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Theorem (McNughton’1966)

For every Büchi automaton A on infinite word there exists a
deterministic (Müller) automaton B such that L(A) = L(B).

We consider state complexity for a deterministic Rabin
automaton equivalent to a given Büchi automaton.
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Let n be the number of states of a given Büchi automata.

Safra (1988) provided a construction of R with at most
(12n2)n.
Piterman (2007) provided parity automaton of at most
2n(0.36n2)n.
Schewe (2009) defines an automaton with o((2.66n)n)
states (but for the cost of 2n−1 Rabin pairs).
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The first lower bound was given by Löding (1999) of
n! ≈ (0.36n)n.
Yan (2006) gives a lower bound of Ω((0.76n)n).
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We consider transition labeled rather than state labeled
automata.
The upper bound given by Schewe (2009) is
hist(n) ∈ o((1.65n)n).

Theorem
The lower bound for the determinization problem for Büchi
automata is hist(n).

The lower and upper bounds are now the same.
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Definition
A finite transducer is a tuple A = (Q,Σ, I, Γ,∆), where:

Q is a set of states,
Σ is an input alphabet,
I is a set of initial states,
Γ is an output alphabet
∆ ⊆ Q × Σ× Γ×Q is the transition relation.

A is a transducer from Σω to Γω.
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Example

Let Σ = {a}, Γ = {0, 1}, ∆ = {(q0, a, 0, q1), (q1, a, 1, q0)}.

We write A as q0 q1

a/0

a/1

Then, the computation ρ of A on aω is
a a a a . . .

q0 q1

0
q0

1
q1

0 1

. . .

The output of ρ, Out(ρ), is the word (01)ω.
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Definition
A = (Q,Σ, I, Γ,∆) is a Büchi automaton if Γ = {0, 1}.

The Büchi language LB is the set of words from {0, 1}ω

which contains infinitely many zeros.
A transition of the form (p, a, 0, q) is accepting.
A run ρ of a Büchi automaton A is accepting
if Out(ρ) ∈ LB.
A accepts u ∈ Σω if there is an accepting run of A on u.
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Definition
A is a Rabin automaton with h Rabin conditions if
Γ = P({r1, s1, r2, s2, . . . , rh, sh}).

A Rabin condition (ri , si) is satisfied by v ∈ Γω if

∃∞k si ∈ v(k) and ¬∃∞k ri ∈ v(k).

The Rabin language LR is the set of words v ∈ Γω such
that some Rabin condition is satisfied by v.
A run ρ of a Rabin automaton A is accepting if
Out(ρ) ∈ LR.

A accepts u if there is an accepting run of A on u.

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Finite Transducers
Büchi Aceptance Conditions
Rabin Aceptance Condition

Definition
A is a Rabin automaton with h Rabin conditions if
Γ = P({r1, s1, r2, s2, . . . , rh, sh}).
A Rabin condition (ri , si) is satisfied by v ∈ Γω if

∃∞k si ∈ v(k) and ¬∃∞k ri ∈ v(k).

The Rabin language LR is the set of words v ∈ Γω such
that some Rabin condition is satisfied by v.
A run ρ of a Rabin automaton A is accepting if
Out(ρ) ∈ LR.

A accepts u if there is an accepting run of A on u.

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Finite Transducers
Büchi Aceptance Conditions
Rabin Aceptance Condition

Definition
A is a Rabin automaton with h Rabin conditions if
Γ = P({r1, s1, r2, s2, . . . , rh, sh}).
A Rabin condition (ri , si) is satisfied by v ∈ Γω if

∃∞k si ∈ v(k) and ¬∃∞k ri ∈ v(k).

The Rabin language LR is the set of words v ∈ Γω such
that some Rabin condition is satisfied by v.

A run ρ of a Rabin automaton A is accepting if
Out(ρ) ∈ LR.

A accepts u if there is an accepting run of A on u.

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Finite Transducers
Büchi Aceptance Conditions
Rabin Aceptance Condition

Definition
A is a Rabin automaton with h Rabin conditions if
Γ = P({r1, s1, r2, s2, . . . , rh, sh}).
A Rabin condition (ri , si) is satisfied by v ∈ Γω if

∃∞k si ∈ v(k) and ¬∃∞k ri ∈ v(k).

