 9)-secure PQM protocol as per Definition 2.1.

PrROOF PROOF OF THEOREM 5.1. Consider the malicious
case. First observe that Eve cannot forge the ‘Interval End’
or ‘Report’ control messages, since the control messages are
authenticated using a secure MAC (and dropping the report
will only cause Alice to raise an alarm). Thus, we shall as-
sume that for both the benign and malicious case, Alice gets
a consistent version of the difference sketch wa — wg at the
end of the every interval.

Now, observe that (a) no effect of the hash function hy,
is visible to Eve until after the interval ends, and (b) k. is
kept secret from Eve and thus chosen (pseudo)randomly and
independently of vao and vg. It follows that the sketching
algorithm generates a (1 + £)-estimate of V of ||[va — vs||,
with probability 1 — §. Thus, letting x = va — vg, we have:

1. No false positives: if D < oT and A = 0, then as
discussed in Section 5.1 it follows that ||x[|? = ||d|| =
D < oT. Now, with probability 1— 4 we have that the
estimate
V< (@+e)lxly
< (14 55%)aT
— 2Bap
=fpral =T
2. No false negatives: if D > T, then as discussed in Sec-
tion 5.1 it follows that ||x||? = [|d[|? +[la|l} > ||d[|} >
BT. Similarly, with probability 1—4, it follows that the

. . . B—a _ 2B« —
estimate V' is greater than is (1-570)8T = 55T =

1. and 2. guarantee that with probability 1 — § Alice can
use the decision threshold I' to decide between cases where
D<aTand D >pT. O

Recall that d € {0,1}Y because Alice sends unique pack-
ets. A closer look at the proof shows it suffices if the sketch
guarantees that (a) the estimate is at most (1+¢)aT for vec-
tors that have all entries in {0, 1} and with norm |[v||? < aT,
and (b) the estimate is at least (1—¢)r for vectors v that have
at least » > BT entries in +1 (and possibly other nonzero

T.

entries as well). It turns out this observation is crucial for
obtaining improved parameters for our protocol; see Theo-
rem 5.2 below.

Turning the protocol on and off. In order to reduce
resource consumption, it sometimes makes sense for a router
to ‘turn off’ the secure sketching protocol. However, an ad-
versary could take advantage of the fact the protocol is ‘off’
for certain intervals in order to bias monitoring results, se-
lectively dropping packets when the protocol is ‘off’; and
behaving itself while the protocol is ‘on’. Thus, it is crucial
to ensure that intervals when the protocol is ‘on’ indistin-
guishable from intervals when the protocol is ‘off’.

Notice that from Eve’s perspective, the only indication
that the protocol is ‘on’ are the two control messages (‘In-
terval End’ and ‘Report’). Thus, while in an ‘off” interval,
Alice and Bob need not compute hashes over packet con-
tents or to maintain sketches (so that there are significant
savings in storage and computation), we still require the
appropriate control messages to be sent. In an ‘off’ inter-
val, we require (a) Alice to count the number of packets she
sends to Bob and send a dummy ‘Interval End’ message each
time the counter reaches T', and (b) Bob to respond with a
dummy ‘Report’ packet. To make the dummy control mes-
sages indistinguishable from real control messages, we will
also require (c) that all information fields in the control mes-
sages sent by the protocol are encrypted and padded to a
fixed length (and subsequently authenticated).

With this approach, a sender with the resources to run
only K instances of the ‘secure sketch’ protocol, can engage
in PQM with M > K receivers by choosing a (pseudo)random
set of K of M receivers for which the protocol should be ‘on’
in a given interval. Note that that selection of ‘on’ intervals
should be random, in order to prevent an adversary from
selectively attacking the ‘off” intervals by using side-channel
information (e.g., observing if the sender switches to a new
path) to distinguish between which intervals that ‘on’ or
‘off’.

5.4 Plugging in sketching schemes

In this section we show how to instantiate our PQM pro-
tocol with known p‘"-moment estimation sketching schemes,
such that the schemes satisfy the requirements of Theo-
rem 5.1. We will focus on two highly efficient schemes for
estimating the second-moment: the ‘classic’ sketching tech-
nique [3,5] based on the Johnson-Lindenstrauss lemma, and
the more efficient ‘CCF’ sketch of Charikar, Chen and Farach-
Colton [13].

In each scheme, packet hashing can be done with either 4-
wise independent hash function or PRF. We consider both
cases. While 4-wise independent hash functions are theo-
retically faster than PRFs (see also the discussion in Sec-
tion 3),using these weaker hash function comes at the cost
of worse sketch parameters N. Both schemes operate by tak-
ing a single pass over the data stream to compute the sketch
w, and compute the estimator as V = ||w||>. When packet-
hashing is done with either a 4-wise independent hash func-
tion or a PRF [3,5, 48], both schemes have estimators V'
with expectation ||v||2 and variance 25 (|[v]s — [Iv]|}) -

We next describe each scheme, and show how they com-
pare in terms of update time per incoming packet and stor-
age requirements (i.e., the number of bins in the sketch, IV,
and the size of each bin). We also derive new bounds for the
storage requirements of these schemes.



5.4.1 Classic Second-Moment Estimation Sketches

Alon, Matias, and Szegedy [5] suggest the following ap-
proach to sketching: when receiving a packet d map it to a
vector b € {f%, %}N and add b to the sketch w. Thus, the
update time per incoming packet is exactly N, the number
of bins in the sketch.

Packet hashing with a 4-wise independent hash. Alon
et. al [5] require a hash function such that each entry of b
in 4-wise independent, and every entry of b is completely in-
dependent of all other entries of b. They then show how to
estimate v within (1 & &) with probability § using a sketch

with N > % bins.

Packet hashing with a PRF. Achlioptas [3] obtained a

bound on N by requiring each entry of b to be computed

using an (independent) PRF producing either ++ or —+

with probability % Achlioptas showed that obtaining an
(e, d)-approximation of the second moment requires

N>8 21 In; (12)

€2 3—2¢

bins in the sketch. Notice the that PRF approach requires
O(log %/5) less storage then the 4-wise independent hashing
approach.

Sizing each bin in the sketch. To prevent overflow, we
can take each bin in the sketch to hold integers in [— K, + K|

where K = /2T In(2%™), so that each bin requires 1 +

log, K bits of storage. To see why, suppose that when we
store the sketch, we drop the % factor. We now find K such
that the probability that each bin overflows is at most % ﬁ.
If X is an indicator variable that equals 1 with probability %
and —1 otherwise, then the count in each bin is the random

variable X = ZiT:1 Xi;. Then, from the Chernoff bound
we have that Pr[|X| > K] < 2exp(-£2) < 2

— 100N
\/ 2T In(22X).

the protocol to raise an alarm if any bin overflows, since
this will happen with low probability in the benign case.)

Finally, we get K = (We can also change

5.4.2 CCF second-moment estimation sketch.

The sketch of Charikar, Chen, and Farach-Colton [13] can
be adapted [48] to give a second-moment estimation algo-
rithm with a faster update time; instead of updating all N
bins each time a new packet arrives as in the classic sketch,
the CCF scheme only updates a single bin. In our con-
text, the CCF update algorithm requires that each incom-
ing packet d is hashed to a pair (¢,b) where ¢ € [N] and
b € {£1}, and b is added to the i*" bin in the sketch w.
To prevent overflow in each bin, we take each bin to hold

integers in [—K,+K] where K = 2,/ % In(22%). Thus, we

require

14 1log, (4% In(2%%))  bits / bin (13)

To obtain (13), we find K such that the probability that
each bin overflows is at most %ﬁ. If X, is a random vari-
able that equals 1 with probability ﬁ, —1 with probabil-
ity ﬁ, and 0 otherwise, then the count in each bin is the
random variable X = ziTzl X;. Then, adapting the Cher-
noff bound that appears in Levchenko [30], we have that
Pr(|X| > K] < 2exp(—grvanm) < 100w

we get K =21/ L In(2%2%) since VAR[X;] = 1/N.

Finally,

Packet-hashing with 4-wise independent hashes. In

Appendix E.1 we show that if the incoming packet d is

hashed with two independent 4-wise independent hash func-

tions, (where 7 is computed using a 4-wise independent hash

with output domain [N] and b is computed using a 4-wise

independent hash with output domain {—1,1}), then we re-
2

quire at N > 55 bins in our sketch.

Packet-hashing with a PRF. In the general case, the
faster update time of CCF comes at the cost of increased
storage. More precisely, in order to get a (1 & €) accuracy
with probability 1—4, the CCF schemes require a larger N =

O(51z), rather than N = © (%) of the classic scheme.

Unfortunately, this increased storages is generally required
even if hashing is performed with a truly random function!®
To see why, consider the following counterexample: consider
the vector v = 10'%, + 1010635/ where e, is the vector with
1 in coordinate x and zero elsewhere, and = # z’. Then
[v]|2 = 2-10%°, but with probability 1/2N a sketch of v will
be 0.

