Games in computer science: a survey

Pierre-Louis Curien CNRS – Université Paris 7

Globus Seminar, Moscow, April 2005

"Provability" versus "proofs"

• Games to reason about programs

• Programs **as** strategies

Model-checking 1/2

Satisfiability problem for various logics (modal, temporal, μ) for automata or concurrent systems

\Leftrightarrow

Existence of winning strategies in associated games.

Model-checking 2/2

Also \Leftrightarrow (non-)emptyness problem for languages recognized by various kinds of automata on (infinite) words or trees.

Also, **bisimulation** in concurrency theory.

Game semantics 1/2

Strategies as proofs / programs / morphims. Composition corresponds to cut elimination / normalization. Games semantics is very active since a decade.

Game semantics 2/2

New results in the semantics of programming languages: simple and direct semantics for programming features such as control or references,

Full abstraction results connecting denotational and operational semantics tightly.

PROLOGUE 1/13

A theorem on lattices

Joyal (1997) used games to give a nice proof of the following theorem (Whitman 1947): The free lattice L over a partial order X (with $i : X \rightarrow L$) is characterized by

PROLOGUE 2/13

- L is a lattice and i is monotonous
- If $u_1 \wedge u_2 \leq v_1 \vee v_2$, then $u_1 \wedge u_2 \leq v_1$ or
- $u_1 \wedge u_2 \leq v_2$ or $u_1 \leq v_1 \vee v_2$ or $u_2 \leq v_1 \vee v_2$
- If $i(x) \leq v_1 \lor v_2$, then $i(x) \leq v_1$ or $i(x) \leq v_2$
- If $u_1 \wedge u_2 \leq i(x)$, then $u_1 \leq i(x)$ or $u_2 \leq i(x)$
- If $i(x) \leq i(y)$, then $x \leq y$
- L is generated by i(X)

PROLOGUE 3/13

Uniqueness easy. For existence, construct a suitable preorder on the following set of terms:

$$\frac{x \in X}{x \in T(X)} \qquad \overline{V \in T(X)} \qquad \overline{F \in T(X)}$$
$$\frac{A_1 \in T(X) \quad A_2 \in T(X)}{A_1 \wedge A_2 \in T(X)} \qquad \frac{A_1 \in T(X) \quad A_2 \in T(X)}{A_1 \vee A_2 \in T(X)}$$

PROLOGUE 4/13

The preorder is defined by: $A \leq B$ if and only if (A, B) is a winning position in some graph game.

The set of nodes is $T(X) \times T(X)$.

PROLOGUE 5/13

Edges:

$$(A_1 \lor A_2, B) \rightarrow (A_1, B) \quad (A_1 \lor A_2, B) \rightarrow (A_2, B) (A, B_1 \land B_2) \rightarrow (A, B_1) \quad (A, B_1 \land B_2) \rightarrow (A, B_2)$$

 $\begin{array}{ll} (A_1 \wedge A_2, B_1 \vee B_2) \to (A_1, B_1 \vee B_2) & (A_1 \wedge A_2, B_1 \vee B_2) \\ (A_1 \wedge A_2, B_1 \vee B_2) \to (A_1 \wedge A_2, B_1) & (A_1 \wedge A_2, B_1) \\ (A_1 \wedge A_2, F) \to (A_1, F) & (A_1 \wedge A_2, F) \\ (V, B_1 \vee B_2) \to (V, B_1) & (V, B_1) \\ (A_1 \wedge A_2, x) \to (A_1, x) & (A_1 \wedge A_2, F) \\ (x, B_1 \vee B_2) \to (x, B_1) & (x, B_1) \end{array}$

$$(A_1 \land A_2, B_1 \lor B_2) \rightarrow (A_2, B_1 \lor B_2)$$
$$(A_1 \land A_2, B_1 \lor B_2) \rightarrow (A_1 \land A_2, B_2)$$
$$(A_1 \land A_2, F) \rightarrow (A_2, F)$$
$$(V, B_1 \lor B_2) \rightarrow (V, B_2)$$
$$(A_1 \land A_2, x) \rightarrow (A_2, x)$$
$$(x, B_1 \lor B_2) \rightarrow (x, B_2)$$

