Automata minimization and glueing of categories

Computability
in Europe 2017
June 15

Thomas Colcombet joint work with Daniela Petrişan

 IONDAMENTALE

DuaLL

Automata minimization and glueing of categories

[MFCS 2017] \& [Informal presentation in SIGLOG column]

Computability
in Europe 2017
June 15

Thomas Colcombet joint work with Daniela Petrişan

Description of the situation

Automata

Automata

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states,
$i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states,
$i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

Automata

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states,
$i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[1,2] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Automata

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states,
$i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[1,2] \approx 2 \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Automata

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states,
$i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

A vector automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[1,2] \approx 2 \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states,
$i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

A vector automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[1,2] \approx 2 \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states, $i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[1,2] \approx 2 \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

A vector automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[\mathbb{R}, \mathbb{R}] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

An deterministic automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a set of states, $i: 1 \rightarrow Q$ is the initial map
$f: Q \rightarrow 2$ is the final map
$\delta_{a}: Q \rightarrow Q$ is the transition map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[1,2] \approx 2 \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

A vector automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

It computes the language:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[\mathbb{R}, \mathbb{R}] \approx \mathbb{R} \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Example

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

Example

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Q is an \mathbb{R}-vector space

$$
Q=\mathbb{R}^{2}
$$

$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

Example

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0)
\end{aligned}
$$

Example

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x
\end{aligned}
$$

Example

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Example

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Q is an \mathbb{R}-vector space
$i: \mathbb{R} \rightarrow Q$ is a linear map
$f: Q \rightarrow \mathbb{R}$ is a linear map
$\delta_{a}: Q \rightarrow Q$ is a linear map

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Is it possible to do better?

A better implementation

$$
\begin{aligned}
& L_{\mathrm{Vec}}(u)=\left\{\begin{array}{ll}
2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\
0 & \text { otherwise }
\end{array} \begin{array}{l}
\text { Solution in vector } \\
\text { spaces }
\end{array}\right. \\
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \qquad \begin{array}{ll}
\delta_{a}(x, y)=(2 x, 2 y) \\
\delta_{b}(x, y)=(y, x) \\
\delta_{c}(x, y)=(0,0)
\end{array}
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& l(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise } \\ \text { Solution in }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

$$
Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R})
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

$$
\begin{aligned}
& Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) \\
& i(x)=(\text { even }, x)
\end{aligned}
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

$$
\begin{aligned}
& Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0
\end{aligned}
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

$$
\begin{aligned}
& Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\
& \delta_{a}(\text { odd }, x)=(\text { odd }, 2 x)
\end{aligned}
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

$$
\begin{aligned}
& Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\
& \delta_{a}(\text { odd } x)=(\text { odd, } 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd }, x)=(\text { even }, x)
\end{aligned}
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Informally: use one bit for the parity to the number of b's.

$$
\begin{aligned}
& Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\
& \delta_{a}(\text { odd }, x)=(\text { odd, } 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd }, x)=(\text { even }, x) \\
& \delta_{c}(\text { even }, x)=(\text { even }, 0) \\
& \delta_{c}(\text { odd }, x)=(\text { odd }, 0)
\end{aligned}
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

A better implementation

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise } \\ \text { Solution in }\end{cases}
$$

Solution in vector spaces

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
$i(x)=($ even,$x)$
$f($ even,$x)=x$
$f($ odd, $x)=0$
$\delta_{a}($ even, $x)=($ even, $2 x)$
$\delta_{a}($ odd, $x)=($ odd, $2 x)$
$\delta_{b}($ even, $x)=($ odd, $x)$
$\delta_{b}($ odd, $x)=($ even,$x)$
$\delta_{c}($ even,$x)=($ even, 0$)$
$\delta_{c}($ odd,$x)=($ odd, 0$)$

Why is it a better implementation?
Is there a good notion of such automata?
What are their properties (e.g. minimization)?

A definition via categories

Categories

A category has objects and arrows

Categories

A category has objects and arrows

$$
X, Y, Z \ldots
$$

Categories

A category has objects and arrows

$$
X, Y, Z \ldots \quad f: X \rightarrow Y
$$

Categories

A category has objects and arrows

$$
X, Y, Z \ldots \text { source }_{f:)^{X} \rightarrow \bigcup_{\text {target }}}
$$

Categories

A category has objects and arrows

$$
\left.X, Y, Z \ldots \text { source }_{f: X}\right)_{\text {target }}
$$

- There is an identity arrow for all object:

$$
\operatorname{Id}_{X}: X \rightarrow X
$$

Categories

A category has objects and arrows

$$
\left.X, Y, Z \ldots \text { source }^{f: X}\right)_{\text {target }}
$$

- There is an identity arrow for all object:

$$
\operatorname{Id}_{X}: X \rightarrow X
$$

- Arrows compose: for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ there is an arrow:

$$
g \circ f: X \rightarrow Z
$$

Categories

A category has objects and arrows

$$
X, Y, Z \ldots \underbrace{f: X}_{\text {source }} \rightarrow \bigcup_{\text {target }}^{Y}
$$

- There is an identity arrow for all object:

$$
\operatorname{Id}_{X}: X \rightarrow X
$$

- Arrows compose: for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ there is an arrow:

$$
g \circ f: X \rightarrow Z
$$

+ some associatively axioms.

