
Automata and
program analysis

Thomas Colcombet
FCT 

Bordeaux 13 September 2017

based on joint work with Laure Daviaud et Florian Zuleger

Weighted automata
and

tropical automata

Weighted automata
[Schützenberger 61]

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

[Schützenberger 61]

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

accepted
not accepted

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

Q states, initial I: Q ➝ {0,1}, final F: Q ➝ {0,1}, weights Δ: Q×A×Q ➝ {0,1}

accepted
not accepted

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

Definition: u = a₁,a₂,…,an ∈ L iff there exists an accepting run over it.

Q states, initial I: Q ➝ {0,1}, final F: Q ➝ {0,1}, weights Δ: Q×A×Q ➝ {0,1}

accepted
not accepted

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

Definition: u = a₁,a₂,…,an ∈ L iff there exists an accepting run over it.

Q states, initial I: Q ➝ {0,1}, final F: Q ➝ {0,1}, weights Δ: Q×A×Q ➝ {0,1}

Logically, there exist p₀,p₁,…,pn such that  
 I(p₀) ⋀ Δ(p₀,a₁,p₁) ⋀ Δ(p₁,a₂,p₂) ⋀ … ⋀ Δ(pn-1,an,pn) ⋀ F(pn)

accepted
not accepted

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

Definition: u = a₁,a₂,…,an ∈ L iff there exists an accepting run over it.

Q states, initial I: Q ➝ {0,1}, final F: Q ➝ {0,1}, weights Δ: Q×A×Q ➝ {0,1}

Logically, there exist p₀,p₁,…,pn such that  
 I(p₀) ⋀ Δ(p₀,a₁,p₁) ⋀ Δ(p₁,a₂,p₂) ⋀ … ⋀ Δ(pn-1,an,pn) ⋀ F(pn)

[Schützenberger 61] disjunction and conjunction can be replaced by the
operation over an arbitrary semiring (S,⊕,⊗,0,1).

accepted
not accepted

Weighted automata
Consider a non-deterministic automaton (A,Q,I,F,Δ).

It computes a language L: A* ➝ {0,1}

[Schützenberger 61]

Definition: u = a₁,a₂,…,an ∈ L iff there exists an accepting run over it.

Q states, initial I: Q ➝ {0,1}, final F: Q ➝ {0,1}, weights Δ: Q×A×Q ➝ {0,1}

Logically, there exist p₀,p₁,…,pn such that  
 I(p₀) ⋀ Δ(p₀,a₁,p₁) ⋀ Δ(p₁,a₂,p₂) ⋀ … ⋀ Δ(pn-1,an,pn) ⋀ F(pn)

[Schützenberger 61] disjunction and conjunction can be replaced by the
operation over an arbitrary semiring (S,⊕,⊗,0,1).

accepted
not accepted

An automaton (A,Q,I,F,Δ) with I: Q➝S, F: Q➝S, and Δ: Q×A×Q,
computes a map L: A* ➝ S defined as

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

Example of weighted automata

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

}Gives rise to
product of S
valued matrices
that form a
monoid.

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata
Computes the number of
runs of the NDA

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

« Rat semiring »: (Rat(A), ∪ , ⋅ , ∅, {ε})

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata
Computes the number of
runs of the NDA

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

« Rat semiring »: (Rat(A), ∪ , ⋅ , ∅, {ε})

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata

Rational transducers

Computes the number of
runs of the NDA

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

« Rat semiring »: (Rat(A), ∪ , ⋅ , ∅, {ε})

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata

Rational transducers

Tropical semiring: (R∪{-∞},max,+,-∞,0)
(R∪{+∞},min,+,+∞,0), (N∪{-∞},max,+,-∞,0), (N∪{+∞},min,+,+∞,0)

Computes the number of
runs of the NDA

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

« Rat semiring »: (Rat(A), ∪ , ⋅ , ∅, {ε})