PROLOGUE 6/13

Each node has a polarity $\in \{P, O, N\}$ (Player, Opponent, Neutral).

$$\begin{pmatrix} O & O & O & O & O \\ (A_1 \lor A_2, B) & (F, B) & (A, B_1 \land B_2) & (A, V) \\ & \begin{pmatrix} A_1 \land A_2, B_1 \lor B_2 \end{pmatrix} & (V, B_1 \lor B_2) \\ & P & P & P \\ (V, F) & (A_1 \land A_2, F) & P \\ & (x, B_1 \lor B_2) & (A_1 \land A_2, x) \\ & P & (X, F) & (V, x) & (x, y) \end{pmatrix}$$

PROLOGUE 7/13

- A strategy is a full subgraph S s.t. - If $(A, B) \in S$, then S contains at least one edge out of (A, B). - If $(A,B) \in S$, then S contains **all** edges of G out of (A, B). N- If $(x, y) \in S$, then $x \leq y$ in X.

PROLOGUE 8/13

We say that (A, B) is a winning position if (A, B) belongs to some strategy. We then write $A \leq B$.

PROLOGUE 9/13

A proof is a strategy which satisfies:

- In the first condition, replace "at least one" by "exactly one".

- There is a root (an edge from which all other edges can be reached following (oriented) paths of the strategy).

PROLOGUE 10/13

Lemma 1. (A, B) is winning iff there is proof rooted in (A, B). **Lemma 2**. $A_1 \wedge A_2$ is a greatest lowert bound of A_1 and A_2 , etc... . **Lemma 3**. \leq is transitive.

PROLOGUE 11/13

(1) Easy (induction on formulas) (2) Use the presentation by proofs (3) Use the presentation by strategies. The composition of two strategies S and T witnessing $A \leq B$ and $B \leq C$ is:

 $S \circ T = \{(x, z) \mid \exists y \ (x, y) \in S \text{ et } (y, z) \in T\}$.

PROLOGUE 12/13

This example embodies ideas of using games for **both**

- model-checking (we are interested in the mere existence of strategies for inequality predicates) and

 game semantics: we want a compositional semantics: combine strategies to build other strategies.

PROLOGUE 13/13

The situation proofs / strategies somehow matches the operational / denotational distinction in the semantics of programming languages: Proofs compose by normalization / cut-elimination / interaction, while strategies compose as mathematical functions. (Cf. also functions as relations vs functions as algorithms).

AUTOMATA, LOGICS ...

Büchi (1962): Two-way correspondence between automata on infinite words and monadic second order logic over infinite words α :

$$\forall \alpha \ (\alpha \models \phi \Leftrightarrow \mathcal{A} \text{ accepts } \alpha)$$

This logic is decidable.

Determinacy

Parity games are **determined**, and who wins is **decidable**.

A nice proof of Santocanale goes along the hypothenuse of the above triangle (but the target is a logic of fixed points).

Parity automata and fixpoints 1/8

A (partial) game is

- an oriented graph $G = (G_0, G_1)$
- the nodes have a polarity (ϵ : $G_0 \rightarrow \{P, O, N\}$,
- if $\epsilon(x) = N$, then x is terminal)
- If $\epsilon^{-1}(N) = \emptyset$, the game is called total.

Parity automata and fixpoints 2/8

One also gives a set W_P of infinite winning paths for P (W_O is its complement).

Winning strategy for P (resp. O) = strategy all of whose infinite paths $\in W_P$ (resp. $\in W_O$). Winning position = belongs to a winning strategy.

Parity automata and fixpoints 3/8

Given $X \subseteq \epsilon^{-1}(N)$, given $S(x) \subseteq G_0$ and $OP^x \in \{\wedge, \lor\}$ for all $x \in X$, define the games

 $\mu_S.G[X]$ (short for $\mu_{S,OP}.G[X])$, $~\nu_S.G[X]$:

- add $x \to g$ for all $x \in X$, $g \in S(x)$,
- change polarity of $x \in X$ to P (resp. O)

if $OP^x = \lor$ (resp. $OP^x = \land$).