Categories

A category has objects and arrows

$$
\left.X, Y, Z \ldots \quad{ }_{\text {source }}\right)_{\text {target }}^{X: X}
$$

- There is an identity arrow for all object:

$$
\operatorname{Id}_{X}: X \rightarrow X
$$

- Arrows compose: for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ there is an arrow:

$$
g \circ f: X \rightarrow Z
$$

+ some associatively axioms.

$$
\begin{aligned}
& \text { Set }=\text { (sets, maps }) \\
& \text { Vec = (vector spaces, linear maps }) \\
& \text { Aff = (affine spaces, affine maps) } \\
& \text { Rel = (sets, binary relations })
\end{aligned}
$$

Automata in a category

Automata in a category

A (C,I,F)-automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a object of states,
$i: I \rightarrow Q$ is the initial arrow
$f: Q \rightarrow F$ is the final arrow
$\delta_{a}: Q \rightarrow Q$ is the transition arrow
for the letter a.

Automata in a category

A (C, I, F)-automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a object of states,
$i: I \rightarrow Q$ is the initial arrow
$f: Q \rightarrow F$ is the final arrow
$\delta_{a}: Q \rightarrow Q$ is the transition arrow for the letter a.

The (C,I,F)-language computed is:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[I, F] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Automata in a category

A (C,I,F)-automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a object of states,
$i: I \rightarrow Q$ is the initial arrow
$f: Q \rightarrow F$ is the final arrow
$\delta_{a}: Q \rightarrow Q$ is the transition arrow
for the letter a.

The (C,I,F)-language computed is:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[I, F] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Auto(L) is the category of ($\mathrm{C}, \mathrm{I}, \mathrm{F}$)automata for the (C,I,F)-language L.

Automata in a category

A (C,I,F)-automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a object of states,
$i: I \rightarrow Q$ is the initial arrow
$f: Q \rightarrow F$ is the final arrow
$\delta_{a}: Q \rightarrow Q$ is the transition arrow for the letter a.

The (C,I,F)-language computed is:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[I, F] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Auto(L) is the category of ($\mathrm{C}, \mathrm{I}, \mathrm{F}$)automata for the (C,I,F)-language L.

A morphism is an arrow

$$
h: Q_{\mathcal{A}} \rightarrow Q_{\mathcal{B}}
$$

such that tfdc:

Automata in a category

A (C,I,F)-automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a object of states,
$i: I \rightarrow Q$ is the initial arrow
$f: Q \rightarrow F$ is the final arrow
$\delta_{a}: Q \rightarrow Q$ is the transition arrow for the letter a.

The (C,I,F)-language computed is:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[I, F] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Auto(L) is the category of ($\mathrm{C}, \mathrm{I}, \mathrm{F}$)automata for the (C,I,F)-language L.

A morphism is an arrow

$$
h: Q_{\mathcal{A}} \rightarrow Q_{\mathcal{B}}
$$

such that tfdc:

Rk: Morphisms preserve the language.

Automata in a category

A (C,I,F)-automaton is

$$
\left\langle Q, i, f,\left(\delta_{a}\right)_{a \in A}\right\rangle
$$

where
Q is a object of states,
$i: I \rightarrow Q$ is the initial arrow
$f: Q \rightarrow F$ is the final arrow
$\delta_{a}: Q \rightarrow Q$ is the transition arrow for the letter a.

The (C,I,F)-language computed is:

$$
\begin{aligned}
\llbracket \mathcal{A} \rrbracket: A^{*} & \rightarrow[I, F] \\
u & \mapsto f \circ \delta_{u} \circ i
\end{aligned}
$$

Auto(L) is the category of (C,I,F)automata for the (C,I,F)-language L.

- (Set,1,2)-automata are deterministic automata
- (Rel,1,1)-automata are nondeterministic automata
- (Vec,K,K)-automata are automata weighted over a field K. (more generally semi-modules)

A morphism is an arrow

$$
h: Q_{\mathcal{A}} \rightarrow Q_{\mathcal{B}}
$$

such that tfdc:

Rk: Morphisms preserve the language.

