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An automaton (A,Q,I,F,Δ) with I: Q➝S, F: Q➝S, and Δ: Q×A×Q, 
computes a map    L:  A* ➝ S defined as

   L(a₁a₂…an) =     ⨁      I(q₀) ⨂ ( ⨂ Δ(qi-1,ai,qi) ) ⨂ F(qn)
p₀,…,pn i=1

n
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Ingredient 1.

Ingredient 2.
Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.
Define presentable sets families of such sets of maps that are nicely behaved 
(that can be algorithmically handled). In our case unions of convex polytopes 
in RQ×Q representing simultaneous asymptotic behaviors.

Step 4.
Compute a presentable equivalent (up to approximation) of I(A*)
This is done by induction of the factorisation forest height [Simon].
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  while (x > 0) { 
     if (y > 0) 
        { y--; } 
     else 
        { y = read_input();  
          x--;  } 
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} 

these variables remain non-negative.

are initialized with an uncontrolled value

either y decreases

or x decreases, 
and y gets an uncontrolled value

Remark: This program terminates. 
Question: what method can automatically establish it ?
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     if (y > 0) 
        { y--; } 
     else 
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          x--;  } 
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- fix quantities to keep track of, here x,y (can be other quantities) 
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Remark: every run of the original program 
induces a run of the  SCA of game size. 
Hence if the SCA terminates, the original 
program also does (on all its executions).
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More precisely, find α such that 
the program stops in Θ(nα).



Abstracting
- fix quantities to keep track of, here x,y (can be other quantities) 
- construct the control flow graph of the code 
- use as guard the best ones you can infer 

void main(uint n) { 
  uint x,y; 
  x = read_input(n); 
  y = read_input(n); 
  while (x > 0) { 
     if (y > 0) 
        { y--; } 
     else 
        { y = read_input(n);  
          x--;  } 
   } 
} 



Abstracting

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities) 
- construct the control flow graph of the code 
- use as guard the best ones you can infer 

void main(uint n) { 
  uint x,y; 
  x = read_input(n); 
  y = read_input(n); 
  while (x > 0) { 
     if (y > 0) 
        { y--; } 
     else 
        { y = read_input(n);  
          x--;  } 
   } 
} 



Abstracting

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities) 
- construct the control flow graph of the code 
- use as guard the best ones you can infer 

void main(uint n) { 
  uint x,y; 
  x = read_input(n); 
  y = read_input(n); 
  while (x > 0) { 
     if (y > 0) 
        { y--; } 
     else 
        { y = read_input(n);  
          x--;  } 
   } 
} 

An n-run of the SCA is a run in which all 
the variables take their values in  [1,n]



Abstracting

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities) 
- construct the control flow graph of the code 
- use as guard the best ones you can infer 

Remark: every run of the original 
program for a given n induces an n-run of 
the  SCA of same length. Hence if the 
SCA terminates in time t for a given n, 
the original program also does (on all its 
executions).

void main(uint n) { 
  uint x,y; 
  x = read_input(n); 
  y = read_input(n); 
  while (x > 0) { 
     if (y > 0) 
        { y--; } 
     else 
        { y = read_input(n);  
          x--;  } 
   } 
} 

An n-run of the SCA is a run in which all 
the variables take their values in  [1,n]



Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’p



Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞  otherwise (no guard) 

0    if there is a guard x ≥ y’ in a   
1    if there is a guard x > y’ in a   

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0)



Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞  otherwise (no guard) 

0    if there is a guard x ≥ y’ in a   
1    if there is a guard x > y’ in a   

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1



(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that 
1) it is a value-free valid run (regular) 
2) there is no run of Aut with weight >n.

( )

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞  otherwise (no guard) 

0    if there is a guard x ≥ y’ in a   
1    if there is a guard x > y’ in a   

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1



(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that 
1) it is a value-free valid run (regular) 
2) there is no run of Aut with weight >n.

( )

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞  otherwise (no guard) 

0    if there is a guard x ≥ y’ in a   
1    if there is a guard x > y’ in a   

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1



(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that 
1) it is a value-free valid run (regular) 
2) there is no run of Aut with weight >n.

( )

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞  otherwise (no guard) 

0    if there is a guard x ≥ y’ in a   
1    if there is a guard x > y’ in a   

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

One needs to find the asymptotic 
exponent of the size of the longest 
word that is has only run of value 
at most n:

lim sup

u2A⇤

log |u|
logAut(|u|) = ↵



(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that 
1) it is a value-free valid run (regular) 
2) there is no run of Aut with weight >n.

( )

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable 
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞  otherwise (no guard) 

0    if there is a guard x ≥ y’ in a   
1    if there is a guard x > y’ in a   

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

One needs to find the asymptotic 
exponent of the size of the longest 
word that is has only run of value 
at most n:

lim sup

u2A⇤

log |u|
logAut(|u|) = ↵ ⇒ Decidable.



An unexpected 
phenomenon



An unexpected 
phenomenon

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.



An unexpected 
phenomenon

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.

It was conjectured that the asymptotic worst-case could only have integer 
exponent.



p

x>x’ ⋀ y≥y’ ⋀
z>z’ ⋀ t≥t’

a: x>x’ ⋀ y≥y’ ⋀ y≥z’ ⋀
y>t’ ⋀ z>t’ ⋀ t>t’

b:

y>y’ ⋀ y≥z’ ⋀ y≥t’ ⋀
z>y’ ⋀ z≥z’ ⋀ z≥t’ ⋀
t>y’ ⋀ t≥z’ ⋀ t≥t’

c:

An unexpected 
phenomenon

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.

It was conjectured that the asymptotic worst-case could only have integer 
exponent.



p

x>x’ ⋀ y≥y’ ⋀
z>z’ ⋀ t≥t’

a: x>x’ ⋀ y≥y’ ⋀ y≥z’ ⋀
y>t’ ⋀ z>t’ ⋀ t>t’

b:

y>y’ ⋀ y≥z’ ⋀ y≥t’ ⋀
z>y’ ⋀ z≥z’ ⋀ z≥t’ ⋀
t>y’ ⋀ t≥z’ ⋀ t≥t’

c:

An unexpected 
phenomenon

However:
The longest n-run of 
the following SCA 
has asymptotical 
length Θ(n3/2).
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b: x>x’pFor instance, has worst-case complexity n2.

It was conjectured that the asymptotic worst-case could only have integer 
exponent.



Summary
The size-change abstraction is good model for proving the 
termination of some forms of programs. This offers a natural 
reduction to question of automata theory.

We have shown that this technique can be greatly 
refined for computing asymptotic worst-case 
complexity of some programs.

This relies on advanced results on the 
asymptotic analysis of tropical automata.
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What is the exact complexity? 
How to construct ranking functions? 
Is there a more general model of automata and results?

Some open questions



Thanks !