Parity automata and fixpoints 4/8

The two games differ only in the definition of winning:

- $\mu_S.G[X]$: the winning paths of P are those infinite paths in the new graph which eventually are winning for P in the old.

- $\nu_S . G[X]$: (dual) the ... of O in the new graph which eventually ... for O in the old.

Parity automata and fixpoints 5/8

 $G[X \cap A]$ defined by changing the polarity of $x \in X$ to P (resp. O) if $x \notin A$ (resp. $x \in A$).

Lemma 1. If all games $G[X \cap A]$ are determined, then $\mu_S.G[X]$ (resp. $\nu_S.G[X]$) is determined and its set of winning positions is obtained as a least (resp. greatest) fixed point of a monotonous operator.

Parity automata and fixpoints 6/8

A parity game is a (total) game in which the nodes also have a colour $(p : G_0 \rightarrow$ $\{1, \ldots, n\}$) and the colours have a parity $(\chi :$ $\{1, \ldots, n\} \rightarrow \{\mathsf{P}, \mathsf{O}\}).$

 W_P consists of those paths such that if m is the maximum colour visited infinitely often along the path, then $\chi(m)=P$.

Parity automata and fixpoints 7/8

Lemma 2. Each parity game G can be written as $Q_{S_n} \cdots Q_{S_1} \cdot G_0[X_1] \cdots [X_n]$ where - X_i is the set of nodes of colour i,

- $S_i(x)$ is the set of successors of x in G,
- $OP^x = \lor$ (resp. $OP^x = \land$) if x has polarity
- P (resp. O),
- $Q_{S_i} = \mu$ (resp. $Q_{S_i} = \nu$) if $\chi(i) = \mathsf{P}$ (resp. $\chi(i) = \mathsf{O}$).

Parity automata and fixpoints 8/8

Determinacy of parity games follows from Lemmas 2 and 1.

Proof of lemmas 1 and 2 (hints) 1/3

 $WP_P[G] =_{def} \{g \in G_0 \mid \exists a \text{ winning strategy} \\ for P \text{ containing } g\}$

Lemma A: $WP_P[G] \cap WP_O[G] = \emptyset$. Lemma B: A path γ that visits X infinitely often is winning in $\mu_S.G[X]$. Lemma C: A path that is eventually winning in G[X] is winning in $\nu_S.G[X]$.

Proof of lemmas 1 and 2 (hints) 2/3

$$F_P(A) =_{def} \{g \in G_0 \mid \\ (\epsilon g = P \Rightarrow \exists g' \ (g \to g' \text{ and } g' \in A)) \\ \text{and } (\epsilon g = O \Rightarrow \forall g' \ (g \to g' \Rightarrow g' \in A)) \}$$

When a play reaches $F_P(A)$, P can force the play to go into A.

The operator of Lemma 1 is

 $A \mapsto WP_P[G[X \cap F_P(A)]].$

Proof of lemmas 1 and 2 (hints) 3/3

A glimpse of the proof of Lemma 1. If Z is a postfixpoint, i.e., $Z \subseteq WP_P[G[X \cap F_P(Z)]]$, then construct the following strategy: play according to $G[X \cap F_P(Z)]$, until eventually reaching $X \cap F_P(Z)$, then force the play to come to Z, and continue to play according to $G[X \cap F_P(Z)]$, etc...

GAME SEMANTICS 1/2

The goal is to make semantics akin to syntax and to model computation as interaction between

a system a program P and { its environment its context O

GAME SEMANTICS 2/2

while keeping a suitable level of mathematical abstraction (categories), and hence the possibility to use powerful reasoning tools.

Abramsky-Jagadeesan-Malacaria, Hyland-Ong (1993)

PRECURSORS

- Dialogue games of Lorenzen, Lorenz, Felscher
 (1960)
- Sequential algorithms of Berry and Curien (1978) (like M. Jourdain, we did not know that we were talking about games and strategies!)
- Object spaces model of Reddy (1996)