Category of disjoint unions of vector spaces
(free co-product completion of Vec)

Category of disjoint unions of vector spaces

A disjoint union of vector space is an ordered pair

$$
\left(I,\left(V_{i}\right)_{i \in I}\right)
$$

where I is a set of indices, and V_{i} is a vector space for all $i \in I$.

Category of disjoint unions of vector spaces

A disjoint union of vector space is an ordered pair $\left(I,\left(V_{i}\right)_{i \in I}\right)$
where I is a set of indices, and V_{i} is a vector space for all $i \in I$.

Let Duvs be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

Category of disjoint unions of vector spaces

A disjoint union of vector space is an ordered pair

$$
\left(I,\left(V_{i}\right)_{i \in I}\right)
$$

where I is a set of indices, and V_{i} is a vector space for all $i \in I$.

Let Duvs be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $\left(I,\left(V_{i}\right)_{i \in I}\right)$ to $\left(J,\left(W_{i}\right)_{i \in J}\right)$ is the pair of:

Category of disjoint unions of vector spaces

A disjoint union of vector space is an ordered pair

$$
\left(I,\left(V_{i}\right)_{i \in I}\right)
$$

where I is a set of indices, and V_{i} is a vector space for all $i \in I$.

Let Duvs be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $\left(I,\left(V_{i}\right)_{i \in I}\right)$ to $\left(J,\left(W_{i}\right)_{i \in J}\right)$ is the pair of:

- a map f from I to J

Category of disjoint unions of vector spaces

A disjoint union of vector space is an ordered pair

$$
\left(I,\left(V_{i}\right)_{i \in I}\right)
$$

where I is a set of indices, and V_{i} is a vector space for all $i \in I$.

Let Duvs be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $\left(I,\left(V_{i}\right)_{i \in I}\right)$ to $\left(J,\left(W_{i}\right)_{i \in J}\right)$ is the pair of:

- a map f from I to J
- a linear map g_{i} from V_{i} to $W_{f(i)}$ for all $i \in I$.

Category of disjoint unions of vector spaces

A disjoint union of vector space is an ordered pair

$$
\left(I,\left(V_{i}\right)_{i \in I}\right)
$$

where I is a set of indices, and V_{i} is a vector space for all $i \in I$.

Let Duvs be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $\left(I,\left(V_{i}\right)_{i \in I}\right)$ to $\left(J,\left(W_{i}\right)_{i \in J}\right)$ is the pair of:

- a map f from I to J
- a linear map g_{i} from V_{i} to $W_{f(i)}$ for all $i \in I$.

Remark: Vec is a subcategory of Duvs.

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\
& \delta_{a}(\text { odd }, x)=(\text { odd, } 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd }, x)=(\text { even }, x) \\
& \delta_{c}(\text { even }, x)=(\text { even }, 0) \\
& \delta_{c}(\text { odd }, x)=(\text { odd }, 0)
\end{aligned}
$$

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

```
Q=({odd }}\times\mathbb{R})\cup({\mathrm{ even }}\times\mathbb{R}
i(x)=(even, x)
f(even, x)=x
f(odd, x)=0
\delta}(\mathrm{ even, }x)=(\mathrm{ even, 2x)
\delta
\deltab}(\mathrm{ even, }x)=(\mathrm{ odd, }x
\delta
\delta
\deltac}(\mathrm{ odd, }x)=(odd,0
```


Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
$i(x)=($ even,$x)$
$f($ even,$x)=x$
$f($ odd,$x)=0$
$\delta_{a}($ even,$x)=($ even, $2 x)$
$\delta_{a}($ odd,$x)=($ odd, $2 x)$
$\delta_{b}($ even,$x)=($ odd,$x)$
$\delta_{b}($ odd,$x)=($ even,$x)$
$\delta_{c}($ even,$x)=($ even, 0$)$
$\delta_{c}($ odd,$x)=($ odd, 0$)$

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$

Indices $=\{$ odd, even $\}$
$i(x)=($ even,$x)$
$f($ even,$x)=x$
$f($ odd,$x)=0$
$\delta_{\text {odd }}=V_{\text {even }}=\mathbb{R}$
$\delta_{a}($ even,$x)=($ even, $2 x)=($ odd, $2 x)$
$\delta_{b}($ even,$x)=($ odd, $x)$
$\delta_{b}($ odd,$x)=($ even, $x)$
$\delta_{c}($ even,$x)=($ even, 0$)$
$\delta_{c}($ odd,$x)=($ odd, 0$)$

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$

Indices $=\{$ odd, even $\}$
$i(x)=($ even,$x)$
$f($ even,$x)=x$
$f($ odd,$x)=0$
$\delta_{\text {odd }}=V_{\text {even }}=\mathbb{R}$
$\delta_{a}($ even,$x)=($ even, $2 x)=($ odd, $2 x)$
$\delta_{b}($ even,$x)=($ odd, $x)$
$\delta_{b}($ odd,$x)=($ even, $x)$
$\delta_{c}($ even,$x)=($ even, 0$)$
$\delta_{c}($ odd,$x)=($ odd, 0$)$