Fortunately, our setting has special properties that allow
the CCF scheme to avoid incuring the cost of increased stor-
age! We now prove that in our setting the CCF scheme we
can have N = O (Zz log §). This follows because (a) we as-
sume that Alice sends unique packets, and (b) we only care
about deciding whether ||v||2 lies above or below a thresh-
old, rather than getting an accurate estimate of ||v||Z. (See
also the discussion after Theorem 5.1.)

Our theorem supposes that packet hashing is performed
using an two independent random function: one to chose
¢ € [N] and another to choose b € {—1,1}. When the CCF
algorithm uses a random function for hashing, we can think
of the sketch w as computed from the characteristic vector
v via a random linear map, i.e., w = Rv, where R is chosen

SCCF’s [13] sketch can attain better success probability
(even with 4-wise independent hashing) by using the me-
dian of estimates obtained from M independent sketches,
for some number M. However, this increases the storage
and update time by a factor of M.



uniformly at random from set Sccr. For the CCF algorithm,
Sccr is the set of N x |U| matrices where each column has
+1 in some row and zeros everywhere else. Hence, we have
the following theorem:

THEOREM 5.2. For any vector v € ZY, choose the N x U
matriz S uniformly from Sccr and set w = Sv. Then, for
1+

2 e |3
alle € [0,1) and n such that (}__,_—Z) = max (ﬁ , 117% ),

choosing

N>%m2 (14)
q,rz%ln% (15)

ensures that the following two items occur with probability
at least 1 —§:

1. If v € {~1,0,1}Y, and ||v|2 < g, then |w]|? < (1 +
£)q.

2. The number of non-zero entries in v isr, then ||w|2 >
(1—e)r.

See Appendix E.2 for Theorem E.4 a tighter and more
precise statement of Theorem 5.2, as well as its proof. The
theorem bounds the number of bins in the sketch, N, as
well as both the number of non-zero elements in v. The
fact that the number of bins in the sketch, N, must be large
is not so surprising. However, our proof also needs v to
have many non-zero elements because CCF does not work
as well when very sparse vectors v cause high variance in
the number of entries in the bins of w (see for instance the
counterexample we discussed above). This condition on v
holds in our setting because the number of bins in the sketch
is much smaller than the total number of packets. Similar
conditions apply in many other sketch applications; thus, we
believe that this theorem may be of independent interest.

Applying Theorem 5.2. To apply the theorem into
our setting, assume that the PRF used for packet hash-
ing is indistinguishable from a random function. Then, set

€= 2127 set x = va — vg, and set ¢ = oT'. The false pos-

itive condition is satisfied because we have x € {0,1}Y and
[x||2 = |x|, = D < aT, so with probability 1 — 4,

V=llwl; <A +e)lxl; < (1 +e)al = 25T

The false negative condition is satisfied because we have the
number of drops is r > ST. So, with probability 1 — §, we
get that

V= |wl; >(1_5)T2(1—8)BT:%T

where the first inequality comes from the fact that x =
Id]|? + [lal[? and ||d||? is a {0, 1}-vector with r entries that
are +1.

5.4.3 Some sample parameters and experiments

In the following, we use the following sample parameters:
We suppose the detection threshold is 8 = 0.01, the false
alarm threshold is « = (/2 and about T' = 107 packets

"This analytic bound on N also requires that o7 > ?;7—];7 In %
1-9)? 5 1%
for n such that <ﬁ) = max (H—s Tt ) See Theo-

rem 5.2.
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Figure 4: Theorem E.4 is used to obtain bounds
on sketch size, N for a given choice of T,,i,, the
minimum number of packets per interval. Here
d=p03=2a=1%.

Histogram of estimator V, Classic Sketch, T=1¢, N=300, 2500 samples/case
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Figure 5: Histogram of estimator for the (a) clas-
sic, and (b) CCF schemes, each using packet-hashing
with a PRF and with N = 300, T = 10%, 8 = 2a = 1%
and threshold I' = 6667. Histogram computed via
numerical experiments.



| Scheme | Packet Hashing

| N, Bins in Sketch |

Bits/bin

Classic | 4-wise independent = 1+ £ log, (2T In(2%9%))
PRF S Ing
CCF | 4-wise independent 5= 1+ 1log, (4% In(2%Y))
PRE 20 2

Table 1: (Analytically-derived) parameters for secure sketch PQM.

Bins in Sketch Sketch Size
B/a N T=10" | T=10° | T=10° | T=10" | T =10%
2 128 128B 144B 176B 208B 208B
4 64 648 88B 88B 1048 104B
8 32 368 48B 48B 52B 52B
16 32 368 48B 48B 52B 52B
32 32 36B 48B 48B 52B 52B
64 32 368 48B 48B 52B 52B

Table 2: Minimum N bins per sketch, when N is taken as a power of 2, computed via numerical experiments
for PQM using CCF with a PRF for packet hashing. Sketch size is computed by multiplying experimentally-
obtained value for N with the value obtained from equation (13). We fix § = = 1%.

are sent during an interval. We will require a confidence of
1—0=99%.

Comparing analytic results. Combining these sample
parameters with the analytic results summarized in Table 3,
we see that when 4-wise independent hashing is used, both
classic and CCF sketching require N = 1800 bins in the
sketch. However since CCF requires only 10 bits/bin com-
pared to the 16 bits/bin required for classic sketching, we
see that the CCF requires smaller sketches (3.6KB sketch
for classic, 2.25KB for CCF sketching). Storage become no-
ticeably smaller when we use a PRF. From Table 3, when a
PRF is used we find that the classic scheme requires N = 214
bins with 15 bits/bin for a sketch of size 400B. For the CCF
scheme, we can apply the refined version of Theorem 5.2 in
Appendix E.2 to obtain bounds on N, the number of bins
in the sketch, for different values of T},in, the minimum
number of packets per interval. We did this in Figure 5.4.2
for 3 = 6 = 2a = 1%, and we found that if there are at
least Thin = 1.2 x 10'° packets in the interval, we can use
N = 300 with counters of b = 14 bits if we take intervals
containing at least T = 10° packets.

Our Theorem 5.2 for CCF with a PRF introduces an awk-
ward bound on Tiin, the minimum number of packets that
must be sent per interval. However, we believe that this
bound is an artifact of our proof technique. As we discuss
below, our numerical experiments for CCF with a PRF indi-
cate (though do not conclusively prove) that even N = 300
bins suffices even if we use much shorter interval lengths, for
instance T' = 10%.

Numerical experiments: histograms. Figure 5 is a
histogram of the classic and CCF estimators V for (from left
to right) the benign case where D = oT (here we want the
estimator to be below the threshold I' so that Alice does not
raise an alarm), and for three cases where D = 3T so we
want Alice to raise an alarm: a case where Eve does not add
any packets, a case where Eve adds (8—a)T distinct packets,
and a case where Eve adds (8 — «)T total packets where
each packet is duplicated twice. Notice that the threshold I'
clearly distinguishes between cases where D = T and the

benign cases where D = oT'. Also, notice if Eve adds packets
to the link, she only increases the probability that Alice
raises an alarm, as predicted by equation (11). Figure 5
also suggests that taking N = 300 suffices for CCF even if
we have shorter interval lengths of T' = 10°.

Numerical experiments: CCF with a PRF. We fur-
ther studied the CCF with PRF approach by performing a
number of numerical experiments to determine N, the num-
ber of bins in the sketch. In every experiment, we chose NV
as a power of 2.8C code for these experiments is available by
request. Our results are presented in Figure 2. Firstly, from
Figure 2 we see that N varies with the ratio 3/, which con-
firms the analytic results summarize in Figure 5.4.2. How-
ever, our numerical experiments suggest that as long as there
are T' > 1/a packets/interval, the choice of T' does not really
impact the value of N; for a given 8/« ratio, the minimum
choice of N as power of 2 was the same for any value of T'
ranging from 10* to 10%.  Next, Figure 2 indicates that
sketch size grows with T'; this growth is logarithmic in T (as
expressed by the equation for the number of bits / bin for
CCF in equation (13)).

5.4.4 Reducing computation with pre-hashing

In our setting, hash function computation can be expen-
sive because we need to compute a PRF (or 4-wise indepen-
dent) hash over up to the entire packet, which may be up to
1500 Bytes long. While Appendix A discusses generic tech-
niques for fast per-packet PRF computation based on effi-
cient €4-almost universal hash functions, it turns out that we
can have even faster hashing constructions for our sketching
protocols.

