Automata minimization and glueing of categories

Computability in Europe 2017 June 15

Thomas Colcombet joint work with Daniela Petrişan

Automata minimization and glueing of categories

[MFCS 2017] & [Informal presentation in SIGLOG column]

Computability in Europe 2017 June 15

Thomas Colcombet joint work with Daniela Petrişan

Description of the situation

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the final map

 $\delta_a \colon Q \to Q$ is the transition map

Automata

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the final map

 $\delta_a \colon Q \to Q$ is the transition map

Automata

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the final map

 $\delta_a \colon Q \to Q$ is the transition map

$$[\![\mathcal{A}]\!]: A^* \to [1, 2]$$
$$u \mapsto f \circ \delta_u \circ i$$

Automata

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the final map

 $\delta_a \colon Q \to Q$ is the transition map

$$\llbracket \mathcal{A} \rrbracket \colon A^* \to [1, 2] \approx 2$$
$$u \mapsto f \circ \delta_u \circ i$$

Automata

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the final map

 $\delta_a \colon Q \to Q$ is the transition map

A vector automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q\to\mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$\llbracket \mathcal{A} \rrbracket \colon A^* \to [1, 2] \approx 2$$
$$u \mapsto f \circ \delta_u \circ i$$

Schützenberger's automata weighted over a field

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \to 2$ is the **final map**

 $\delta_a \colon Q \to Q$ is the transition map

A vector automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f: Q \to \mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$\llbracket \mathcal{A} \rrbracket \colon A^* \to [1, 2] \approx 2$$
$$u \mapsto f \circ \delta_u \circ i$$

Schützenberger's automata weighted over a field

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the **final map**

 $\delta_a \colon Q \to Q$ is the transition map

A vector automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q\to\mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

It computes the language:

$$[\![\mathcal{A}]\!]: A^* \to [1,2] \approx 2$$
$$u \mapsto f \circ \delta_u \circ i$$

$$[\![\mathcal{A}]\!]: A^* \to [\mathbb{R}, \mathbb{R}]$$
$$u \mapsto f \circ \delta_u \circ i$$

Schützenberger's automata weighted over a field

An deterministic automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a set of **states**,

 $i: 1 \rightarrow Q$ is the initial map

 $f: Q \rightarrow 2$ is the **final map**

 $\delta_a \colon Q \to Q$ is the transition map

A vector automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f: Q \to \mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

It computes the language:

$$[\![\mathcal{A}]\!]: A^* \to [1,2] \approx 2$$
$$u \mapsto f \circ \delta_u \circ i$$

$$[\![\mathcal{A}]\!]: A^* \to [\mathbb{R}, \mathbb{R}] \approx \mathbb{R}$$
$$u \mapsto f \circ \delta_u \circ i$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q \to \mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q \to \mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$Q = \mathbb{R}^2$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Q is an \mathbb{R} -vector space

$$i \colon \mathbb{R} \to Q$$
 is a linear map

$$f\colon Q \to \mathbb{R}$$
 is a linear map

$$\delta_a \colon Q \to Q$$
 is a linear map

$$Q = \mathbb{R}^2$$
$$i(x) = (x, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q \to \mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$Q = \mathbb{R}^2$$
$$i(x) = (x, 0)$$
$$f(x, y) = x$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q \to \mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Q is an \mathbb{R} -vector space

 $i \colon \mathbb{R} \to Q$ is a linear map

 $f\colon Q\to\mathbb{R}$ is a linear map

 $\delta_a \colon Q \to Q$ is a linear map

$$Q = \mathbb{R}^2$$

$$i(x) = (x,0)$$

$$f(x,y) = x$$

$$\delta_a(x,y) = (2x,2y)$$

$$\delta_b(x,y) = (y,x)$$

$$\delta_c(x,y) = (0,0)$$

Is it possible to do better?

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

 $L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$

Informally: use one bit for the parity to the number of b's.

$$Q = \mathbb{R}^2$$

$$i(x) = (x,0)$$

$$f(x,y) = x$$

$$\delta_a(x,y) = (2x,2y)$$

$$\delta_b(x,y) = (y,x)$$

$$\delta_c(x,y) = (0,0)$$

 $L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$

Informally: use one bit for the parity to the number of b's.

$$Q = (\{ \texttt{odd} \} \times \mathbb{R}) \cup (\{ \texttt{even} \} \times \mathbb{R})$$

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

 $L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$

Informally: use one bit for the parity to the number of b's.