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$	
$i(x)=(\mathrm{even}, x)$	$\cdots V_{\text {odd }}=V_{\text {even }}=\mathbb{R}$
$\begin{aligned} & f(\text { even }, x)=x \\ & f(\text { odd }, x)=0 \end{aligned}$	Is it minimal ? No..
$\begin{aligned} & \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\ & \delta_{a}(\text { odd }, x)=(\text { odd }, 2 x) \end{aligned}$	(odd, 0) and (even, 0) are observationally equivalent
$\begin{aligned} & \delta_{b}(\text { even }, x)=(\text { odd }, x) \\ & \delta_{b}(\text { odd }, x)=(\text { even }, x) \end{aligned}$	
$\begin{aligned} & \delta_{c}(\text { even }, x)=(\text { even }, 0) \\ & \delta_{c}(\text { odd }, x)=(\text { odd }, 0) \end{aligned}$	

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$	Indices $=$ odd, even $\}$
$i(x)=($ even,$x)$	
$f($ even,$x)=x$	Is it minimal ? No...
$f($ odd,$x)=0$	(odd, 0$)$ and (even, 0$)$ are
$\delta_{\text {even }}($ even,$x)=($ even, $2 x)$	observationally equivalent
$\delta_{a}($ odd, $x)=($ odd, $2 x)$	But the implementation is arbitrary.
$\delta_{b}($ even,$x)=($ odd, $x)$	
$\delta_{b}($ odd,$x)=($ even, $x)$	
$\delta_{c}($ even,$x)=($ even, 0$)$	
$\delta_{c}($ odd,$x)=($ odd, 0$)$	

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R}) \quad$ Indices $=\{$ oda, even	
$i(x)=($ even,$x)$	
$f($ even, $x)=x$	
$f($ odd, $x)=0$	Is it minimal? No.
$\delta_{a}($ even,$x)=($ even, $2 x)$	(odd, 0) and (even, 0) are
$\begin{aligned} & \delta_{a}(\text { even }, x)=(\text { even, } 2 x) \\ & \delta_{a}(\text { odd } x)=(\text { odd, } 2 x) \end{aligned}$	observationally equivalent
$\delta_{b}($ even,$x)=($ odd, $x)$	But the implementation is arbitrary.
$\delta_{b}($ odd,,$x)=($ even,$x)$	Can it be made minimal?
$\begin{aligned} & \delta_{c}(\text { even }, x)=(\text { even }, 0) \\ & \delta_{c}(\text { odd }, x)=(\text { odd }, 0) \end{aligned}$	

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{ll}
Q=(\{\text { odd }\} \times \mathbb{R}) \cup(\{\text { even }\} \times \mathbb{R}) & \text { Indices }=\text { \{odd, even }\} \\
i(x)=(\text { even }, x) & \\
f(\text { even }, x)=x & \\
f(\text { odd }, x)=0 & \text { Is it minimal ? No... } \\
\delta_{a}(\text { even }, x)=(\text { even, } 2 x) & \text { (odd, } 0) \text { and (even, } 0) \text { are } \\
\delta_{a}(\text { odd }, x)=(\text { odd, } 2 x) & \text { observationally equivalent } \\
\delta_{b}(\text { even, } x)=(\text { odd, } x) & \text { But the implementation is arbitrary. } \\
\left.\delta_{b} \text { (odd, } x\right)=(\text { even, } x) & \text { Can it be made minimal? No... } \\
\delta_{c}(\text { even }, x)=(\text { even, } 0) & \text { Well, in fact Yes... but would be larger... } \\
\delta_{c}(\text { odd }, x)=(\text { odd, } 0) &
\end{array}
$$

Duvs-automata

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Minimizing automata via categories

Ingredients for the existence of a minimal automaton

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Ingredients for the existence of a minimal automaton

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? «A DFA is minimal if it divides any other automaton for the same language. »

Ingredients for the existence of a minimal automaton

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? «A DFA is minimal if it divides any other automaton for the same language."
it is the quotient of a subautomaton.