To do this, we again use e4-almost universal hash func-
tions. We reduce the cost of PRF computation by first

8We take N to be a power of two because this makes packet
hashing in the CCF sketch more convenient. That is, if
N = 2" and we use PRF that produces 1 (pseudo)random
bits, then the binary representation of these n bits uniformly
choose an element of [N]. However if N is not a power of 2,
a more complicated mapping of these 7 bits is required to
uniformly choose an element of [N].



mapping packets from U to a short ni-bit string using the
efficient €4-almost universal hash function, and then using a
PRF (or 4-wise independent) hash to map from ni-bits to
the sketch. Thus, if ny is sufficiently small, this means that
our PRF can be constructed using a single invocation of a
block cipher like AES. (Similarly, our 4-wise independent
hash need only operate on small number of inputs, making
it possible to realize using only e.g., three n; bit multiplica-
tions.). In Appendix D, we adapt the analysis in [48] to show
that an («, 3, §)-secure PQM protocol requires a e4-almost
universal hash function with

e (16)
Sample parameters using GHASH. Consider using
GHASH [32] as our e4-almost 2-wise independent hash func-
tion. Suppose GHASH produces outputs of length n1, and
each packet is at most 1500B long, and block lengths are m,
where m is taken as a power of two. Since g4 = %27",
for T = 107 packets/interval, and 6 = 8 = 2a = 1%, ap-
plying (16) we find that it suffices to choose GHASH with
n = m = 64 bits. This choice of ni is quite short! (For
most other applications, GHASH requires block lengths of
m = 128 bits. Indeed, in Appendix A we found that we
needed m = 128 bits blocks when we analyze it as part of
the PRF.) Thus, it follows that (a) hardware implementa-
tions of GHASH will be fast, and (b) PRF computation (to
map ni-bit strings to the sketch) amounts to a single invo-
cation of AES.

5.4.5 Other sketches.

TZ Sketch. Thorup and Zhang [48] gave a variant of the
CCF scheme where, instead of updating a bin in the sketch
with a randomly chosen element in {+1}, the bin is always
updated with a +1. (While the update algorithm in TZ is as
in the Count-Min sketch [15], the analysis there is different.)
However, their second-moment estimation scheme requires a
larger bin size (roughly twice the number of bits/bin) than
CCF, so we don’t consider this scheme any further.

Other p'"-moment estimation schemes. As discussed
in Section 5.1, any p*"-moment estimation protocol, for p >
1, can be plugged into our protocol to achieve PQM. How-
ever, it turns out that the algorithms for second-moment
estimation are preferable in our setting because they have
the simplest packet-hashing algorithms. For instance, for
the classic and CCF sketches, the packet-hashing algorithm
amounts to choosing integers in {—1,1} and thus can be
efficiently implemented in high speed routers. c.f., with
first moment estimation protocols that require choosing real
numbers from a Cauchy distribution [27].

Relationship to the adversarial sketch model. In
concurrent work, Mironov et.al. [34] considering a setting
which Alice and Bob are required to sketch adversarially-
chosen sets, and then compute metrics on their sets after
exchanging sketches over a secure channel; their model maps
directly to our PQM model, where Alice and Bob’s sets
(i.e., packet streams) may be chosen adversarially, and then
sketches are exchanged via an authenticated channel. Our
work deals with the fact that streams are chosen adversar-
ially by requiring Alice and Bob to compute their sketches
using shared secret keys. However, Mironov et.al require
that sketching is performed without any shared random-

ness.” Their approach has significant advantages, including
reduced key-management overhead, and extensions to the
client-server setting. For instance, a server can engage in
a sketching protocol with multiple clients without using a
shared key for each, and then uses a report authenticated
using a public key as in the asymmetric protocol of Sec-
tion 4.2. Indeed, following the discussion in Section 5.1, any
protocol for p"-moment estimation (where p > 1) in the ad-
versarial sketch gives an PQM protocol (for the client-server
setting) as well. However, the lack of shared randomness in
the model of Mironov et al.comes at a significant cost; they
show that any moment estimation protocol for sets of size
T requires at least Q(v/T) storage at Alice and Bob. Thus,
these protocols are much less efficient than the O(logT')-
storage keyed sketches that we considered here.

5.4.6 Summary

For large interval lengths 7', our analytic results show
the most efficient (in terms of storage and update time) in-
stantiation of our secure sketch protocol uses CCF’s second-
moment estimation scheme [13] with a PRF for packet hash-
ing. Furthermore, our numerical experiments suggest that
this is the case even for smaller values of 7. While in the-
ory, using a PRF instead of 4-wise independent hash is more
computationally expensive, in practice, this not usually the
case (see discussion in Section 3). Furthermore, we also
showed how to reduce the computational cost of computing
a PRF on each packet by pre-hashing packets with an eg4-
almost universal hash function, and then applying a single
invocation of a fast PRF.

6. NECESSITY OF CRYPTOGRAPHY

All of our protocols require keys between participating
nodes, and cryptographic computations. We now show that
this overhead is inherent by arguing that any PQM protocol
satisfying Definition 2.1 requires a key infrastructure and the
invocation of cryptographic operations. These results also
immediately imply that any PQM protocol that does not use
keys or cryptography, e.g., Listen [47], is insecure according
to Definition 2.1.

6.1 Keys are necessary

We argue that there must be some form of shared secret
information between Alice and Bob. To see that keys are
necessary, we argue in the contrapositive: suppose Bob has
no secrets from Eve. Then, since Eve occupies a node on the
path between Alice and Bob, she receives the same informa-
tion that Bob receives and can compute the same responses.
It follows that Eve can simply run the PQM protocol on
her own (responding to Alice with the appropriate acks or
reports), and then drop all the packets going to Bob. This
breaks security because Alice has no way to know that any-
thing went wrong. Notice further that this suggests that Al-
ice needs Bob’s participation in order to run a secure PQM
protocol.

9In Section 6, we argue that PQM protocols require shared
randomness; the existence of Mironov et.al’s protocol does
not contradict this. As discussed in Section 6, if we used
Mironov et.al. sketching results in a PQM protocol, we
would require shared randomness to cryptographically au-
thenticate the report messages (containing the sketches) sent
from Bob to Alice.



We emphasize that this argument only proves that one of
the parties (Alice or Bob) has some secret, while the other
party holds some information that depends on that secret.
For instance, Alice and Bob could share symmetric keys, or
Bob might have a public-private key pair (PK, SK) while
Alice has the public key PK,

We further remark that the necessity of keys holds only
if Eve has the power to add packets. However, we believe
that it is unrealistic to assume that the adversary cannot
add even a single packet; indeed, the security of some pro-
tocols (e.g., our secure sketch protocol) can be broken if the
adversary successfully forges (i.e., adds) a single ‘Report’
packet!

6.2 Cryptography is necessary

of the PQM protocol) whenever Percy produces a successful
response the challenge in the KIS (and therefore breaks the
security of the KIS).

Remark. One could hope for the stronger statement that
some kind of cryptographic operation is necessary for every
packet sent by Alice. However, this is false. Indeed, consider
a secure sketch PQM protocol that uses the first-moment
estimation protocol of Mironov et al. [34], as discussed in
Section 5.4.5. Then, we have a PQM protocol that uses no
cryptographic computations for packet hashing, and only
uses a two cryptographic operations per interval, i.e., com-
puting the MACs on the ‘Interval End’ and ‘Report’ packets
sent the end of the interval. We suspect that proving a state-
ment of this form (i.e., a cryptographic operation is required
for each packet sent) would also restrictions on the storage

We now argue that the keys must be used in a “cryptographicallyat Alice and Bob.

strong” manner. Note that our previous result that keys are
necessary does not imply that cryptography is necessary; for
example [19] uses secret keys in a non-cryptographic way and
obtains a protocol that is not secure by our definitions. To
show that cryptography is necessary, we show that any se-
cure PQM protocol is at least as complex as a secure keyed
identification scheme (KIS), which is known to be equiva-
lent to many cryptographic tasks like encryption and mes-
sage authentication [26]. Intuitively, our result follows from
the fact that in order for Alice to believe Bob, she must be
assured that all the information she is getting indeed came
from Bob in a way that Eve cannot impersonate.

A Keyed Identification Scheme (KIS) is a challenge-response

protocol in which the two parties share a secret key, and
Alice wants to verify Bob’s identity. To do this, Alice typi-
cally sends Bob a challenge, that Bob must respond to us-
ing his secret key. A KIS is secure if Percy, an imperson-
ator who eavesdrops on the interactions between Alice and
Bob but does not know the secret key, cannot impersonate
Bob by coming up with a correct response to the challenge
(with probability better than just randomly guessing the re-
sponse).

We use a reduction to prove that any PQM scheme that
is secure according to Definition 2.1 is at least as complex
as KIS. First, we show that given any secure PQM protocol,
we can construct a secure KIS. The construction is simple:
the challenge in the KIS are the T" packets that Alice sends
to Bob during an interval of the PQM protocol. The cor-
rect response in the KIS is the acks/reports that Bob sends
to Alice during an interval of the PQM protocol. Next,
we show that if the PQM scheme used in the above con-
struction is secure according to Definition 2.1, then our KIS
construction is also secure. We do this in contrapositive,
by showing that if there existed an efficient adversary Percy
that breaks the security of this KIS construction, then Percy
can be used to construct an adversary Eve that breaks the
security of the PQM protocol. To do this, we show how Eve
can break the security of the PQM protocol if she is given
access to Percy: First, whenever Percy wants to eavesdrop
an interaction between Alice and Bob, Eve lets Percy ob-
serve an interval of the PQM protocol. Next, when Percy
is ready to impersonate Bob, Eve gives the T packets that
Alice sends to Bob to Percy as his KIS challenge, but now,
instead of forwarding Alice’s packets on to Bob, Eve drops
T packets and instead responds to Alice with Percy’s KIS
response. The proof follows from the fact that Alice will
not raise an alarm (and therefore Eve breaks the security

7. COMPARISON OF PROTOCOLS

Because we want PQM protocols that can be deployed in
high-speed routers, we have focused on efficiency consider-
ations; namely, we evaluated our protocols’ efficiency in (a)
communication overhead, (b) computation of cryptographic
operations, and (c) use of dedicated storage in the router.
We now explore a wider space of design objectives for eval-
uating our PQM protocols, discuss how our three protocols
perform under these objectives, and compare them with two
existing solutions for PQM: Stealth Probing [7] and IPsec.
We argue that obtaining PQM protocols that perform well
for one particular objective often involves trading off some
other objective.