The Rabin language LR is the set of words v ∈ Γω such
that some Rabin condition is satisfied by v.
A run ρ of a Rabin automaton A is accepting if
Out(ρ) ∈ LR.

A accepts u if there is an accepting run of A on u.

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Safra/Schewe Construction of the Rabin Automaton
Acceptance Condition
Tree Ordering

Outline

3 Safra determinization by Schewe
Safra/Schewe Construction of the Rabin Automaton
Acceptance Condition
Tree Ordering

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Safra/Schewe Construction of the Rabin Automaton
Acceptance Condition
Tree Ordering

We fix a Büchi automaton A with the set of states Q.
R is a deterministic Rabin automaton from Safra/Schewe
construction such that L(R) = L(A), δR is its transition
function and E(q, a) is its output while reading a in a state
q.
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Definition (States of Safra/Schewe Automaton)
The states of R are finite trees labeled by nonempty subsets of
Q such that

for each x ∈ T , T (x) )
⋃

i∈ω T (xi),
for each x ∈ T , for each j 6= i , T (xj) ∩ T (xi) = ∅.

After Schewe, we call such trees history trees.
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Example (of a history tree)

p,q,r
s,t

ε

s, t

2

p

0

q

1

t

20

Nodes in a history tree
represent some possible
computations of the Büchi
automaton A.
States labeling a given node
are current states of
computations of A
represented by this node.

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Safra/Schewe Construction of the Rabin Automaton
Acceptance Condition
Tree Ordering

There are 2card(Q)−1 possible nodes in a history tree but each
history tree may have at most card(Q) nodes.

Theorem
1 hist(n) ∈ o((1.65n)n) (Schewe).
2 hist(n − 1) ∈ Ω((1.64n)n) (Bouvel, Rossin),
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Recall that E(T , a) is the set of output events while reading
a letter a in a state T .
During a transition automaton produces two kinds of
events: (x , A) and (x , E), where x is a node in history tree.
Automaton accepts if for some x , (x , E) is output infinitely
often and (x , A) is output only finitely often.
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We define a partial ordering on the set of history trees.

Definition
Let T , T ′ be history trees and let x be a possible node in a
history tree.
T is strictly smaller than T ′ (at a position x), T <x T ′, if
T ′(x) ( T (x) and for all y<lexx, T ′(y) = T (y).

The intuition behind this definition is that
for some node x , T has more possible computations which
are kept at this node
T and T ′ are equally good for all lexicographically smaller
nodes.

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Safra/Schewe Construction of the Rabin Automaton
Acceptance Condition
Tree Ordering

Example

p,q,r
s,t ,w

ε

s, t

2

p

0

q, r

1

q

10

p,q,r
s,t ,w

ε

s, t

2

p

0

q, r

1

s

20

∅

<10
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Theorem
The lower bound for the determinization problem for Büchi
automata is hist(n).

The above lower bound is exact.
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Definition (Full Automaton)

Let Q = {1, . . . , n}.
An = (Q,Σ, Q, {0, 1} ,∆) is a full automaton if

Σ = P(Q × Γ×Q),
∆ = {(p, A, b, q) : (p, b, q) ∈ A}.

Lemma (Yan’06)
The full automata are hardest to determinized with respect to
state complexity of an output automaton.

Thus, the automaton A is the full automaton An and L = L(An).