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata

Rational transducers

Tropical automataTropical semiring: (R∪{-∞},max,+,-∞,0)
(R∪{+∞},min,+,+∞,0), (N∪{-∞},max,+,-∞,0), (N∪{+∞},min,+,+∞,0)

Computes the number of
runs of the NDA

addition
multiplication

Example of weighted automata
A semiring (S,⨁,⨂,0,1) is such that:
- (R, ⨁) is a commutative monoid with identity element 0:
 (a ⨁ b) ⨁ c = a ⨁ (b ⨁ c) ; 0 ⨁ a = a ⨁ 0 = a ; a ⨁ b = b ⨁ a
- (R, ⨂) is a monoid with identity element 1:
 (a⨂b)⋅c = a⨂(b⨂c) ; 1⨂a = a⨂1 = a
- Multiplication left and right distributes over addition:
 a⨂(b ⨁ c) = (a⨂b) ⨁ (a⨂c) ; (a ⨁ b)⨂c = (a⨂c) ⨁ (b⨂c)
- Multiplication by 0 annihilates S:
 0⨂a = a⨂0 = 0

Boolean semiring: ({0,1},⋁,⋀,0,1)
Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1)

« Rat semiring »: (Rat(A), ∪ , ⋅ , ∅, {ε})

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

}Gives rise to
product of S
valued matrices
that form a
monoid.

Non-deterministic automata

Rational transducers

Tropical automataTropical semiring: (R∪{-∞},max,+,-∞,0)
(R∪{+∞},min,+,+∞,0), (N∪{-∞},max,+,-∞,0), (N∪{+∞},min,+,+∞,0)

Computes the number of
runs of the NDA

addition
multiplication

Tropical automata

Tropical automata
 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)

p₀,…,pn i=1

n

Tropical automata
 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)

p₀,…,pn i=1

n

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

Tropical automata
 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)

p₀,…,pn i=1

n

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata
 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)

p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata

by convention zero-transitions (-∞/+∞)
are not displayed
(neutral for ⨂ and absorbing for ⨂)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata

by convention zero-transitions (-∞/+∞)
are not displayed
(neutral for ⨂ and absorbing for ⨂)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

The max-plus automaton computes:

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata

by convention zero-transitions (-∞/+∞)
are not displayed
(neutral for ⨂ and absorbing for ⨂)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

The max-plus automaton computes:

LA: A* ➝ N∪{-∞}
 u ⟼

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata

by convention zero-transitions (-∞/+∞)
are not displayed
(neutral for ⨂ and absorbing for ⨂)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

The max-plus automaton computes:

the size of the
longest block of
consecutive a’s
surrounded by 2 b’s

LA: A* ➝ N∪{-∞}
 u ⟼

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata

by convention zero-transitions (-∞/+∞)
are not displayed
(neutral for ⨂ and absorbing for ⨂)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

The max-plus automaton computes:

the size of the
longest block of
consecutive a’s
surrounded by 2 b’s

LA: A* ➝ N∪{-∞}
 u ⟼

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

[Krob 94] The equality of max-plus
definable functions is undecidable.

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Tropical automata

by convention zero-transitions (-∞/+∞)
are not displayed
(neutral for ⨂ and absorbing for ⨂)

 L(a₁a₂…an) = ⨁ I(q₀) ⨂ (⨂ Δ(qi-1,ai,qi)) ⨂ F(qn)
p₀,…,pn i=1

n

p q r

a : 1

b : 0 b : 0

a, b : 0 a, b : 0

0 0

The max-plus automaton computes:

the size of the
longest block of
consecutive a’s
surrounded by 2 b’s

LA: A* ➝ N∪{-∞}
 u ⟼

 (N∪{-∞},max,+,-∞,0)
L(u)≥n if and only if (∃ run ρ over u) weight(ρ)≥n

[Hashiguchi 81] The boundedness of
distance automata is decidable.  
[Leung88] [Simon78,94] [Kirsten05] 
[C. & Bojanczyk 06] [C. 09] [Bojanczyk15]

[Krob 94] The equality of max-plus
definable functions is undecidable.