7.1 A broader space of design objectives

Marking packets. We prefer protocols that do not modify
any packets sent by the source edge-network, e.g., by packet
marking or encryption. This approach has the advantage
of allowing the PQM protocol to be backwards compatible
with IP, not increasing packet size, minimizing latency in the
router, and allowing the source to turn the PQM protocol on
and off without having to coordinate with the destination.
Furthermore, avoiding packet marking also means we can
implement the PQM protocol in a monitor located off the
critical packet-processing path in the router.

Estimating delay. We prefer protocols that allow Alice
to estimate round-trip delay, without making assumptions
about the clock synchronization between Alice and Bob.

Feedback latency. We prefer protocols that perform well
for small interval lengths, so that Alice need only send a
small number of packets before she has sufficient informa-
tion to decide whether or not to raise an alarm. In gen-
eral, due the high variance in network conditions, it is better
to avoid making routing decisions using measurement made
over short timescales [42]. However, an PQM protocol that
provides fast feedback empowers the edge network to react
quickly when situations are particularly dire (i.e., when a
path fails completely). Furthermore, fast feedback can be
used to detect transient faulty conditions, and can be used
when enforcing SLAs to ensure that repeated, short peri-
ods of poor performance are not detected because the PQM
protocol uses large interval lengths.

Client-server v.s., peers. We consider both (a) the peer
setting, where the source and destination can devote equiv-



alent computational resources to the protocol, (e.g., a cor-
poration that wants to ensure availability between a pair
of sites in geographically-disparate locations), and (b) the
client-server setting, where one party can devote more re-
sources to the protocol (e.g., a client wanting to ensure that
his packets are correctly delivered at a web server).

Symmetric vs. public keys. Per our negative results in Sec-
tion 6, all of our protocols require some sort of cryptographic
key infrastructure. However, there are many settings, (e.g.,
when a client has only a very short connection with a web
server), where we prefer to design protocols that do not re-
quire a handshake protocol between each source-destination
pair in order to generate a symmetric key. Furthermore,
when one edge network runs PQM protocols with multiple
other edge networks, it is extremely useful to have proto-
cols that allow an end-point run concurrent PQM protocols
using a single key (e.g., a public key). This way, the edge
network need not lookup a key each time he sends/receives
a packet. Such protocols are also particularly useful for mul-
ticast communications.

Detecting traffic discrimination. Recently, there have been
cases of ISPs that degrade performance for certain classes of
unwanted traffic like Skype [37] or BitTorrent [1]. Thus, we
prefer protocols that can be adapted to determine if a path
is selectively dropping specific classes of traffic.

Symmetric vs asymmetric paths. Our PQM protocols are
designed to ensure that Alice raises an alarm when the per-
formance of the forward path (from Alice to Bob) degrades
unacceptably. However, consider a situation where the per-
formance of the forward path is acceptable, but Alice still
raises an alarm because the adversary was tampering with
messages sent on the reverse path (from Bob back to Al-
ice). Our protocols do not protect against such situations;
indeed, to design PQM protocols that give this guarantee,
we would either need to assume that source and destination
have an out-of-band communication channel that cannot be
attacked by the adversary, or consider running PQM pro-
tocols over multiple alternate paths. Notice that when the
forward path and reverse paths are identical, i.e., symmetric
paths, Eve has no incentive to drop acknowledgments and
reports; doing this simply makes the path she occupies look
worse. In contrast, with asymmetric paths, an adversary
occupying only the reverse path may have an incentive to
drop acknowledgments and reports, perhaps to confuse the
source into thinking that the forward path is faulty.

However, some of our PQM protocols contain clues that
Alice can often use to distinguish between situations where
the forward path is actually faulty, and when an adversary
on the reverse path is simply dropping reports.

Monotonicity. We say that that a protocol is monotone
if Helen cannot trick the source into detecting faults on the
data path simply by adding packets to the path. To see why
this important, consider an adversary, Helen, that does not
occupy a node on the data path and thus cannot drop or
delay packets, but can inject packets onto the data path.
Helen might have an incentive to trick Alice into raising an
alarm this in order to force the Alice to switch her traffic to a
different path. In practice, no protocol is completely mono-
tone, since Helen can always cause a denial-of-service attack
by flooding the path with nonsense packets and exhausting
the computational resources of Alice or Bob. However, we
typically want to avoid protocols where Helen can trick the

source into detecting a failure (when all packets were deliv-
ered) because of additional packet injections.

7.2 Evaluating the tradeoffs

We now discuss how each of our three protocols fits into
the tradeoff space we described above. This discussion is
summarized in Table 3.

Secure sketching. Our secure sketch protocol makes ex-
tremely efficient use of storage and communication. Fur-
thermore, these requirements are (roughly) independent of
the threshold chosen, and so can be used even to detect very
small degradations in path performance. On the other hand,
the secure sketch protocol does not allow us to easily mea-
sure round trip time, since packets are aggregated into one
sketch. It requires both the sender and the receiver to main-
tain keys and (small) storage, which might be a problem in
the client/server setting where a server is communicating
with many clients, and does not want to maintain per-client
storage for the purposes of running PQM protocols. Finally,
the sketch protocol is not monotone: it will raise an alarm
if many packets are added into the path, even if no packet
is actually dropped. This could be an issue if an adversary
that does not sit on the path is able to inject packets into
the path.

Secure sampling. Our secure sampling protocols are best
suited for situations where Alice needs immediate feedback
and accurate measurements of round-trip delay (which she
can easily obtain, even in the absence of synchronized clocks,
by timing the arrival of acks). Furthermore, the protocols
are monotone in the sense that if an adversary adds pack-
ets to the path or spoofs acks, Alice can simply ignore all
the acks that do not correspond to the packets that she
sent. Symmetric Secure Sampling is best suited when Al-
ice and Bob are peers that have equal resources to devote
to the protocol. Furthermore, the protocol is best when
we do not want to make any clock synchronization assump-
tions, or when we want fast feedback (which can be obtained
by adjusting the probe frequency p appropriately, see Sec-
tion 4.3). Asymmetric Secure Sampling is best suited for
the client-server setting, where the server wants to run PQM
protocols with many clients without using dedicated storage
and using only a single key for all clients.

However, the sampling protocols (save for the TSSS proto-
col of Section 4.2.1) have a disadvantage in the asymmetric
path setting— when the forward (Alice to Bob) path is not
the same as the reverse (Bob to Alice) path. The reason is
that since only a p-fraction of sent packets are acknowledged,
each dropped ack looks like % dropped packets. Thus, in the
asymmetric path setting, an adversary on the reverse path
can arbitrarily increase the source’s estimate of the failure
rate on the forward path by dropping acks. In contrast, in
the secure sketch protocol only a single authenticated re-
port packet is sent on the reverse path, and so if it does
not arrive Alice can deduce that the problem is in the re-
verse rather than the forward path (unless the forward path
is completely blocked and Bob is not even aware of Alice’s
existence). This issue also means that the sketch protocol
is better suited for SLA-compliance monitoring applications,
especially in the asymmetric paths setting (where the report
packet could even be sent out-of-band). When PQM is used
to inform routing decisions in the asymmetric setting, Alice
and Bob can always coordinate switching their forward and
reverse paths once an alarm is raised.



IPsec. IPsec is a standard for symmetric-key encryption
and authentication of packets at the network layer. How-
ever, it requires invoking a cryptographic operation, modify-
ing, and adding tags to every packet sent on the path, which
could be quite expensive when operating at multi Gbit/sec
rates. Also, IPsec currently does not include a standard for
providing authenticated acknowledgments and so needs ad-
ditional machinery, like Stealth Probing [7], in order to pro-
vide secure PQM at the network layer. On the other hand,
if we perform PQM at a higher layer, we can use TCP over
IPsec (so that we have authenticated acknowledgments for
every single packet sent) or even SSL. These protocols pro-
vide very strong security guarantees; they not only provide
confidentiality, but also allow a source to detect if a failure
occurs for every single packet it sends. But given the high
cost associated with these guarantees, these protocols are ar-
guably, more appropriate when confidentiality and integrity
are necessary for other reasons, or when PQM functionality
is required at the end-host, rather than in the high-speed
routing setting that we focus on here.

Stealth Probing. Stealth Probing [7] is a network layer pro-
tocol that provides statistically-secure path-quality monitor-
ing (satisfying Definition 2.1) by designating specific packets
as ‘probes’ that must be ack’d by the destination, and then
masking the choice of probe by encrypting and authenticat-
ing all traffic using IPsec. This protocol shares many of the
traits of our symmetric secure sampling protocol. However,
it incurs the extra overhead of encrypting all traffic, and
is probably best suited when confidentiality is required in
addition to PQM in the peer setting.