Ingredients for the existence of a minimal automaton

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? «A DFA is minimal if it divides any other automaton for the same language. »
it is the quotient of a subautomaton.
notion of «surjection» notion of «injection»

Initial and final automata

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object

Initial and final automata

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object

For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial and final automata

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object

For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial (Set, 1,2)-automaton for L:

- states = A*
- $\operatorname{init}()=.\varepsilon$
- final(u) = L(u)
- $\delta a(u)=u a$

Initial and final automata

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object

For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial (Set, 1,2)-automaton for L:

- states = A*
- $\operatorname{init}()=.\varepsilon$
- final(u) = L(u)
- $\delta a(u)=u a$

Final (Set, 1,2)-automaton for L:

- states = languages
- init(.) = L
- final $(R)=R(\varepsilon)$
- $\delta a(R)=\{u: a u \in R\}$

Initial and final automata

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object

For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial (Set, 1,2)-automaton for L:

- states = A*
- $\operatorname{init}()=.\varepsilon$
- final(u) = L(u)
- $\delta a(u)=u a$

Final (Set, 1,2)-automaton for L:

- states = languages
- init(.) = L
- final $(R)=R(\varepsilon)$
- $\delta a(R)=\{u: a u \in R\}$

Remark: Initial and final automata exist as soon as the category has countable copowers and powers (works e.g. for Set, Vec, Aff,...).

Factorization systems

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

Factorization systems

«epimorphisms» «monomorphisms» «surjections» «injections»

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

Factorization systems

«epimorphisms» «monomorphisms» «surjections» «injections»

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition

Factorization systems

«epimorphisms» «monomorphisms» «surjections» «injections»

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,

Factorization systems

«epimorphisms» «monomorphisms» «surjections» «injections»

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \rightarrow Y$ can be written

$$
f=m \circ e
$$

for some $e: X \rightarrow Z$ in \mathcal{E} and $m: Z \rightarrow Y$ in \mathcal{M}.

Factorization systems

«epimorphisms» «monomorphisms» «surjections» «injections»

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \rightarrow Y$ can be written

$$
f=m \circ e \quad \text { the factorization } \quad \text { of } f .
$$

for some $e: X \rightarrow Z$ in \mathcal{E} and $m: Z \rightarrow Y$ in \mathcal{M}.

Factorization systems

«epimorphisms»
«monomorphisms»
«surjections» «injections»
A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \rightarrow Y$ can be written

$$
f=m \circ e \quad \text { the factorization } \quad \text { of } f . \quad l
$$

for some $e: X \rightarrow Z$ in \mathcal{E} and $m: Z \rightarrow Y$ in \mathcal{M}.

- furthermore, this decomposition is unique up to isomorphism
(it has in fact the stronger « diagonal property »).

Factorization systems

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \rightarrow Y$ can be written

$$
f=m \circ e \quad \text { the factorization } \quad \text { of } f .
$$

for some $e: X \rightarrow Z$ in \mathcal{E} and $m: Z \rightarrow Y$ in \mathcal{M}.

- furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

In Set:

Factorization systems

«epimorphisms»
«surjections »
«monomorphisms» «injections "

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \rightarrow Y$ can be written

$$
f=m \circ e \quad \text { the factorization } \quad \text { of } f .
$$

for some $e: X \rightarrow Z$ in \mathcal{E} and $m: Z \rightarrow Y$ in \mathcal{M}.

- furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

In Set:

In Vec:

Factorization systems

«epimorphisms »
«surjections »
«monomorphisms» «injections "

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a factorization system if:

- arrows in \mathcal{E} are closed under composition
- arrows in \mathcal{M} are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \rightarrow Y$ can be written

$$
f=m \circ e \quad \text { the factorization } \quad \text { of } f .
$$

for some $e: X \rightarrow Z$ in \mathcal{E} and $m: Z \rightarrow Y$ in \mathcal{M}.

- furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

In Set:

Factorization system for automata

Factorization system for automata

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C}-automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C}.

Factorization system for automata

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C}-automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C}.

Hence (Set, 1,2)-automata (i.e. DFA) have a factorization system (surjective morphisms,injective morphisms).

Factorization system for automata

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C}-automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C}.

Hence (Set, 1,2)-automata (i.e. DFA) have a factorization system (surjective morphisms,injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field) possess factorization system (surjective morphisms,injective morphisms).

Factorization system for automata

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C}-automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C}.

Hence (Set, 1,2)-automata (i.e. DFA) have a factorization system (surjective morphisms,injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field) possess factorization system (surjective morphisms,injective morphisms).

Definition:

- an \mathcal{M}-subobject X of Y is such that there is an \mathcal{M}-arrow $m: X \rightarrow Y$,
- an \mathcal{E}-quotient X of Y is such that there is an \mathcal{E}-arrow $e: Y \rightarrow X$,
- $X(\mathcal{E}, \mathcal{M})$-divides Y if it is a \mathcal{E}-quotient of an \mathcal{M}-subobject of Y.

Minimization!

Minimization!