$$Q = (\{ \texttt{odd} \} \times \mathbb{R}) \cup (\{ \texttt{even} \} \times \mathbb{R})$$
$$i(x) = (\texttt{even}, x)$$

$$Q = \mathbb{R}^2$$

$$i(x) = (x,0)$$

$$f(x,y) = x$$

$$\delta_a(x,y) = (2x,2y)$$

$$\delta_b(x,y) = (y,x)$$

$$\delta_c(x,y) = (0,0)$$

 $L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$

Informally: use one bit for the parity to the number of b's.

$$\begin{split} Q &= (\{ \texttt{odd} \} \times \mathbb{R}) \cup (\{ \texttt{even} \} \times \mathbb{R}) \\ i(x) &= (\texttt{even}, x) \\ f(\texttt{even}, x) &= x \\ f(\texttt{odd}, x) &= 0 \end{split}$$

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

 $L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$

Informally: use one bit for the parity to the number of b's.

$$Q = (\{ \text{odd} \} \times \mathbb{R}) \cup (\{ \text{even} \} \times \mathbb{R})$$
 $i(x) = (\text{even}, x)$
 $f(\text{even}, x) = x$
 $f(\text{odd}, x) = 0$
 $\delta_a(\text{even}, x) = (\text{even}, 2x)$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Informally: use one bit for the parity to the number of b's.

$$Q = (\{ \text{odd} \} \times \mathbb{R}) \cup (\{ \text{even} \} \times \mathbb{R})$$
 $i(x) = (\text{even}, x)$
 $f(\text{even}, x) = x$
 $f(\text{odd}, x) = 0$
 $\delta_a(\text{even}, x) = (\text{even}, 2x)$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$
 $\delta_b(\text{even}, x) = (\text{odd}, x)$
 $\delta_b(\text{odd}, x) = (\text{even}, x)$

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Informally: use one bit for the parity to the number of b's.

$$Q = (\{ ext{odd} \} imes \mathbb{R}) \cup (\{ ext{even} \} imes \mathbb{R})$$
 $i(x) = (ext{even}, x)$
 $f(ext{even}, x) = x$
 $f(ext{odd}, x) = 0$
 $\delta_a(ext{even}, x) = (ext{even}, 2x)$
 $\delta_a(ext{odd}, x) = (ext{odd}, 2x)$
 $\delta_b(ext{even}, x) = (ext{odd}, x)$
 $\delta_b(ext{odd}, x) = (ext{even}, x)$
 $\delta_c(ext{even}, x) = (ext{even}, 0)$
 $\delta_c(ext{odd}, x) = (ext{odd}, 0)$

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Informally: use one bit for the parity to the number of b's.

$$Q = (\{ \text{odd} \} \times \mathbb{R}) \cup (\{ \text{even} \} \times \mathbb{R})$$
 $i(x) = (\text{even}, x)$
 $f(\text{even}, x) = x$
 $f(\text{odd}, x) = 0$
 $\delta_a(\text{even}, x) = (\text{even}, 2x)$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$
 $\delta_b(\text{even}, x) = (\text{odd}, x)$
 $\delta_b(\text{odd}, x) = (\text{even}, x)$ Why is $\delta_c(\text{even}, x) = (\text{even}, 0)$ Is therefore $\delta_c(\text{odd}, x) = (\text{odd}, 0)$

Solution in vector spaces

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

Why is it a better implementation?

Is there a good notion of such automata?

What are their properties (e.g. minimization)?

A definition via categories

A category has objects and arrows

```
A category has objects and arrows X, Y, Z \dots
```

A category has objects and arrows

 $X, Y, Z \dots$ $f: X \to Y$

A category has objects and arrows $X,Y,Z\dots \qquad f\colon X\to Y$ source target

A category has objects and arrows

$$X, Y, Z \dots$$
 $f: X \to Y$ targe

- There is an identity arrow for all object:

$$\operatorname{Id}_X\colon X o X$$

A category has objects and arrows

$$X,Y,Z\dots$$
 $f\colon X\to Y$ source target

- There is an identity arrow for all object:

$$\operatorname{Id}_X\colon X o X$$

- Arrows compose: for $f: X \to Y$ and $g: Y \to Z$ there is an arrow:

$$g \circ f \colon X \to Z$$

A category has objects and arrows

$$X,Y,Z\dots$$
 $f\colon X\to Y$ source target

- There is an identity arrow for all object:

$$\operatorname{Id}_X\colon X o X$$

- Arrows compose: for $f: X \to Y$ and $g: Y \to Z$ there is an arrow:

$$g \circ f \colon X \to Z$$

+ some associatively axioms.