Note that all our protocols can be tuned to measure the
performance on a particular subset of the traffic, for the pur-
poses of detecting whether some intermediate nodes treat
certain packets (such as Skype [37] or BitTorrent [1]) differ-
ently than others. The same is true for IPsec based solutions
such as Stealth probing. In fact, the latter solutions make
selective (mis)treatment of packets by the adversary much
harder, as they encrypt all traffic.'*

Application layer protocols. Here we did not consider pro-
tocols that detect packet loss at the application layer by
using the semantics of packet contents (e.g., the fact that
a webpage does not display correctly). We only considered
protocols that operate at the application layer, and assume
nothing about packet contents (apart from the fact that
packets are unique in a given interval). While protocols that
leverage packet semantics are more appropriate for certain
settings, we do not consider them here because we would
like to design general-purpose protocols that operate inside
high-speed routers to inform routing decisions or provide fast
feedback about SLA violations.

8. CONCLUSION

In this paper,we have designed and analyzed efficient path-
quality monitoring protocols that give accurate estimates of
path quality in a challenging environment where adversaries

10Storage and communication are given for an interval of
T = 10" packets with 8 = 0.01, @ = 8/2, and 1 — § = 99%.
1 Of course, if packets are encrypted but not padded to a
fix constant length, an adversary can still selectively mis-
treat certain packets based on their length. Furthermore,
encryption does not prevent the adversary from using tim-
ing attacks to discriminate between packets, see e.g., [45].

may drop, delay, modify, or inject packets. Our protocols
have reasonable overhead, even when compared to previ-
ous solutions designed for the non-adversarial settings, and
all except TSSS do not modify data packets in any way.
In fact, one possible deployment scenario for our protocols
is to start by deploying protocols that use hash functions
with publicly-known keys, to monitor path quality in man-
ner that is robust to non-adversarial failures such as conges-
tion, misconfiguration, and malfunctions. Then, the same
router support could be leveraged, using secret keys, to op-
erate in an adversarial setting as needed. Another possi-
bility is to use our protocols with publicly known keys, but
combine them with IPsec for paths where protection against
adversarial nodes is required; this will be secure, albeit at a
higher overhead than using our protocols on their own. We
believe that our PQM protocols, and our associated models
of their properties, are valuable building blocks for designing
future networks with predictable security and performance.
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APPENDIX
A. FAST CRYPTOGRAPHIC HASHING

We now consider efficient pseudorandom functions (PRF's)
for packet hashing. As we discussed in Section 3, the PQM
adversary is presented with an online problem: to break se-
curity, Eve must break the secret key within a small time in-
terval until the key is refreshed, based on the limited number
of examples she sees during that interval. (Indeed, in some
of our protocols we voluntarily send the key in plaintext once
the interval is over, see Section 4.2).

For general hashing of variable-length packets (lengths
upto, say 1500B) with a PRF, we suggest a construction
based on ep-almost universal hash functions, as discussed in
e.g., [49] [29, Sec. 2.8.3] [10,32]. Namely, for an interval key
ku = (K1, k2) set

hie, (2) = Ery (grz (%)) (17)

where F is a block cipher taking n-bit inputs to n bit outputs
(e.g., AES), and ¢ is an e4-almost universal hash function
producing n-bit outputs (as defined in equation (1) of Sec-
tion 3). See e.g., [10] for a nice survey of various ep-almost
universal hash functions that can be used with this construc-
tion. 2 For long packets (length >> n-bits), the performance
of this hash function is dominated by the performance of
the universal hash function g, which can extremely fast. For
shorter packets (of lengths ~ n-bits), performance is limited
by the block cipher; fortunately, this construction amounts
to using a single invocation of the block cipher (c.f., with
traditional PRFs like HMAC [28] that require ¢/n invoca-
tions of the block-cipher for packets of length ¢-bits.) Perfor-
mance can be further improved by the replacing full-fledged
block-cipher like AES with a weaker block cipher such as
DES or with a small number of rounds of AES [16]; it would
still require enormous resources to break the security of the
PRF within the time limit ( 100ms) imposed in our online
setting.

Unfortunately, most of the literature focuses on the con-
struction of fast universal-hash based MACS, rather than
PRFs. Thus, below, we shall show that the PRF construc-
tion presented in (17) is a secure PRF as long as the g4
universal hash function g used in the construction has

gy < 9~ (2logs g+k) (18)

and the PRF is used no more than g times before the inter-
val key is refreshed. In our setting, ¢ = O(T), where T is

12The original universal-hash-based MACs require an an ex-
tra nonce r which must be unique for each invocation, and
define hy(z,7) = Ew, (1) + gry (M) or hx(z,r) = Ex, (r) @
grs (m). Because, in our application, we need only hash a
small number of packets ~ T = 107 before changing the
interval key, this nonce is not required.

the number of packets per interval'®, and k is the security
parameter. In our online setting, k need not be very large.
As an example, putting ¢ = 10T and T = 10" and requiring
k > 32, it follows that we require £, < 2756, Suppose now
we use GHASH [32] with block lengths n as the universal
hash function used in the construction. Then for packets
of length upto 1500B bytes, GHASH has ¢, = 1500/m2™"
where m is the block length and n is the length of the out-
put. Thus, we find it suffices to run GHASH with output
length n = 96 and block lengths of m = 128 bits. (A gen-
eral rule of thumb is that hashing is faster with smaller block
lengths. Note also that in Section 5.4.4, we show that for the
‘secure sketch’ protocol, it actually suffices to use GHASH
with block lengths of about m = 64 bits!)

We now obtain (18). We say that a function h is (g, ¢)-
secure PRF if an algorithm, given an oracle for a function
F, has advantage at most ¢ in distinguishing if F' is either
(1) h keyed with some randomly chosen secret key k., or (2)
a truly random function with the appropriate domain and
range [22]. To show that the construction in (17) is a secure
PRF, we prove the following theorem:

THEOREM A.1l. The function h.(z) = f(gx(z)) is a (¢, ¢>cy)-

secure PRF if f is a truly random function and g is an £4-
almost universal hash function keyed with randomly-chosen
key K.

Then the security of the construction follows if we assume
that the block cipher FE produces (pseudorandom) outputs
that are indistinguishable from the outputs of a truly ran-
dom function. Thus, we require ¢, < 27 where k is the
security parameter for the PRF, and (18) follows.

PrROOF PROOF OF THEOREM A.1l. The algorithm makes
q queries z1, ..., x4 to the oracle for F'; without loss of gen-
erality, assume these are all distinct. (If the adversary re-
peats a query, he can compute the answer without consult-
ing the oracle.) Let Egistinct be the event that x was chosen
such that that g.(z1),...,gx(z¢) are all distinct. Since f
is a truly random function taking in distinct inputs, it fol-
lows that if Fgistinct is true, the adversary has no advantage
in distinguishing between h and a truly random function.
Thus, the adversary’s distinguishing advantage is at most
Pr[—Edistinct]. Now, for every distinct 1, ...,z4, we have
Pr[—FEadistinct] = (g) gg < q259 where ¢4 is the collision prob-
ability of g (taken over the choice of k) as in equation (1).
The theorem follows. []

B. INTERVAL SYNCHRONIZATION
B.1 Symmetric-key protocols

In our secure sketch (Section 5) and symmetric secure
sampling protocols (Section 4.1), we assume that Alice and
Bob agree on the set of packets belonging to a particular
interval, and process these packets using the same interval

13In the secure sampling protocol, ¢, the number of queries
made to the packet-hashing PRF is the sum of the number of
packets that Alice sends and the number of packets that Bob
receives. Notice that an adversary can exceed the bound of
g = O(T) by adding many packets to path, and potentially
use the information it sees (i.e., the ACKs) to learn how to
break the PRF. To avoid such problems, we suggest that
Bob counts the number of packets he receives in an interval,
and stops acknowledging them once more than ¢ packets
have been received.



key k. (and, in Section 5, map the same set of packets to the
same sketch.) For these protocols, the best way to achieve
this is to have Alice send Bob a special ‘Interval End’ mes-
sage each time she ends an interval and begins a new one.
The ’Interval End’ message should contain the interval num-
ber u, and be authenticated with a MAC keyed with (some
portion of) the master secret key. When Bob receive this
packet, he knows he should derive a fresh interval key (and,
in Section 5, a fresh sketch). This approach does not make
any synchronization assumptions about Alice and Bob’s lo-
cal clocks; it also works even if the path between Alice and
Bob is subject to variable latency.

The effect of packet reordering on interval synchro-
nization. Of course, in the benign case, out-of-order ar-
rival could cause packets in an interval u to arrive after the
interval marker packet for u (and thus be interpreted by Bob
as part of interval w + 1). Fortunately, out-of-order arrival
should not cause any false alarms as long as the number of
packets arriving out of order before the interval marker is
a small fraction of o7, where « the false-alarm threshold.
(Note that because we focus on PQM protocols that operate
at the network layer, at this layer TCP retransmissions do
not look like out-of-order packets.)