 (N∪{∞},min,+,∞,0)
L(u)≥n if and only if (∀ run ρ over u) weight(ρ)≥n

Alternation of quantifiers

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting NL-c

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

NL-c

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

NL-c

PSPACE-c
(powerset)

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

NL-c

PSPACE-c
(powerset)

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

NL-c

NL-c

PSPACE-c
(powerset)

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

NL-c

NL-c

PSPACE-c
(powerset)

Alternation of quantifiers
Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

NL-c

NL-c

undecidable
[Krob92, other form]

PSPACE-c
(powerset)

Alternation of quantifiers

Is a (N∪{-∞},max,+) automaton bounded?
(∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n

Emptiness of NDA ?
(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

NL-c

NL-c

undecidable
[Krob92, other form]

PSPACE-c
(powerset)

Alternation of quantifiers

Is a (N∪{-∞},max,+) automaton bounded?
(∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n

Emptiness of NDA ?
(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

NL-c

NL-c

undecidable
[Krob92, other form]

NL-c

PSPACE-c
(powerset)

Alternation of quantifiers

Is a (N∪{-∞},max,+) automaton bounded?
(∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n

Emptiness of NDA ?
(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

Is a (N∪{∞},min,+) automaton bounded?
(∃ n∈N) (∀ word w) (∃ run ρ over w) weight(ρ)≤n

NL-c

NL-c

undecidable
[Krob92, other form]

NL-c

PSPACE-c
(powerset)

Alternation of quantifiers

Is a (N∪{-∞},max,+) automaton bounded?
(∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n

Emptiness of NDA ?
(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

Is a (N∪{∞},min,+) automaton bounded?
(∃ n∈N) (∀ word w) (∃ run ρ over w) weight(ρ)≤n

NL-c

NL-c

undecidable
[Krob92, other form]

NL-c

PSPACE-c
(powerset)

PSPACE-c 
[Hashiguchi81,Leung84]

Alternation of quantifiers

Is a (N∪{-∞},max,+) automaton bounded?
(∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n

Emptiness of NDA ?
(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

Is a (N∪{∞},min,+) automaton bounded?
(∃ n∈N) (∀ word w) (∃ run ρ over w) weight(ρ)≤n

NL-c

NL-c

undecidable
[Krob92, other form]

NL-c

PSPACE-c
(powerset)

Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that
(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

PSPACE-c 
[Hashiguchi81,Leung84]

Alternation of quantifiers

Is a (N∪{-∞},max,+) automaton bounded?
(∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n

Emptiness of NDA ?
(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ?
(∀ word w) (∃ run ρ over w) ρ is accepting

Is a (Z∪{∞},max,+) automaton ≥ 0 ?
(∀ word w) (∃ run ρ over w) weight(ρ)≥0

Is a (Z∪{∞},max,+) automaton ≤ 0 ?
(∀ word w) (∀ run ρ over w) weight(ρ)≤0

Is a (N∪{∞},min,+) automaton bounded?
(∃ n∈N) (∀ word w) (∃ run ρ over w) weight(ρ)≤n

NL-c

NL-c

undecidable
[Krob92, other form]

NL-c

PSPACE-c
(powerset)

Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that
(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

PSPACE-c 
[Hashiguchi81,Leung84]

[C., Daviaud, Zuleger 14] This θ exists and is rational. 
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

More on asymptotic analysis

More on asymptotic analysis
Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that

(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

More on asymptotic analysis
Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that

(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

[C., Daviaud, Zuleger 14] This θ exists and is rational. 
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

More on asymptotic analysis
Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that

(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

[C., Daviaud, Zuleger 14] This θ exists and is rational. 
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

result

length of the words=|u|

n

More on asymptotic analysis
Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that