A category has objects and arrows

$$X,Y,Z\dots$$
 $f\colon X\to Y$ source target

- There is an identity arrow for all object:

$$\operatorname{Id}_X\colon X o X$$

- Arrows compose: for $f\colon X\to Y$ and $g\colon Y\to Z$ there is an arrow: $g\circ f\colon X\to Z$

+ some associatively axioms.

```
Set = (sets, maps)
Vec = (vector spaces, linear maps)
Aff = (affine spaces, affine maps)
Rel = (sets, binary relations)
```

A (C,I,F)-automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a object of **states**,

 $i: I \to Q$ is the initial arrow

 $f\colon Q\to F$ is the **final arrow**

 $\delta_a \colon Q \to Q$ is the transition arrow

for the letter a.

A (C,I,F)-automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a object of **states**,

 $i: I \to Q$ is the initial arrow

 $f: Q \to F$ is the **final arrow**

 $\delta_a \colon Q \to Q$ is the transition arrow

for the letter a.

The (C,I,F)-language computed is:

$$[\![\mathcal{A}]\!]: A^* \to [I, F]$$

$$u \mapsto f \circ \delta_u \circ i$$

A (C,I,F)-automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a object of **states**,

 $i: I \to Q$ is the initial arrow

 $f: Q \to F$ is the **final arrow**

 $\delta_a \colon Q \to Q$ is the transition arrow

for the letter a.

The (C,I,F)-language computed is:

$$[\![\mathcal{A}]\!]: A^* \to [I, F]$$
$$u \mapsto f \circ \delta_u \circ i$$

Auto(L) is the category of (C,I,F)-automata for the (C,I,F)-language L.

A (C,I,F)-automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a object of **states**,

 $i: I \rightarrow Q$ is the initial arrow

 $f: Q \to F$ is the **final arrow**

 $\delta_a \colon Q \to Q$ is the **transition arrow** for the letter a.

The (C,I,F)-language computed is:

$$[\![\mathcal{A}]\!]: A^* \to [I, F]$$
$$u \mapsto f \circ \delta_u \circ i$$

Auto(L) is the category of (C,I,F)-automata for the (C,I,F)-language L.

A morphism is an arrow

$$h: Q_{\mathcal{A}} \to Q_{\mathcal{B}}$$

such that tfdc:

$$I \stackrel{i_{\mathcal{A}}}{\smile} Q_{\mathcal{B}} \qquad Q_{\mathcal{A}} \qquad Q_{\mathcal{A}} \stackrel{\delta_{\mathcal{A}}(a)}{\longrightarrow} Q_{\mathcal{A}} \qquad Q_{\mathcal{A}}$$

A (C,I,F)-automaton is

$$\langle Q, i, f, (\delta_a)_{a \in A} \rangle$$

where

Q is a object of **states**,

 $i: I \to Q$ is the initial arrow

 $f: Q \to F$ is the **final arrow**

 $\delta_a \colon Q \to Q$ is the **transition arrow** for the letter a.

The (C,I,F)-language computed is:

$$[\![\mathcal{A}]\!]: A^* \to [I, F]$$
$$u \mapsto f \circ \delta_u \circ i$$

Auto(L) is the category of (C,I,F)-automata for the (C,I,F)-language L.

A morphism is an arrow

$$h: Q_{\mathcal{A}} \to Q_{\mathcal{B}}$$

such that tfdc:

$$I \xrightarrow{i_{\mathcal{A}}} Q_{\mathcal{A}} \qquad Q_{\mathcal{A}} \xrightarrow{\delta_{\mathcal{A}}(a)} Q_{\mathcal{A}} \qquad Q_{\mathcal{A}} \xrightarrow{f_{\mathcal{A}}} F$$
 $\downarrow h \qquad h \downarrow \qquad \downarrow h \qquad h \downarrow \qquad \downarrow f_{\mathcal{B}} F$
 $Q_{\mathcal{B}} \qquad Q_{\mathcal{B}} \xrightarrow{\delta_{\mathcal{B}}(a)} Q_{\mathcal{B}} \qquad Q_{\mathcal{B}} \xrightarrow{f_{\mathcal{B}}(a)} F$

Rk: Morphisms preserve the language.

A (C,I,F)-automaton is $\langle Q, i, f, (\delta_a)_{a \in A} \rangle$

where

Q is a object of **states**,

 $i: I \to Q$ is the initial arrow

 $f: Q \to F$ is the **final arrow**

 $\delta_a \colon Q \to Q$ is the **transition arrow** for the letter a.