Indeed, out-of-order arrive limits the choice of oT". To see
how, consider an ordered stream of packets transmitted by
a sender (e.g., 1,2,3,4,5,6,7,8). Let a “reordered packet” be
some packet that arrives at the receiver later than the pack-
ets after it in the ordered stream sent by the sender (e.g., .
in received stream 1,2,4,5,6,7,3,8, packet 3 is the reordered
packet). Then, define the packet lag as the number of pack-
ets that were sent by the sender after the reordered packet,
but were received at the receiver earlier than the reordered
packet itself (e.g., in received stream 1,2,4,5,6,7,3,8, packet
3 is the reordered packet and packet lag is 4).

To ensure natural packet reordering on the link does not
cause a loss of interval synchronization between the sender
and receiver, a good rule of thumb is to ensure that o7 >
99" percentile of packet lag. The packet lag depends on the
the class of packets monitored by the PQM protocol. For
instance:

e If the PQM protocol is in setting where no load bal-
ancing is used, (i.e., packets sent by Alice to Bob are
sent over a single physical path through the network,
rather than split over multiple paths) then packet lag
is typically very small, i.e., about 10’s of packet [38,
Sec. III.A]. Thus, ensuring o7 > 100 is sufficient in
this case.

e If the PQM protocol is used to monitor a single “layer-
3 flow”, i.e., a set of IP packets with same (Source IP,
Destination IP, Source Port, Destination Port, Protocol
Numbuer), then we assume that packet lag is less than
128 packets. (This is the assumption made in IPSec).
Thus, it suffices to take o7 > 1280.

e If the PQM protocol simultaneously monitors multiple
layer 3 flows, then packet lag can be quite high. This
is because different flows may be routed on different
paths through the network; if there is a significant time
delay between the different paths used by the different
flows, then packet lag can be very high. The best way
to determine packet lag in this setting is to measure
it directly; however, we conjecture that even if there
is a 10ms difference between the “fast path” used by

one group of flows and the “slow path” used by another
group of flows, for 1 Gbps flow of traffic, packet lag
should be on the order of 10° bps / 64 bytes/packet *
.01 sec = 1.6210° packets, so we can use o' > 1.6210°

Also, if the link has many out-of-order packets even in the
benign case, we can enforce interval synchronization by mark-
ing packets with a single bit denoting the parity of the in-
terval number (note that if the adversary tampers with this
mark, she only increases the likelihood that Alice will raise
an alarm)

Finally, notice that if Eve drops or delays the marker
packet for interval u, then she only increases the changes
that Alice raises an alarm (since doing is equivalent to adding
many packets to interval u and dropping many packets in
interval u + 1).

B.2 Asymmetric-key protocols

Our asymmetric secure sampling protocols (Section 4.2)
use a different approach for interval synchronization. Here,
the end of the interval is determined when the server sends
out the ‘salt release message’. Thus, there is no need to have
the client send the server an ‘interval marker packet’. We do,
however, require Alice to be coarsely synchronized to Bob’s
clock, so that an adversary cannot replay old salt release
messages (and use the old salt to form ACKs that trick the
client into accepting an interval for which she should have
raised an alarm).

In settings where the sender and receiver do not share a
clock, the following simple protocol can be used to securely
synchronize Alice’s clock to Bob’s clock to within 1.5 round
trip times (RTT) (e.g., 7 = 150 ms). Notably, this proto-
col does not require either Alice or Bob to keep any state
beyond their keys and local clocks. The protocol also does
not require Alice and Bob to trust one another, and does
not affect Alice’s global clock that is used when interacting
with other parties.

Simple synchronization protocol. Suppose Alice has
some local secret key ka (she does not need to shared this
key with anyone).

1. At time ta (on Alice’s clock) Alice sends Bob the mes-
sage MACy , (ta).

2. Bob receives this message at time ¢ (on Bob’s clock)
and responds with digitally signed message
¢ = Signg, (t, MACy, (ta))."

3. Alice accepts Bob’s message ¢ if Verifypy  (€) returns
(ts, MACy, (ta)), the MAC is correct, and Alice’s cur-
rent local time t/4 fulfills t)y < ta + 7. If Alice accepted
Bob’s message, she computes Ag = 7 — t/4, and from
now on, whenever interacting with Bob she offsets her
clock by a factor of Ap.

If, after many attempts, Alice fails to receive a valid response
to her synchronization message, then she decides to raise an
alarm. After Alice accepts, her local clock (after being offset
by Ap) is within 7 seconds from Bob’s regardless of Eve’s
actions. Indeed, a sufficient condition is that any accepted

14While computing and verifying digital signatures typically
takes on the order of 3ms, and is thus insignificant as com-
pared to the 150ms interval consider here. Furthermore,
this time delay is constant and known and can be subtracted
from Ap.



message £ was sent by Bob when his local time was tz and
Alice’s local time was after t/y. Violating either of these
would contradict the security of the digital signature and
MAC schemes.

C. SECURE SAMPLING NEEDS PRFS

To give an example of why non-cryptographic hash func-
tions are not insufficient in our sampling protocols, suppose
that the Probe function of equation (3) was implemented us-
ing a CRC keyed with a secret modulus, as in [19], instead
of with a PRF. Approximate the CRC function as hi(z) = x
mod k, and consider the following attack: Eve starts by ob-
serving the interactions on the channel, and records the list
of packets that were not acknowledged. Then, whenever she
sees a new packet that is within a small additive distance of
old packet that was not acknowledged, she drops the packet.
Thus, Eve can drop non-probe packets with high probability,
and she can bias the estimate V' well below the true failure
rate.

D. PREHASHING PACKETS

As discussed in Section 5.4.4, arguably the most expen-
sive part of our sketching protocol is the computation of the
per-packet hash. We now show how to reduce the cost of
this computation by (1) first mapping packets from from
U to a short mi-bit string using the efficient e4-almost uni-
versal hash function, and (2) then using a PRF (or 4-wise
independent) hash to map from ni-bit to the sketch. Our
approached is based on that of Thorup and Zhang [48].

Preliminaries. Recall that U is the universe of all possible
packets, and v is the characteristic vector of the stream of
packets. Let g : U — {0,1}™ be an e4-almost universal
hash function, as defined in Section 3. The hash function g
maps the packet stream containing elements in U to a new
‘intermediate’ stream of ni-bit strings. Now, we let u be
an ‘intermediate vector’ which is the characteristic vector of
this new stream of ni-bit strings. And finally, recall that w
is the sketch vector of length N.

Thus, our approach amounts to using the 4-almost uni-
versal hash g to hash v the ‘intermediate vector’ u, and
then using a a second-moment estimation scheme to hash
u down to the sketch w. Thus, the second-moment esti-
mation scheme estimates the second moment of u, rather
than the real characteristic vector v! We now show that,
if g4 is sufficiently small, this does very little damage, since
lally = [v]l-

THEOREM D.1. Given a vector v € 2!Vl and u € R?"".
Then if g : U — {0,1}" is an e4-almost 2-wise independent
hash function per equation (1), is used to map v to u accord-
ing to the algorithm uy(,+ = vs (i.e, ¥V @ € v the g(z)™"
counter in u is incremented with value vz ) then

Pl f[ull, = [[vllo | > duf[v]l.] < b2 (19)

as long as

(20)
g

Recall that |v|, = A+ D. Returning the proof of Theo-

rem 5.1, for (a, B, §)-secure PQM we would like (19) to hold

particularly when D = oT and D = BT, with § € € =

E_Tg' To be more conservative, we will take |v|, = T, and

01 = 15. We'll also set 2 = . Then (a, 8, §)-secure PQM

100 -
require the hash function g to have g4 as :

€d 0 B—o

- 21
S 18T ~ 10°T a + 8 (21)

PROOF PROOF OF THEOREM D.1. Let v, be the a!” en-
try of characteristic vector v. Now, start with the observa-

tion that
Z Va Vb (22)
g(a)=g(b)
Z V2 + Z Va Vp (23)
a a#b,g(a)=g(b)

= VI5+ D vavsYap (24)
a#b

a3

where we define the random variable Yg , as

Ya,b — { (]j lf g(a’) = g(b)va’ 7& b? (25)

else.

and from (24) we take the expectation over the randomness
in g and find that

E[|ull = 1VIE 1<) lvavs | E[|Ya,ol] (26)
a,b

< Z |[vavs] - €9 (27)
a,b

= (v} = IVI3) - e (28)

where the first inequality follows from (24), the second in-
equality follows because per equation (1) the collision prob-
ability of g is g4.

Now, we would like to ensure that ||u||, provides a good
estimate of ||v||,. That is, we would like to satisfy (19).
Using Markov’s inequality, we have

EL |l = lIvIZ 1]

p 2 2155 2] < 2
rH||uH2 ||VH2‘ > 1||V||2] = 8|1v2]l, (29)
(Iv[? = 1vI2) e
< T 717/ =g 30)
vl g (
€
<L (31)

And rearranging the last inequality we know that (19) holds
as long as (20) holds, which completes the proof. []
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Figure 6: An example of how to use Theorem E.4.