Lemma: In a category with initial object, final object, and a factorization system $(\mathcal{E}, \mathcal{M})$ then:

- there exists an object Min that $(\mathcal{E}, \mathcal{M})$-divides all objects,
- furthermore $\operatorname{Min} \approx \operatorname{Obs}(\operatorname{Reach}(X)) \approx \operatorname{Reach}(\operatorname{Obs}(X))$ for all X, where
- $\operatorname{Reach}(X)$ is the factorization of the only arrow from I to X, and
- $\mathrm{Obs}(X)$ is the factorization of the only arrow from X to F.

Minimization!

Lemma: In a category with initial object, final object, and a factorization system $(\mathcal{E}, \mathcal{M})$ then:

- there exists an object Min that $(\mathcal{E}, \mathcal{M})$-divides all objects,
- furthermore $\operatorname{Min} \approx \operatorname{Obs}(\operatorname{Reach}(X)) \approx \operatorname{Reach}(\operatorname{Obs}(X))$ for all X, where
- $\operatorname{Reach}(X)$ is the factorization of the only arrow from I to X, and
- $\mathrm{Obs}(X)$ is the factorization of the only arrow from X to F.

Proof: Min is the factorization of the only arrow from I to F. And...

Minimization!

Lemma: In a category with initial object, final object, and a factorization system $(\mathcal{E}, \mathcal{M})$ then:

- there exists an object Min that $(\mathcal{E}, \mathcal{M})$-divides all objects,
- furthermore $\operatorname{Min} \approx \operatorname{Obs}(\operatorname{Reach}(X)) \approx \operatorname{Reach}(\operatorname{Obs}(X))$ for all X, where
- $\operatorname{Reach}(X)$ is the factorization of the only arrow from I to X, and
- $\mathrm{Obs}(X)$ is the factorization of the only arrow from X to F.

Proof: Min is the factorization of the only arrow from I to F. And...

At this point...

We know that:

- C-automata and C-languages can be defined generally in a category C, yielding a

category Auto(L) of «C-automata for the language L »

- for having a minimal object in a category, it is sufficient to have:

1) an initial and a final object in the category for the language,
2) a factorization system in tC ,

- that the existence of initial and final automata arise from simple assumptions on C,
- that the factorization system for automata is inherited from C,
- that standard minimization for DFA and field weighted automata are obtained this way.

At this point...

We know that:

- C-automata and C-languages can be defined generally in a category C, yielding a

category Auto(L) of «C-automata for the language L »

- for having a minimal object in a category, it is sufficient to have:

1) an initial and a final object in the category for the language,
2) a factorization system in tC ,

- that the existence of initial and final automata arise from simple assumptions on C,
- that the factorization system for automata is inherited from C,
- that standard minimization for DFA and field weighted automata are obtained this way.

But, what about minimizing duvs-automata?

Glueings

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

\square

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Duvs-automaton

$$
\begin{aligned}
& Q=\{\text { odd, even }\} \times \mathbb{R} \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\
& \delta_{a}(\text { odd }, x)=(\text { odd }, 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd }, x)=(\text { even }, x) \\
& \delta_{c}(\text { even }, x)=(\text { even }, 0) \\
& \delta_{c}(\text { odd }, x)=(\text { odd }, 0)
\end{aligned}
$$

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Duvs-automaton

$$
\begin{aligned}
& Q=\{\text { odd, even }\} \times \mathbb{R} \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even }, 2 x) \\
& \delta_{a}(\text { odd }, x)=(\text { odd }, 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd }, x)=(\text { even }, x) \\
& \delta_{c}(\text { even }, x)=(\text { even }, 0) \\
& \delta_{c}(\text { odd }, x)=(\text { odd }, 0)
\end{aligned}
$$

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Duvs-automaton

$$
\begin{aligned}
& Q=\{\text { odd, even }\} \times \mathbb{R} \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even, } 2 x) \\
& \delta_{a}(\text { odd, } x)=(\text { odd, } 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd, } x)=(\text { even }, x) \\
& \delta_{c}(\text { even, } x)=(\text { even, } 0) \\
& \delta_{c}(\text { odd, } x)=(\text { odd }, 0)
\end{aligned}
$$

Glue(Vec)-automaton

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Duvs-automaton

$$
\begin{aligned}
& Q=\{\text { odd, even }\} \times \mathbb{R} \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even, } 2 x) \\
& \delta_{a}(\text { odd } x)=(\text { odd, } 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd, } x)=(\text { even }, x) \\
& \delta_{c}(\text { even, } x)=(\text { even, } 0) \\
& \delta_{c}(\text { odd, } x)=(\text { odd }, 0)
\end{aligned}
$$

Glue(Vec)-automaton

Glueings

$$
L_{\mathrm{Vec}}(u)= \begin{cases}2^{|u|_{a}} & \text { if }|u|_{b} \text { is even, and }|u|_{c}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Vec-automaton