The (C,I,F)-language computed is:

$$[\![\mathcal{A}]\!]: A^* \to [I, F]$$
$$u \mapsto f \circ \delta_u \circ i$$

Auto(L) is the category of (C,I,F)-automata for the (C,I,F)-language L.

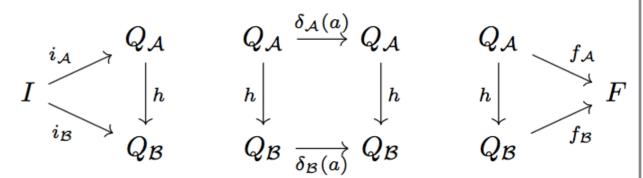
- (Set,1,2)-automata are deterministic automata
- (Rel,1,1)-automata are nondeterministic automata
- (Vec,K,K)-automata are automata weighted over a field K. (more generally semi-modules)

-

A morphism is an arrow

$$h\colon Q_{\mathcal{A}}\to Q_{\mathcal{B}}$$

such that tfdc:



Rk: Morphisms preserve the language.

Category of disjoint unions of vector spaces (free contracts)

(free co-product completion of **Vec**)

A disjoint union of vector space is an ordered pair

$$(I,(V_i)_{i\in I})$$

where I is a set of indices, and V_i is a vector space for all $i \in I$.

A disjoint union of vector space is an ordered pair

$$(I,(V_i)_{i\in I})$$

where I is a set of indices, and V_i is a vector space for all $i \in I$.

Let **Duvs** be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A disjoint union of vector space is an ordered pair

$$(I,(V_i)_{i\in I})$$

where I is a set of indices, and V_i is a vector space for all $i \in I$.

Let **Duvs** be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $(I,(V_i)_{i\in I})$ to $(J,(W_i)_{i\in J})$ is the pair of:

A disjoint union of vector space is an ordered pair

$$(I,(V_i)_{i\in I})$$

where I is a set of indices, and V_i is a vector space for all $i \in I$.

Let **Duvs** be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $(I,(V_i)_{i\in I})$ to $(J,(W_i)_{i\in J})$ is the pair of: - a map f from I to J

A disjoint union of vector space is an ordered pair

$$(I,(V_i)_{i\in I})$$

where I is a set of indices, and V_i is a vector space for all $i \in I$.

Let **Duvs** be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $(I,(V_i)_{i\in I})$ to $(J,(W_i)_{i\in J})$ is the pair of:

- a map f from I to J
- a linear map g_i from V_i to $W_{f(i)}$ for all $i \in I$.

A disjoint union of vector space is an ordered pair

$$(I,(V_i)_{i\in I})$$

where I is a set of indices, and V_i is a vector space for all $i \in I$.

Let **Duvs** be the category with

- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from $(I,(V_i)_{i\in I})$ to $(J,(W_i)_{i\in J})$ is the pair of:

- a map f from I to J
- a linear map g_i from V_i to $W_{f(i)}$ for all $i \in I$.

Remark: Vec is a subcategory of Duvs.

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} Q &= (\{\mathsf{odd}\} \times \mathbb{R}) \cup (\{\mathsf{even}\} \times \mathbb{R}) \\ i(x) &= (\mathsf{even}, x) \\ f(\mathsf{even}, x) &= x \\ f(\mathsf{odd}, x) &= 0 \\ \delta_a(\mathsf{even}, x) &= (\mathsf{even}, 2x) \\ \delta_a(\mathsf{odd}, x) &= (\mathsf{odd}, 2x) \\ \delta_b(\mathsf{even}, x) &= (\mathsf{odd}, x) \\ \delta_b(\mathsf{odd}, x) &= (\mathsf{even}, x) \\ \delta_c(\mathsf{even}, x) &= (\mathsf{even}, 0) \\ \delta_c(\mathsf{odd}, x) &= (\mathsf{odd}, 0) \end{split}$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{\operatorname{odd}\} \times \mathbb{R}) \cup (\{\operatorname{even}\} \times \mathbb{R})$$

$$i(x) = (\operatorname{even}, x)$$

$$f(\operatorname{even}, x) = x$$

$$f(\operatorname{odd}, x) = 0$$

$$\delta_a(\operatorname{even}, x) = (\operatorname{even}, 2x)$$

$$\delta_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$$

$$\delta_b(\operatorname{even}, x) = (\operatorname{odd}, x)$$

$$\delta_b(\operatorname{odd}, x) = (\operatorname{odd}, x)$$

$$\delta_b(\operatorname{odd}, x) = (\operatorname{even}, x)$$

$$\delta_c(\operatorname{even}, x) = (\operatorname{even}, 0)$$

$$\delta_c(\operatorname{odd}, x) = (\operatorname{odd}, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{\mathsf{odd}\} \times \mathbb{R}) \cup (\{\mathsf{even}\} \times \mathbb{R})$$