E. SECOND-MOMENT ESTIMATION WITH CCF
We start by restating a result of Thorup and Zhang from [48].

THEOREM E.1. For any characteristic vector v € RIVI if we construct sketch w € ZY according to the CCF-algorithm with
two independent J-universal hash functions h: U — [N] and s : U — {—1,1} as wy(o)+ = s(a)va then we have

Ellwl;] = lIvI; (32)
VAR[[wI3] = % (vl = lIvIy) (33)
E.1 CCF with 4-wise independent hashes

To show that the number of bins required for CCF with a 4-wise independent hash is N >
theorem.

% we prove the following

THEOREM E.2. For any vector v € RY sketched according to the CCF-algorithm with a 4-wise independent hash to obtain
w € ZN, then for any € € (0,1) we have

o If|v|? <aT and oT > 1 then

Pr(|wl; < (1 +e)aT] < 2= (1- 37) (34)
o If||v]? > BT and BT > 1 then

Pr[[[wll > (1 —€)8T] < % (35)

Then, recall that we set our threshold as T' = (1 — ¢)8T = (1 + ¢)aT for € = ?Tz Following the approach in the proof of

Theorem 5.1, we can show that the scheme is («, 3, §)-secure PQM protocol per Definition 2.1 if if we take a sketch with at
least N > <2 = %(m’—a)2 bins.

B—a
PROOF PROOF OF THEOREM E.2. We start with the first item and write:
VAR[||w]|?
(1 +e)aT - E[[[wl3])
4 4
<2 Ul —Ivi) (37
N (1 +e)aT —|vI2)
2 (vl = IvID) (38)
T N((1+e)aT —|v|2)?
2
2 (aT)? — aT
< 3 ) 77
-~ N (eaT)? (39)
2 1
= W(l - a7) (40)

where the first inequality follows from the Chebyshev bound, the first equality follows from applying Theorem E.1, and second
inequality follows because for any v € Z" we have ||v|2> < ||v||] (this holds because v has integer valued entries), and the
third inequality follows from the fact that ||v||2 < o7 and o7 > 1.

Next, consider the second item and write:

Pr[[[w]; < (1-¢)8T] < (E[meﬂf[lgv\_lziwf "
2 (vliz = 1vlD)

= N (E[|w]2] - (1 —¢)B8T)? (42)

< 2 Ivils (43)

TN (V]2 - (1~ )BT)?

where again the first inequality follows from the Chebyshev bound, the first equality follows from applying Theorem E.1, and
second inequality follows because ||v||{ > 0 since BT > 1. To bound (43), we use the following claim.

CrLamM E.3. For any a > 0, and function f(x) = -*- decreases with x when x > a.

T (@-a)?

Proor. Follows because % = < 0 and there are no singularities in f(z) for all 0 < a < z. [

To apply Claim E.3, let z = ||v||2 and a = (1 — £)3T and recall from the statement of the theorem that = > BT > a. From
Claim E.3 we note that (43) takes on its largest value when x = 8T, so we can write (43) as

2 2 (BT)*
Pr[|lwll; < (1-¢)pT] < N (BT — (1 - )3T (44)
= §e2 (45)

which completes the proof.



E.2 CCF with PRFs

First, we prove a precise version of Theorem E.4.

THEOREM E.4. For any vector v € ZY, choosing the N x U matriz S uniformly from Sccr and setting w = Sv, we have
that for all e € [0,1) and all g,7 > N

1. If v € {~1,0,1}Y, and ||[v||2 < q, then forn € [0,1v/e2+10e + 9 — 3(¢ +3)) andy = % —1:

n°q N :
Pr (w2 > (1+¢)q] <2Ne 3N 4 e~ 20 /270" (46)

2. If the number of non-zero entries in v is r, then forn € (O, 5= (3 — 26 — /562 — 14e + 9)) andy = (111’7”)2 (1-5)—(1-¢)
it follows that

n’r N
Pr[|w|2 < (1—e)r] <2Ne 3N +e Nammy (47)

For a fixed e, suppose we want to choose values for g, r, N that ensure that both the first item and the second item occur
with probability at most 6. To use Theorem E.4, we need to choose a value of n (within the appropriate range) and plug

it into (46)-(47) to obtain ¢, and N. This is not as simple as it initially appears: the first term (2Ne_%) in equations
(46)-(47), increases in n, which the second term decreases in 7. Thus, we must tradeoff between these two terms in order to
find an optimal choice of 7, i.e., one that minimizes N for a given choice of ¢, r,. This optimization can be messy, and so we
do it in MATLAB. For example, in Figure D we set ¢ = % and for ¢ = r we require that both the first item and the second
item occur with probability at most § = ﬁ. For each value of ¢, we show the choice of 77 that minimizes N for both the first
item and the second item in Theorem E.4.

PrROOF PROOF OF THEOREM E.4. The main observation we make is that, with high probability, the +1 entries of v are
distributed evenly among the coordinates of w. Conditioned on this happening, we can then apply the analysis of Achlioptas [3].

Definitions. We need the following definitions.
e We write v, for the z'" element in v.
e Define for i € [N] the set Q; = {x € U | h(z) = i} where h is the pseudorandom hash function.
e Define D; as the number of non-zero entries in v that hash to the i*" bin the sketch w. That is D; = {vz|ve # 0,2 € Q:i}.
e Define Y, as an unbiased 1 random variable for each x € U.

Our proof proceeds as follows. We first obtain a bound on D; for each . When then use the bounds on D; to prove the first
item (46), and then use them to prove the second item (47).

Bounding D;. Let E; denote the event that 3i € [N] such that D; > (1 +n)g/N or D; < (1 —n)g/N. Then, for n € [0,1),
we have that
) (49)

n*
3

%) ‘SN
=S

q
Pr[E] < N (Pr[D; > (1+n)&]+Pr[Di < (1—n)&]) <N (67 N +e”
which is a straightforward application of a union bound followed by the Chernoff bound.*®
Bounding the first item. Now we condition on —F;. Let v = (11%)2 and write:
2

N
Pr(|wl > (1 +e)g | ~Er] =PrY_Di | 4 > Yeovs | > (1+e)g| i

TEQ;
N 2
2
203 E SRc IRESIES
=1 T€EQ;

15We use the following Chernoff bounds. Let X; be i.i.d indicator variables with mean p, and let

NU *’YZNM/CH (49)

el s

1+'7 N,LL:| < e*W2NIJ‘/Cz (50)

If 0 < v < 1 then [6, Fact 4] gives C1 =2 and Cy = 3. If 0 < y < § then [4, Thm. 19] gives C1 = C2 = 2In2.



where first equality comes from expanding w as Sv and then multiplying by %, and the second equality follows from the fact
that conditioning on —F; implies that D; < (14 n)q/N. Next, set Y; to be the vector of all Y, for each v, € —1,1,z € Q;.
Set u; the vector with entries % for each v, € {~1,1},2 € Q;. Notice that both Y; and u; have length D;, and |ju;||2 = 1

SO u; is a unit vector. Now we write

te N (A )2 N?
= Prfe "D >e'"d | -Ey]
N2 N Y

w2
HE Vot gy

where the inequality follows from the Markov bound. Now we are ready to apply the result of Achlioptas. We restate equation
(2) and Lemma 5.2 of [3] here, using our own terminology.

LemMA E.5  (FroM [3]). Fort € [0,D;/2], unit vector u; (ie., |[wl|? =1) and Y; chosen uniformly from {1, -1} we
have that

Y, 2
( i) 1
Ele VP: < — 51
[ T V1-2t/D; (51)
1
Y; 2 1
E[(ﬁ’ul> ] D; (52)
) 3
Bl e u)] = 2 (59)
Now, using Achlioptas’s result in (51) we write
N2 N t( Y ;)2
Priiwily > (1 +<)g | ~Br] <™ o LBl VP | -B]
N2 N
e
H = 2t/D
N? N
—ty N
Se Ta (I-gHon) 2 =) (54)

where the last inequality (54) follows from conditioning on —F; which implies that (1 —n)q/N < D; for all i € [N]. Note that
result of Achlioptas in (51) to hold, we must have 0 <t < D;/2 < % where the last inequality here follows from the fact
that —F; implies that D; < (1+n)g/N.

Optimizing and bounding t. Next, we optimize v(t) in (54), by finding ¢ such that dv(t) =

dv 2 —1
2t = =2t + (3= ahaw) (= aaw) et =0

S ) = o
=k (1 -m) - 527 (55)
where the last equality uses the fact that v = @ +n)2 Now recall that for Achlioptas’s result in (51) to hold, we need to ensure
that 0 <t < %. Using (55), we write
0<t

2
0< 5 (—m - 920)

2
(1+n) <(1—mn)

1+e
243
(7711-"17) <e (56)
and we also need
t< Ufna
2
14n)2 1
iy (L= - S5 < S
<1+”7> < 277

1+4+e€
(1 + <1+"> ) <e (57)



Now, (57) holds for any n € [0,1). But, we will need to ensure that our choice of n € [0, 1) satisfies (56).
Returning now to (54), plug (55) into (54) to get

o[z

Pr(wlf; > (1+e)g | ~Er] < (e7(1+y)) (58)

where we define
1 1-—-
=0+ =n) _ (59)
(1 4m)?
and solving inequality (56), we find that (58) holds as long as n € [0,1) satisfies

0<n<%<\/62+105+97(5+3)> (60)

Notice from (59) that the bound in (60) this implies that (58) holds for the region y € [0,¢). Now, Achlioptas observes that
e V(14+y) < (V2497 /3) g any y € (0,1). Since for us y € (0,¢), and € < 1 we finally have

N
Pr[||w\|§ >(1+¢e)g|~F1] < o2 W2/2=v7/3) (61)

which decays exponentially in N. []
Bounding the second item. Let r be the number of non-zero entries in v. We will bound Pr[||w||? < (1 —¢€)r]. Define F;
as before, only this time use r instead of ¢. Again we condition on —Fj.