(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

[C., Daviaud, Zuleger 14] This θ exists and is rational. 
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

What is the asymptotic?

result

length of the words=|u|

n

More on asymptotic analysis
Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that

(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

[C., Daviaud, Zuleger 14] This θ exists and is rational. 
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

What is the asymptotic?

result

length of the words=|u|

n

lim inf

u2A⇤

log f(u)

log |u| = ✓

find the least value of a word
of length at least s

Compute:

More on asymptotic analysis
Given a (N∪{∞},max,+) automaton, find the least θ∈[0,1] such that

(∃ a) (∀ s∈N) (∃ word w, |w|≥s) (∀ run ρ over w) weight(ρ) ≤ asθ

[C., Daviaud, Zuleger 14] This θ exists and is rational. 
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

What is the asymptotic?

lim sup

u2A⇤

log |u|
log f(|u|) =

1

✓

find the longest size of a word
of value at most n

result

length of the words=|u|

n

lim inf

u2A⇤

log f(u)

log |u| = ✓

find the least value of a word
of length at least s

Compute:

Ingredients of the proof

Ingredients of the proof
Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredients of the proof

e.g. for universality I(W) = {P⊆Q : P=Reach(I,u) for some u∈W}

Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredients of the proof

e.g. for universality I(W) = {P⊆Q : P=Reach(I,u) for some u∈W}
In our case,

I(W) = { f:Q×Q➝N : there is a run that displays this behavior } ⊆ P(NQ×Q)

Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredients of the proof

e.g. for universality I(W) = {P⊆Q : P=Reach(I,u) for some u∈W}
In our case,

I(W) = { f:Q×Q➝N : there is a run that displays this behavior } ⊆ P(NQ×Q)

Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredient 2.
Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredients of the proof

e.g. for universality I(W) = {P⊆Q : P=Reach(I,u) for some u∈W}
In our case,

I(W) = { f:Q×Q➝N : there is a run that displays this behavior } ⊆ P(NQ×Q)

Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredient 2.
Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.
Define presentable sets families of such sets of maps that are nicely behaved
(that can be algorithmically handled). In our case unions of convex polytopes
in RQ×Q representing simultaneous asymptotic behaviors.

Ingredients of the proof

e.g. for universality I(W) = {P⊆Q : P=Reach(I,u) for some u∈W}
In our case,

I(W) = { f:Q×Q➝N : there is a run that displays this behavior } ⊆ P(NQ×Q)

Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredient 2.
Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.
Define presentable sets families of such sets of maps that are nicely behaved
(that can be algorithmically handled). In our case unions of convex polytopes
in RQ×Q representing simultaneous asymptotic behaviors.

Step 4.
Compute a presentable equivalent (up to approximation) of I(A*)

Ingredients of the proof

e.g. for universality I(W) = {P⊆Q : P=Reach(I,u) for some u∈W}
In our case,

I(W) = { f:Q×Q➝N : there is a run that displays this behavior } ⊆ P(NQ×Q)

Given a set of words W, collect an information I(W)
sufficient for understanding its behavior in any context.

Ingredient 1.

Ingredient 2.
Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.
Define presentable sets families of such sets of maps that are nicely behaved
(that can be algorithmically handled). In our case unions of convex polytopes
in RQ×Q representing simultaneous asymptotic behaviors.

Step 4.
Compute a presentable equivalent (up to approximation) of I(A*)
This is done by induction of the factorisation forest height [Simon].

Program analysis
and

the size-change abstraction

Program analysis
Given an input program/piece of program:
- Does it perform a zero division?
- Does it access a non-allocated memory area?
- Is there a dynamic type problem?
- Does it comply to the specification?
- Is there a memory leakage?
- Does it terminate?
- What is its running time?

Program analysis
Given an input program/piece of program:
- Does it perform a zero division?
- Does it access a non-allocated memory area?
- Is there a dynamic type problem?
- Does it comply to the specification?
- Is there a memory leakage?
- Does it terminate?
- What is its running time?