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \\
& i(x)=(x, 0) \\
& f(x, y)=x \\
& \delta_{a}(x, y)=(2 x, 2 y) \\
& \delta_{b}(x, y)=(y, x) \\
& \delta_{c}(x, y)=(0,0)
\end{aligned}
$$

Duvs-automaton

$$
\begin{aligned}
& Q=\{\text { odd, even }\} \times \mathbb{R} \\
& i(x)=(\text { even }, x) \\
& f(\text { even }, x)=x \\
& f(\text { odd }, x)=0 \\
& \delta_{a}(\text { even }, x)=(\text { even, } 2 x) \\
& \delta_{a}(\text { odd, } x)=(\text { odd, } 2 x) \\
& \delta_{b}(\text { even }, x)=(\text { odd }, x) \\
& \delta_{b}(\text { odd, } x)=(\text { even }, x) \\
& \delta_{c}(\text { even, } x)=(\text { even, } 0) \\
& \delta_{c}(\text { odd, } x)=(\text { odd }, 0)
\end{aligned}
$$

Glue(Vec)-automaton

Defining Glue(Vec)

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:

1) is trivial over each base space
2) defines linear bijections between subspaces when restricted to pairs of base spaces.

Defining Glue(Vec)

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:

1) is trivial over each base space
2) defines linear bijections between subspaces when restricted to pairs of base spaces.
$(p, x, 0) \sim_{\text {glue }}(q, 0, x)$
$(q, x, 0)$
$(r, x, 0) \sim_{\text {glue }}(r, 0, x)$
$\sim_{\text {glue }}(p, 0, x)$

Defining Glue(Vec)

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:

1) is trivial over each base space
2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$
\begin{gathered}
(p, x, 0) \sim_{\text {glue }}(q, 0, x) \\
(q, x, 0) \\
\sim_{\text {glue }}(r, 0, x) \\
(r, x, 0)
\end{gathered} \sim_{\text {glue }}(p, 0, x)
$$

Morphisms are...
complicated to describe...

Defining Glue(Vec)

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:

1) is trivial over each base space
2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$
\begin{aligned}
& (p, x, 0) \sim_{\text {glue }}(q, 0, x) \\
& (q, x, 0) \sim_{\text {glue }}(r, 0, x) \\
& (r, x, 0) \sim_{\text {glue }}(p, 0, x)
\end{aligned}
$$

Morphisms are... complicated to describe...

Aggregating objects from a category is a well known task in category theory: this is obtained by freely adding colimits.

Defining Glue(Vec)

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:

1) is trivial over each base space
2) defines linear bijections between subspaces when restricted to pairs of base spaces.
$(p, x, 0) \sim_{\text {glue }}(q, 0, x)$
$(q, x, 0) \sim_{\text {glue }}(r, 0, x)$
$(r, x, 0) \sim_{\text {glue }}(p, 0, x)$

Morphisms are... complicated to describe...

Aggregating objects from a category is a well known task in category theory: this is obtained by freely adding colimits.

The category of glueings of vector spaces is the restriction of the co-completion of Vec to some specific colimits: monocolimits.

Defining Glue(Vec)

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:

1) is trivial over each base space
2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$
\begin{gathered}
(p, x, 0) \sim_{\text {glue }}(q, 0, x) \\
(q, x, 0) \sim_{\text {glue }}(r, 0, x) \\
(r, x, 0) \sim_{\text {glue }}(p, 0, x)
\end{gathered}
$$

Morphisms are... complicated to describe...

Aggregating objects from a category is a well known task in category theory: this is obtained by freely adding colimits.

The category of glueings of vector spaces is the restriction of the co-completion of Vec to some specific colimits: monocolimits.

The advantage is that the concepts are well known, definition properly stated, and this can be applied to other categories than Vec.

Example: continued

The minimal automaton for our example is:

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$
$i(x)=($ even,$x)$

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$
$i(x)=($ even,$x)$
$f($ even,$x)=x$
$f($ odd,$x)=0$

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$
$i(x)=($ even,$x)$
$\left.\begin{array}{l}f(\text { even }, x)=x \\ f(\text { odd }, x)=0\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$
$i(x)=($ even,$x)$
$\left.\begin{array}{l}f(\text { even }, x)=x \\ f(\text { odd }, x)=0\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$
$\delta_{a}($ even,$x)=($ even, $2 x)$
$\delta_{a}($ odd, $x)=($ odd, $2 x)$

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$
$i(x)=($ even,$x)$
$\left.\begin{array}{l}f(\text { even }, x)=x \\ f(\text { odd }, x)=0\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$
$\left.\begin{array}{l}\delta_{a}(\text { even }, x)=(\text { even, } 2 x) \\ \delta_{a}(\text { odd }, x)=(\text { odd }, 2 x)\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$