2

N
Pr(wl; <(1—g)r [~E\] =Pt DI | 3- > Yevu | <(L—e)r|~E]
i=1 TEQ;
2

N

2

S 1 SR IRy,
i=1 z€EQ;

where first equality comes from the expanding Hw||§and then multiplying by %7 and the second equality follows from the fact

that conditioning on =F; implies that (1 —n)r/N < D;. Next, we let ¢} = Zzte
ﬁDi = 1 since the entries of v are integers ( and D; is the number of non-zero entrles in v that are in Q;). We now multiply

. Now observe that ¢} = 3- 3., vZ >

Ci

by o

N
— 2
= PI‘[Z C? " L;’:; < <(11*”75))2 NT —|E1]
i=1 TEQ;
2
N 2
x 1—
<Pry o | < e | B
i=1 \z€Q;

where the inequality follows from the fact that ¢? > 1. We now set Y; to be the vector of all Y, for each v, # 0,z € Q;. Set
u; the vector with entries —2&— for each v, # 0,z € @Q;. Notice that both Y; and u; have length D;, and that u; is a unit

vV Dicq

vector, since [[u;||2 = ﬁ Y cq, Vo =
K3

\w

= 1. We write

(&

e

N
=P’ < i

p4=e) N2 N <—Yi )
e a=m? 7 HE[e VET A

where the first inequality follows from the Markov bound, and we require that ¢ > 0. We now follow that analysis in Achiloptas,
and expand out the quantity inside the expectation to obtain:

(1 e) N2 N 9
< T2 T B - (2, wi)” + S (e i) | By

=1

Now we can apply Achiloptas’s results from (52) and (53) to obtain:

t (-s) N2 N 2
2 :
<eT I (1= 5+ 5 5)

i=1




and conditioning on —F; gives us:

t((11:5))2NT2 1 tN 3 eny2\ Y
<e K (1 T 14 + 2(1—m)2 (T) )

For convience, we’ll now let 7 = iv , and rewrite this as

(1-e) _ N
=[eG-m? (1 — Tt 7,)27' ) =v(r)¥ (62)

Bounding equation (62). We now need to find a choice of 7 > 0 that causes (62) to decay with N. It will suffice to find
7 that causes v(7) to decay exponetially, i.e., we want v(7) ~ e~ X for some x > 0. To do this, we start by rewriting v(7) in
the following way:

(1—¢) 5 (14m)
m27 (1 1 +
V(7) =e(-m) ( 1+1n ( 2(1 nn)2 ' ))

Notice that v(7) is the product of a polynomial and exponential with postive argument (that grows). Notice that the only way

we can hope to make v(7) decay, is if we require the polynomial to decay. To do this, we need to ensure that the expression
3 _(14n) \—

2 (1777)2)

(1 — 2 04%) . 1) is positive. Thus, we shall choose 7 = 5( !, Subsituting in the value for 7 gives us:

2 (1—m)2

l—e¢
=i (1-(152)°5 - (1-9))

The series expansion of an exponential tell us that for any non-negative x we have the identity 1 —z < e~ ®. Since the quantity

(hZ) £+ (1= %) is non-negative for every e € (0,1), we can apply this identity here:

— —n\2
<exp (1755 - (505 -(1-9)

= e T exp (41— 5) ~ (1-2) (63)

2

It follows from (63) that proving that v(7) decays exponentially amounts to ensuring that

vne) = 21— - (1= 20 (60

and, recalling that n,e € (0,1) some MATHEMATICA magic finds that (64) holds as long as n € (0, c¢(g)), where

c(e) = 712 (3 —2e — \/Be2 — 14e +9) (65)
This bound on 7, despite being ugly, makes sense. Notice that when € = 0, we have that » = 0, and when ¢ = 1, we have
c(e) = 1sothat n € (0,1). Also, we observe that y monotonically decreases in 7, ranging from (0, ) = ¢ to y((c(¢),e) = 0.1
We also observe that y monotonically increase in e, ranging from y(n,0) = y(0,0) = 0 (since n = 0 when ¢ = 0), and

y(n,1) = %(111"”)2 (and 1 € (0,1) when ¢ = 1). 7

Putting everything together, we finally have that as long as n € (0, ¢(¢)) where c(¢) is given in (65), then y as given in (64)
is such that y > 0. Re-writing (62) using (63) and (64) as
e
Prllwl < (1 —e)r | =Er] < eV S (66)
we can see that the error decays exponentially in N, as required.

E.2.1 A simpler statement of the theorem

We now prove the version of Theorem E.4 that appears in Section 5.4.

THEOREM E.6  (THEOREM 5.2 RESTATED.). For any vector v € ZY, choose the N x U matriz S uniformly from Sccr

2 £ _3e
and set w = Sv. Then, for all € € [0,1) and n such that (1+n) = max (1115 , ! 4 ), choosing
3
N>2%n? (67)
q,r > 9’”—1;’ In % (68)

1t’s easy to see that when 1 = 0, then y(0,¢) = ¢, and a simple check in MATHEMATICA shows that when 1 = c(¢) as in
(65), then y(c(e),e) = 0. By inspection, it’s clear that y decreases in 7.
"First consider the case where ¢ = 0. Now when € = 0, ¢(¢) = 0, and the requirement that n € (0, c(¢)) implies that n = 0.

It follows that y = 0. Next consider the case where ¢ = 1, which means that for € (0, 1), we have that y(n,0) = %“1;"732.

. - 14n(a—
Now, since the derivative —Zy = lin—n)
€ 1+n

> 0 for any n € (0,1), we know that y grow monotonically in e.



ensures that the following two items occur with probability at least 1 — §:
1. Ifv e {-1,0,1}Y, and ||v||? < g, then ||w||? < (1 +¢€)q.
2. The number of non-zero entries in v is r, then ||w||2 > (1 — &)r.

ProoOF. We show how to obtain the Theorem 5.2 from Theorem E.4. To ensure that the error probability is at most § in
(46) it suffices to set

2

_ma
2Ne 3N < ¢ (69)
O oo (70)
And to ensure that the error probability is at most ¢ in (47) we need to set
e
2Ne 3N < ¢ (71)
e NIy < 8 (72)
=2
Bounding N. Referring to (70), we need to choose N > Npin,1 where:
4
Nmin,1 = ———=1In3 73
/o) )

Where recall that y; = % — 1. It’s easy to see that y1 € (0,¢) for any n,e € (0,1). To simplify (73), we will now

require that y1 > €/2, which means we can write:

4
<—5——=In2
= B1—e/6) 0
4
P —
= (/221 —¢/6) 0
L1925,

where the first inequality follows because y < ¢, the second follows from y > /2, and the third follows from ¢ < 1. Now,
instead of using the “ugly” expression for N > Nmin,1 in (73) to bound N, we have “nicer” bound on N that clearly shows the
dependence of N on ¢, as:

N> ET In2 (74)
Next, refer to (72), we need to choose N > Npyin,2 where:
Nigin 2 = 2050 1n 2 (75)

Where recall that y2 = (1117;)2 (1-5)—(1—¢). It’s easy to see that 42 € (0, 5) for any n € (0,1). To simplify (73), we will

now require that y» > £/4 which means we can write:

< w In3
<%
where the first inequality follows from our choice of y2 > /4 and the second from 1 < 1. Now we again have “nicer” bound
on N (showing it’s dependence of N on €, §) as:
N>2%mn2 (76)
Comparing equations (74) and (76) we find that it suffices to choose N satisfying (76).
Bounding 1. These nice bounds on N does not come free. To obtain (74), we need to ensure that y; > /2. We write

= Lralen — 1 (77)

A=n (78)

€

e 2
Now since 11+T§ < (%) < ﬁ it follows that (78) holds if

1+£ 1o\ 2
2 < (1) (79)



Next, to obtain (76) we need ensure that y» > €/4, so we write

. — 2 3
F<m=UE0-5)-(-¢) (80)

and a similar argument show that (80) holds as long as
3e

< (i%)? (81)

£
2

Bounding ¢,r. Referring to (69) and (71), we observe that is suffices to choose
q,r > ‘:’7—];’ In 2% (82)

Notice that this bound relies on both N, and . We bounded N in (76). To minimize g,r, we want to chose 7 as large as
possible, subject to the constraints in (79) and (81). Thus, it suffices to chose 7 such that

N2 148 -3¢
1
(12) :max(1+§, 1_4) (83)

and this completes our proof Theorem 5.2. []