$$i(x) = (\mathsf{even}, x)$$

$$f(\mathsf{even}, x) = x$$

$$f(\mathsf{odd}, x) = 0$$

$$\delta_a(\mathsf{even}, x) = (\mathsf{even}, 2x)$$

$$\delta_a(\mathsf{odd}, x) = (\mathsf{odd}, 2x)$$

$$\delta_b(\mathsf{even}, x) = (\mathsf{odd}, x)$$

$$\delta_b(\mathsf{odd}, x) = (\mathsf{odd}, x)$$

$$\delta_b(\mathsf{odd}, x) = (\mathsf{even}, x)$$

$$\delta_c(\mathsf{even}, x) = (\mathsf{even}, 0)$$

$$\delta_c(\mathsf{odd}, x) = (\mathsf{odd}, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{\text{odd}\} \times \mathbb{R}) \cup (\{\text{even}\} \times \mathbb{R})$$

$$Indices = \{\text{odd}, \text{even}\}$$

$$V_{\text{odd}} = V_{\text{even}} = \mathbb{R}$$

$$i(x) = (\text{even}, x)$$

$$f(\text{even}, x) = x$$

 $f(\text{odd}, x) = 0$

$$\delta_a(\text{even}, x) = (\text{even}, 2x)$$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$
 $\delta_b(\text{even}, x) = (\text{odd}, x)$
 $\delta_b(\text{odd}, x) = (\text{even}, x)$
 $\delta_c(\text{even}, x) = (\text{even}, 0)$
 $\delta_c(\text{odd}, x) = (\text{odd}, 0)$

Is it minimal?

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{ \text{odd} \} \times \mathbb{R}) \cup (\{ \text{even} \} \times \mathbb{R})$$

$$Indices = \{ \text{odd}, \text{even} \}$$

$$V_{\text{odd}} = V_{\text{even}} = \mathbb{R}$$

$$i(x) = (\text{even}, x)$$

$$f(\mathtt{even}, x) = x$$
$$f(\mathtt{odd}, x) = 0$$

$$\delta_a(\text{even}, x) = (\text{even}, 2x)$$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$
 $\delta_b(\text{even}, x) = (\text{odd}, x)$
 $\delta_b(\text{odd}, x) = (\text{even}, x)$
 $\delta_c(\text{even}, x) = (\text{even}, 0)$
 $\delta_c(\text{odd}, x) = (\text{odd}, 0)$

Is it minimal? No...

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{\operatorname{odd}\} \times \mathbb{R}) \cup (\{\operatorname{even}\} \times \mathbb{R})$$
 $i(x) = (\operatorname{even}, x)$
 $f(\operatorname{even}, x) = x$
 $f(\operatorname{odd}, x) = 0$
Is
 $\delta_a(\operatorname{even}, x) = (\operatorname{even}, 2x)$
 $\delta_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$
 $\delta_b(\operatorname{even}, x) = (\operatorname{odd}, x)$
 $\delta_b(\operatorname{odd}, x) = (\operatorname{even}, x)$
 $\delta_c(\operatorname{even}, x) = (\operatorname{even}, 0)$
 $\delta_c(\operatorname{odd}, x) = (\operatorname{odd}, 0)$

Indices =
$$\{ ext{odd}, ext{even}\}$$

Is it minimal? No...

(odd, 0) and (even, 0) are observationally equivalent

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{\operatorname{odd}\} \times \mathbb{R}) \cup (\{\operatorname{even}\} \times \mathbb{R})$$
 $i(x) = (\operatorname{even}, x)$
 $f(\operatorname{even}, x) = x$
 $f(\operatorname{odd}, x) = 0$
Is
 $\delta_a(\operatorname{even}, x) = (\operatorname{even}, 2x)$
 $\delta_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$
 $\delta_b(\operatorname{even}, x) = (\operatorname{odd}, x)$
 $\delta_b(\operatorname{odd}, x) = (\operatorname{even}, x)$
 $\delta_c(\operatorname{even}, x) = (\operatorname{even}, 0)$
 $\delta_c(\operatorname{odd}, x) = (\operatorname{odd}, 0)$

Indices =
$$\{ ext{odd}, ext{even} \}$$

Is it minimal? No...