[Rice-like] Essentially, all these questions are undecidable.

Program analysis
Given an input program/piece of program:
- Does it perform a zero division?
- Does it access a non-allocated memory area?
- Is there a dynamic type problem?
- Does it comply to the specification?
- Is there a memory leakage?
- Does it terminate?
- What is its running time?

[Rice-like] Essentially, all these questions are undecidable.

Solution here: in this talk, we use the size-change
abstract model  
([Ben-Amram, Chin Soon Lee, Neil D. Jones 01]).

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

these variables remain non-negative.

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

these variables remain non-negative.

are initialized with an uncontrolled value

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

these variables remain non-negative.

are initialized with an uncontrolled value

either y decreases

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

these variables remain non-negative.

are initialized with an uncontrolled value

either y decreases

or x decreases,
and y gets an uncontrolled value

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

these variables remain non-negative.

are initialized with an uncontrolled value

either y decreases

or x decreases,
and y gets an uncontrolled value

Remark: This program terminates.

Example
void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

these variables remain non-negative.

are initialized with an uncontrolled value

either y decreases

or x decreases,
and y gets an uncontrolled value

Remark: This program terminates.
Question: what method can automatically establish it ?

Principle of abstraction

Principle of abstraction
Principle: replace the program by an abstraction:
- Information that is lost is replaced by non-determinism. 

This includes:  
+ The dynamic information resulting from the interactions with the
environment.  
+ All the tests and computations that cannot be abstracted in the
restricted model of the abstraction.

- The resulting abstraction can be analyzed: it can be decided whether
the resulting abstraction stops an all its executions.

- If the abstraction stops on all its executions, then the original
programs stops an all its executions.

Principle of abstraction
Principle: replace the program by an abstraction:
- Information that is lost is replaced by non-determinism. 

This includes:  
+ The dynamic information resulting from the interactions with the
environment.  
+ All the tests and computations that cannot be abstracted in the
restricted model of the abstraction.

- The resulting abstraction can be analyzed: it can be decided whether
the resulting abstraction stops an all its executions.

- If the abstraction stops on all its executions, then the original
programs stops an all its executions.

Remark: Of course, this is a compromise between the efficiency of the
decision problem, and the loss of information during the abstraction.

Principle of abstraction
Principle: replace the program by an abstraction:
- Information that is lost is replaced by non-determinism. 

This includes:  
+ The dynamic information resulting from the interactions with the
environment.  
+ All the tests and computations that cannot be abstracted in the
restricted model of the abstraction.

- The resulting abstraction can be analyzed: it can be decided whether
the resulting abstraction stops an all its executions.

- If the abstraction stops on all its executions, then the original
programs stops an all its executions.

Remark: Of course, this is a compromise between the efficiency of the
decision problem, and the loss of information during the abstraction.

⇒ In this talk, we use the model of size-change abstraction.

Size-change abstraction

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p

A configuration is a state together with a non-
negative integer value for each of the variables.

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p A run of the SCA is a sequence of configurations

that starts in an initial configuration, ends in a
final one, and each consecutive configurations
satisfy the guard of some possible transition.

A configuration is a state together with a non-
negative integer value for each of the variables.

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p A run of the SCA is a sequence of configurations

that starts in an initial configuration, ends in a
final one, and each consecutive configurations
satisfy the guard of some possible transition.

A configuration is a state together with a non-
negative integer value for each of the variables.

(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p A run of the SCA is a sequence of configurations

that starts in an initial configuration, ends in a
final one, and each consecutive configurations
satisfy the guard of some possible transition.

A configuration is a state together with a non-
negative integer value for each of the variables.

(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

a a b ba a a

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p A run of the SCA is a sequence of configurations

that starts in an initial configuration, ends in a
final one, and each consecutive configurations
satisfy the guard of some possible transition.

A configuration is a state together with a non-
negative integer value for each of the variables.