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Theorem
Full Automata
Games and Lower Bounds

Outline

4 Notions for Proof
Theorem
Full Automata
Games and Lower Bounds

Thomas Colcombet, Konrad Zdanowski A Tight Lower Bound for Determinization



Description of the Problem
Basic Notions

Safra determinization by Schewe
Notions for Proof

Proof
Conclusions

Theorem
Full Automata
Games and Lower Bounds

q0 q1

A L-game G = (V , VE , VA, q0, Move, Γ, L)
can be seen as a directed graph

with nodes VE belonging to Eve and
nodes VA belonging to Adam.
Players move sequentially starting from
q0 choosing some edge to go. A player
X moves from nodes in VX .
During each move they produce some
output ai ∈ Γ.
The result of the play is an infinite word
a0a1a2 . . . Eve wins if a0a1a2 · · · ∈ L.
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Definition
A strategy for a player X is a function which depending on the
finite history of the play tells X what move X should take if the
current position is in VX .
A strategy σ is wining if X wins every play provided that he/she
plays according to σ.
A strategy is positional if the choice of σ depends only on the
current position.
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Let the winning condition be L = (ta + so)ω. Then, Eve wins the
game below with a positional strategy.
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Let the winning condition be L = (ta + so)ω. Eve wins the game
below but she has no positional strategy.
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To win Eve needs to remember the last Adam’s move.
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Definition
A strategy with memory m for Eve is described
as σ = (M, update, choice, init), where

card(M) = m,
update : M ×Move −→ M,
choice : VE ×M −→ Move and init ∈ M.

During a play Eva updates a content of her memory after every
played move according to a function update.

Her moves depend only on her actual position and the present
content of the memory.

A positional strategy corresponds to the case card(M) = 1.
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Definition
A game G = (V , VE , VA, q0, Move, Γ, L) is Rabin if L is a Rabin
language.

Theorem (Klarlund94, Zielonka98)
For every Rabin-game, if Eve wins she can win using a
positional strategy.
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Corollary
Let L be accepted by a deterministic Rabin automaton with n
states. If Eve wins an L-game then she wins with memory n.

We will use this corollary as follows: if Eva wins an L-game,
and requires memory n for that, then every deterministic Rabin
automaton for L has size at least n
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Now, we will define a game G with the wining condition L –
the full automata language.
Then we show that Eve wins G with memory hist(n) and
that she looses with less memory.
This proves that any deterministic Rabin automaton for L
has size at least hist(n).
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q0

Eve

Σ∗
T0

T1

T2

T3

T4

id

u

Petals of the flower game are
indexed by all history trees.

In the first move of G, Adam
moves to the center and outputs
an arbitrary word from Σ∗.
Then, Eve chooses to go to
some petal Ti using neutral letter
Adam returns to the center by
playing a word u which fulfills
some restrictions.
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Adam may play from T a word u
provided that there exists a node
x ∈ δR(T , u) such that

(x , A) 6∈ E(T , u).
either (x , E) ∈ E(T , u)
or δR(T , u) <x T .
for all y<lexx , T (y) = δR(T , u)
and (y , A) 6∈ E(T , u),
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If the word played so far is
u = u0 . . . uk then Eve ought to
go to T = δR(T0, u), a current
state of the computation of R on
u.

While returning with uk+1 Adam
has to produce x such that
δR(T , uk+1) <x T or
(x , E) ∈ E(T , u).
Thus, there will be a <lex -min x
such that (x , E) is generated
infinitely often.
R accepts an infinite word
u0u1 . . . uk . . . and Eve wins!
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If Eve has less memory then she
will omit some petal R during
her turn of the game.

This corresponds to removing
one petal from the game.
Adam wins so modified game
GR.
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A winning strategy for Adam in GR is based on the following
lemma.

Lemma
Let T 6= R be history trees. There exists a word u = u(T , R)
such that

Adam may play u from the vertex T ,
R = δ(R, u),
for all x, (x , E) 6∈ E(R, u).
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During his first move Adam plays
a word u0 such that
δR(T0, u0) = R.

Eve has to go to some T 6= R.
Then Adam may play a word
u = u(T , R).
After each such round no event
(x , E) is in E(R, u). It follows
that R does not accept produced
infinite word and Adam wins!
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Conclusions

We have solved the lower bound problem for
determinization of finite Büchi transducers.
For input being a state labeled automaton the lower bound
is slightly weaker, hist(n − 1).
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Further Work

An extension to determinizing Streett automata
(determinization construction given by Safra).
Lower bounds for operations on tree automata.
Considering parity automata as output.
Considering state labeled automata as output.

But we truly

believe that the right notion for a finite automata is being
transition labeled.
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Thank you.
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