Example: continued

The minimal automaton for our example is:
$Q=(\{$ odd $\} \times \mathbb{R}) \cup(\{$ even $\} \times \mathbb{R})$
with (even, 0) $\sim_{\text {glue }}($ odd, 0$)$
$i(x)=($ even,$x)$
$\left.\begin{array}{l}f(\text { even }, x)=x \\ f(\text { odd }, x)=0\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$
$\left.\begin{array}{l}\delta_{a}(\text { even }, x)=(\text { even, } 2 x) \\ \delta_{a}(\text { odd }, x)=(\text { odd, } 2 x)\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$
$\left.\begin{array}{l}\delta_{b}(\text { even }, x)=(\text { odd, } x) \\ \delta_{b}(\text { odd, } x)=(\text { even }, x)\end{array}\right\} \quad$ agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$
$\delta_{c}($ even,$x)=($ even, 0$)$
$\delta_{c}($ odd,$x)=($ odd, 0$)$
agrees on $($ even, 0$) \sim_{\text {glue }}($ odd, 0$)$

Properties of automata one glueings of vector spaces

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language. There is a natural factorization system « (surjection like,injection like)».

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language. There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language. There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

$$
L\left(a^{n}\right)(x)=x \cos (n \alpha)
$$

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language. There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

$$
L\left(a^{n}\right)(x)=x \cos (n \alpha)
$$

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».
However, this yields wrong minimal automata:

$$
L\left(a^{n}\right)(x)=x \cos (n \alpha)
$$

«implementation»

For a not a rational multiple of π, the minimal automaton contains countable many copies of \mathbb{R}, ...one for each $n \ldots$

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».
However, this yields wrong minimal automata:

$$
L\left(a^{n}\right)(x)=x \cos (n \alpha)
$$

«implementation»

For a not a rational multiple of π, the minimal automaton contains countable many copies of \mathbb{R}, ...one for each $n \ldots$
This is not what we wanted: we implicitly wanted to minimize among finite glueings of finite dimension vector spaces.

Properties of automata one glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like)».
However, this yields wrong minimal automata:

$$
L\left(a^{n}\right)(x)=x \cos (n \alpha)
$$

«implementation»

For a not a rational multiple of π, the minimal automaton contains countable many copies of \mathbb{R}, ...one for each $n . .$.
This is not what we wanted: we implicitly wanted to minimize among finite glueings of finite dimension vector spaces.

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

$$
X \longrightarrow Y
$$

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in S.

$$
X \longrightarrow F \operatorname{Fact}(\mathrm{f}) \longrightarrow Y
$$

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in S.

Idea 1: factorization through

We introduce the notion of « factorization through a subcatefory».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in S.

Idea 1: factorization through

We introduce the notion of «factorization through a subcatefory».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in S.

Minimization can now be phrased as « finding the optimal automata for the language among finite glueings of finite dimension vector spaces »

Idea 1: factorization through

We introduce the notion of «factorization through a subcatefory».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in S.

Minimization can now be phrased as « finding the optimal automata for the language among finite glueings of finite dimension vector spaces » (note that this distinction is not necessary for Set or Vec)

Idea 2: unions of subspaces

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Idea 2: unions of subspaces

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $\mathrm{X} \subseteq \mathrm{V}$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)

Idea 2: unions of subspaces

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $\mathrm{X} \subseteq \mathrm{V}$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)

Idea 2: unions of subspaces

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $\mathrm{X} \subseteq \mathrm{V}$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)

Idea 2: unions of subspaces

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $\mathrm{X} \subseteq \mathrm{V}$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)

Configurations taken by the first Vec-automaton

Idea 2: unions of subspaces

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $\mathrm{X} \subseteq \mathrm{V}$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)

Configurations taken by the first Vec-automaton

Subspace that can be described as the glueing in 0 of two copies of \mathbb{R}.

Conclusion

Contributions

Contributions

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».

Contributions

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».

Related works

Contributions

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».
Related works
- Schützenberger's weighted automata, and its long continuations [Sakarovitch, Lombardy, Droste, Gastin, Vogler, ...]
- There is a long history of categorical view of minimization [Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke...]

Contributions

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».
Related works
- Schützenberger's weighted automata, and its long continuations [Sakarovitch, Lombardy, Droste, Gastin, Vogler, ...]
- There is a long history of categorical view of minimization [Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke...]

And then?

Contributions

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».
Related works
- Schützenberger's weighted automata, and its long continuations [Sakarovitch, Lombardy, Droste, Gastin, Vogler, ...]
- There is a long history of categorical view of minimization [Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke...]

And then?

- Make this construction effective... (generalization of sequencialization)
- tree automata
- algebras (monoids,...)
- infinite objects (omega-semigroup, o-semigroup, monads...).