(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

a a b ba a a

A size-change abstraction terminates if it has no infinite run.

Size-change abstraction
[Ben-Amram et al. 01] A size-change abstraction (SCA):
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z…) ranging over non-negative integers
- during each transition, a guards relate the variables before and after: 

 x ≥ y’ meaning « val of x before the transition ≥ val of y after the transition »  
 x > y’ meaning « val of x before the transition > val of y after the transition »

a: x≥x’
 ⋀ y>y’ b: x>x’p A run of the SCA is a sequence of configurations

that starts in an initial configuration, ends in a
final one, and each consecutive configurations
satisfy the guard of some possible transition.

A configuration is a state together with a non-
negative integer value for each of the variables.

(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

a a b ba a a

A size-change abstraction terminates if it has no infinite run.
[Ben-Aram et al. 01] Termination of size-change abstraction is PSPACE.

Abstracting

void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

Abstracting

void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

Abstracting

void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

Remark: every run of the original program
induces a run of the SCA of game size. 
Hence if the SCA terminates, the original
program also does (on all its executions).

Deciding the termination
of size-change abstraction

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

a: x≥x’
 ⋀ y>y’

b: x>x’p

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.

a: x≥x’
 ⋀ y>y’

b: x>x’p

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial.

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

a: x≥x’
 ⋀ y>y’

b: x>x’p

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0)

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

a: x≥x’
 ⋀ y>y’

b: x>x’p

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0)

∃ input word u for Aut of same length such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with infinitely many 1’s

(Büchi condition)

∃ run ρ of SCAClaim:

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

a: x≥x’
 ⋀ y>y’

b: x>x’p

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0)

∃ input word u for Aut of same length such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with infinitely many 1’s

(Büchi condition)

∃ run ρ of SCAClaim:

⇒ Runs/Aut=∅ ?

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Deciding the termination
of size-change abstraction

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

a: x≥x’
 ⋀ y>y’

b: x>x’p

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0)

∃ input word u for Aut of same length such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with infinitely many 1’s

(Büchi condition)

∃ run ρ of SCAClaim:

⇒ Runs/Aut=∅ ? ⇒ PSPACE

⊤
x

y
⊥

*
* *

**

*
a:0, b:1

a:1

Overall picture

Some
code

size-change
abstraction

Büchi
automaton

Decide an
inclusion

problem for
Büchi automata

?

reflects
termination

Does it terminate?

void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

a: x≥x’
 ⋀ y>y’ b: x>x’p

⊤

x

y
⊥

*
* *

**

*

a:0, b:1

a:1

equivalent
for termination

Finer program
analysis

Termiation

Some
code

size-change
abstraction

Büchi
automaton

Decide an
inclusion

problem for
Büchi automata

?

reflects
termination

does it terminate?

void main() {
 uint x,y;
 x = read_input();
 y = read_input();
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input();
 x--; }
 } 
}

a: x≥x’
 ⋀ y>y’ b: x>x’p

⊤

x

y
⊥

*
* *

**

*

a:0, b:1

a:1

equivalent
for termination

Asymptotic complexity

Some
code

size-change
abstraction

N-max-plus
automaton

Compute the
asymptotic
worst-case
behavior

?

reflects
complexity

What is its complexity?
(as a function of a parameter n)

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

a: x≥x’
 ⋀ y>y’ b: x>x’p

⊤

x

y
⊥

*
* *

**

*

a:0, b:1

a:1

equivalent
for complexity

More precisely, find α such that
the program stops in Θ(nα).

Abstracting
- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

Abstracting

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

Abstracting

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

An n-run of the SCA is a run in which all
the variables take their values in [1,n]

Abstracting

a: x≥x’
 ⋀ y>y’ b: x>x’p

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

Remark: every run of the original
program for a given n induces an n-run of
the SCA of same length. Hence if the
SCA terminates in time t for a given n,
the original program also does (on all its
executions).