(odd, 0) and (even, 0) are observationally equivalent

But the implementation is arbitrary.

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{ \text{odd}\} \times \mathbb{R}) \cup (\{ \text{even}\} \times \mathbb{R})$$

$$Indices = \{ \text{odd}, \text{even}\}$$

$$V_{\text{odd}} = V_{\text{even}} = \mathbb{R}$$

$$i(x) = (\text{even}, x)$$

$$f(\mathtt{even}, x) = x$$
$$f(\mathtt{odd}, x) = 0$$

$$\delta_a(\text{even}, x) = (\text{even}, 2x)$$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$
 $\delta_b(\text{even}, x) = (\text{odd}, x)$
 $\delta_b(\text{odd}, x) = (\text{even}, x)$
 $\delta_c(\text{even}, x) = (\text{even}, 0)$

 $\delta_c(\text{odd}, x) = (\text{odd}, 0)$

Is it minimal? No...

(odd, 0) and (even, 0) are observationally equivalent But the implementation is arbitrary.

Can it be made minimal?

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{ \texttt{odd} \} \times \mathbb{R}) \cup (\{ \texttt{even} \} \times \mathbb{R})$$

$$Indices = \{ \texttt{odd}, \texttt{even} \}$$

$$V_{\texttt{odd}} = V_{\texttt{even}} = \mathbb{R}$$

$$f(\text{even}, x) = x$$

 $f(\text{odd}, x) = 0$

$$\delta_a(\text{even}, x) = (\text{even}, 2x)$$
 $\delta_a(\text{odd}, x) = (\text{odd}, 2x)$
 $\delta_b(\text{even}, x) = (\text{odd}, x)$
 $\delta_b(\text{odd}, x) = (\text{even}, x)$
 $\delta_c(\text{even}, x) = (\text{even}, 0)$

$$\begin{array}{l} \delta_c(\mathtt{even},x) = (\mathtt{even},0) \\ \delta_c(\mathtt{odd},x) = (\mathtt{odd},0) \end{array}$$

Is it minimal? No...

(odd, 0) and (even, 0) are observationally equivalent But the implementation is arbitrary.

Can it be made minimal? No...

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{ \operatorname{odd} \} \times \mathbb{R}) \cup (\{ \operatorname{even} \} \times \mathbb{R})$$

$$Indices = \{ \operatorname{odd}, \operatorname{even} \}$$

$$V_{\operatorname{odd}} = V_{\operatorname{even}} = \mathbb{R}$$

$$f(\operatorname{even}, x) = x$$

$$f(\operatorname{odd}, x) = 0$$

$$S_a(\operatorname{even}, x) = (\operatorname{even}, 2x)$$

$$\delta_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$$

$$S_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$$

$$Is \text{ it minimal ?} \quad \text{No...}$$

$$(\operatorname{odd}, 0) \text{ and } (\operatorname{even}, 0) \text{ are observationally equivalent}$$

$$S_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$$

 $\delta_b(\mathtt{even},x) = (\mathtt{odd},x)$

 $\delta_b(\text{odd}, x) = (\text{even}, x)$

 $\delta_c(\text{even}, x) = (\text{even}, 0)$

 $\delta_c(\text{odd}, x) = (\text{odd}, 0)$

Can it be made minimal? No...

But the implementation is arbitrary.

Well, in fact Yes... but would be larger...

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$Q = (\{\operatorname{odd}\} \times \mathbb{R}) \cup (\{\operatorname{even}\} \times \mathbb{R})$$
 $i(x) = (\operatorname{even}, x)$
 $f(\operatorname{even}, x) = x$
 $f(\operatorname{odd}, x) = 0$
Is
 $\delta_a(\operatorname{even}, x) = (\operatorname{even}, 2x)$
 $\delta_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x)$
 $\delta_b(\operatorname{even}, x) = (\operatorname{odd}, x)$
 $\delta_b(\operatorname{odd}, x) = (\operatorname{even}, x)$
 $\delta_c(\operatorname{even}, x) = (\operatorname{even}, 0)$
 $\delta_c(\operatorname{odd}, x) = (\operatorname{odd}, 0)$
We have $\delta_c(\operatorname{odd}, x) = (\operatorname{odd}, 0)$

 $Indices = \{odd, even\}$

 $V_{ extsf{odd}} = V_{ extsf{even}} = \mathbb{R}$

Is it minimal? No...

(odd, 0) and (even, 0) are observationally equivalent But the implementation is arbitrary.

Can it be made minimal? No...

Well, in fact Yes... but would be larger... What can be done?

Minimizing automata via categories

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal?

« A DFA is minimal if it divides any other automaton for the same language. »

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal?

« A DFA is minimal if it divides any other automaton for the same language. »

it is the quotient of a subautomaton.

Questions:

Given a (C,I,F)-automaton,

- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal?

« A DFA is minimal if it divides any other automaton for the same language. »

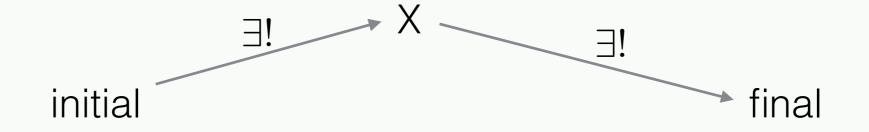
it is the quotient of a subautomaton.

notion of « surjection »

notion of « injection »

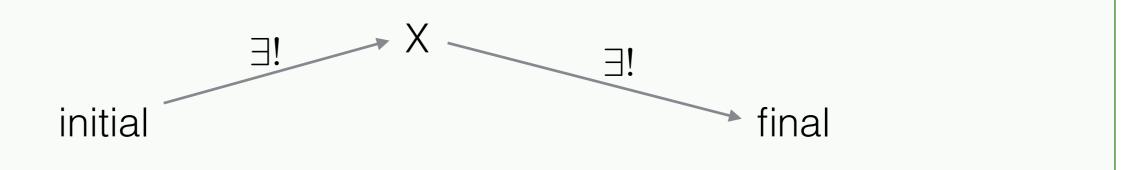
In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object



In a category, an object is

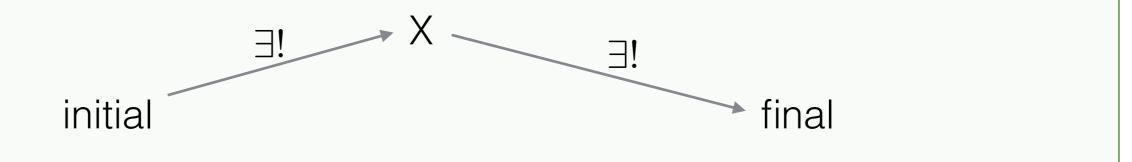
- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object



For Set and Vec-automata, there is an initial and a final automaton for each language.

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object



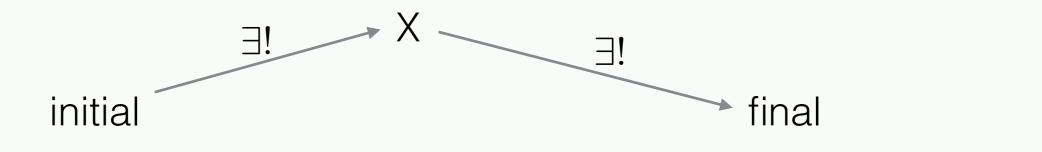
For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial (Set,1,2)-automaton for L:

- states = A^*
- init(.) = ε
- final(u) = L(u)
- $\delta a(u) = ua$

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object



For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial (Set,1,2)-automaton for L:

- states = A^*
- init(.) = ε
- final(u) = L(u)
- $\delta a(u) = ua$

Final (Set,1,2)-automaton for L:

- states = languages
- init(.) = L
- final(R) = $R(\varepsilon)$
- δ a(R) = {u : au∈R}

In a category, an object is

- initial if there is one and exactly one arrow from it to every other object
- final if there is one and exactly one arrow to it from every other object

For Set and Vec-automata, there is an initial and a final automaton for each language.

Initial (Set,1,2)-automaton for L:

- states = A^*
- init(.) = ε
- final(u) = L(u)
- $\delta_a(u) = ua$

Final (Set,1,2)-automaton for L:

- states = languages
- init(.) = L
- final(R) = R(ε)
- $\delta_a(R) = \{u : au \in R\}$

Remark: Initial and final automata exist as soon as the category has countable copowers and powers (works e.g. for Set, Vec, Aff,...).

Factorization systems

A pair of families of arrows $(\mathcal{E},\mathcal{M})$ is a **factorization system** if:

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in \mathcal{E} are closed under composition
- arrows in ${\mathcal M}$ are closed under composition

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in \mathcal{E} are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in \mathcal{E} are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \to Y$ can be written

$$f = m \circ e$$

for some $e: X \to Z$ in \mathcal{E} and $m: Z \to Y$ in \mathcal{M} .