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

An n-run of the SCA is a run in which all
the variables take their values in [1,n]

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’p

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0)

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with weight >n.

()

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with weight >n.

()

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with weight >n.

()

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

One needs to find the asymptotic
exponent of the size of the longest
word that is has only run of value
at most n:

lim sup

u2A⇤

log |u|
logAut(|u|) = ↵

(∃ n-run of SCA of size s)Claim:

if and only if
∃ input word u of size s such that
1) it is a value-free valid run (regular)
2) there is no run of Aut with weight >n.

()

Complexity analysis
[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable
rational α such that the worst-case length of an n-run of the SCA has size Θ(nα).

a: x≥x’
 ⋀ y>y’

b: x>x’pProof: We construct a Büchi automaton Aut as follows:
Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {⊤,⊥}.
All states of the automaton are initial and final.

Δ(x,a,y) = { -∞ otherwise (no guard)

0 if there is a guard x ≥ y’ in a
1 if there is a guard x > y’ in a

(Δ(⊥,?,?)=0, Δ(?,?,⊤)=0) ⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

One needs to find the asymptotic
exponent of the size of the longest
word that is has only run of value
at most n:

lim sup

u2A⇤

log |u|
logAut(|u|) = ↵ ⇒ Decidable.

An unexpected
phenomenon

An unexpected
phenomenon

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.

An unexpected
phenomenon

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.

It was conjectured that the asymptotic worst-case could only have integer
exponent.

p

x>x’ ⋀ y≥y’ ⋀
z>z’ ⋀ t≥t’

a: x>x’ ⋀ y≥y’ ⋀ y≥z’ ⋀
y>t’ ⋀ z>t’ ⋀ t>t’

b:

y>y’ ⋀ y≥z’ ⋀ y≥t’ ⋀
z>y’ ⋀ z≥z’ ⋀ z≥t’ ⋀
t>y’ ⋀ t≥z’ ⋀ t≥t’

c:

An unexpected
phenomenon

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.

It was conjectured that the asymptotic worst-case could only have integer
exponent.

p

x>x’ ⋀ y≥y’ ⋀
z>z’ ⋀ t≥t’

a: x>x’ ⋀ y≥y’ ⋀ y≥z’ ⋀
y>t’ ⋀ z>t’ ⋀ t>t’

b:

y>y’ ⋀ y≥z’ ⋀ y≥t’ ⋀
z>y’ ⋀ z≥z’ ⋀ z≥t’ ⋀
t>y’ ⋀ t≥z’ ⋀ t≥t’

c:

An unexpected
phenomenon

However:
The longest n-run of
the following SCA
has asymptotical
length Θ(n3/2).

a: x≥x’
 ⋀ y>y’

b: x>x’pFor instance, has worst-case complexity n2.

It was conjectured that the asymptotic worst-case could only have integer
exponent.

Summary
The size-change abstraction is good model for proving the
termination of some forms of programs. This offers a natural
reduction to question of automata theory.

We have shown that this technique can be greatly
refined for computing asymptotic worst-case
complexity of some programs.

This relies on advanced results on the
asymptotic analysis of tropical automata.

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

Summary
The size-change abstraction is good model for proving the
termination of some forms of programs. This offers a natural
reduction to question of automata theory.

We have shown that this technique can be greatly
refined for computing asymptotic worst-case
complexity of some programs.

This relies on advanced results on the
asymptotic analysis of tropical automata.

a: x≥x’
 ⋀ y>y’

b: x>x’p

⊤
x

y
⊥

*
* *

**

*

a:0, b:1

a:1

void main(uint n) {
 uint x,y;
 x = read_input(n);
 y = read_input(n);
 while (x > 0) {
 if (y > 0)
 { y--; }
 else
 { y = read_input(n);
 x--; }
 } 
}

What is the exact complexity?
How to construct ranking functions?
Is there a more general model of automata and results?

Some open questions

Thanks !