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in ${\mathcal E}$ are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \to Y$ can be written

$$f = m \circ e$$

the factorization of f.

for some $e: X \to Z$ in \mathcal{E} and $m: Z \to Y$ in \mathcal{M} .

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in ${\mathcal E}$ are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \to Y$ can be written

$$f=m\circ e$$
 the factorization of f .

for some $e: X \to Z$ in \mathcal{E} and $m: Z \to Y$ in \mathcal{M} .

 furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in ${\mathcal E}$ are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \to Y$ can be written

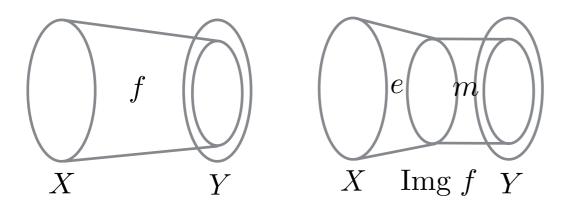
$$f = m \circ e$$

the **factorization** of f.

for some $e: X \to Z$ in \mathcal{E} and $m: Z \to Y$ in \mathcal{M} .

 furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

In Set:



A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in $\mathcal E$ are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \to Y$ can be written

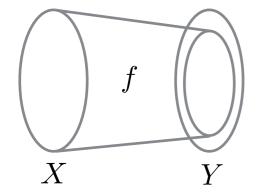
$$f = m \circ e$$

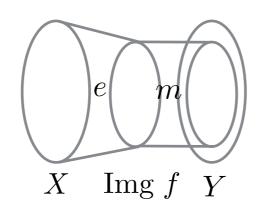
the **factorization** of f.

for some $e: X \to Z$ in \mathcal{E} and $m: Z \to Y$ in \mathcal{M} .

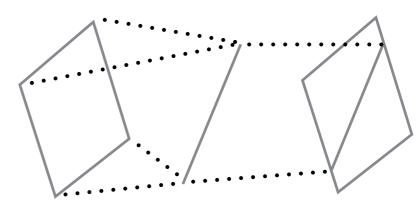
- furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

In Set:





In Vec:



A pair of families of arrows $(\mathcal{E}, \mathcal{M})$ is a **factorization system** if:

- arrows in $\mathcal E$ are closed under composition
- arrows in $\mathcal M$ are closed under composition
- arrows that are both in \mathcal{E} and in \mathcal{M} are isomorphisms,
- all arrows $f: X \to Y$ can be written

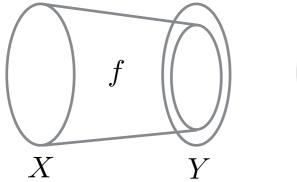
$$f = m \circ e$$

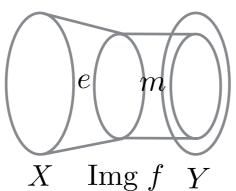
the **factorization** of f.

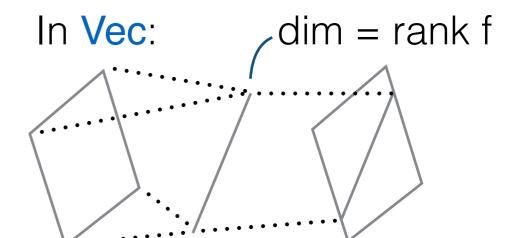
for some $e: X \to Z$ in \mathcal{E} and $m: Z \to Y$ in \mathcal{M} .

- furthermore, this decomposition is unique up to isomorphism (it has in fact the stronger « diagonal property »).

In Set:







Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C} -automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C} .

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C} -automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C} .

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system (surjective morphisms, injective morphisms).

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C} -automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C} .

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system (surjective morphisms, injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field) possess factorization system (surjective morphisms, injective morphisms).

Lemma: If there is a factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} then it can be lifted to the category of \mathcal{C} -automata for a language: these automata morphisms that belong to \mathcal{E} (resp. \mathcal{M}) as arrows in \mathcal{C} .

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system (surjective morphisms, injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field) possess factorization system (surjective morphisms, injective morphisms).

Definition:

- an \mathcal{M} -subobject X of Y is such that there is an \mathcal{M} -arrow $m: X \to Y$,
- an \mathcal{E} -quotient X of Y is such that there is an \mathcal{E} -arrow $e: Y \to X$,
- X $(\mathcal{E}, \mathcal{M})$ -divides Y if it is a \mathcal{E} -quotient of an \mathcal{M} -subobject of Y.

Lemma: In a category with initial object, final object, and a factorization system $(\mathcal{E}, \mathcal{M})$ then:

- there exists an object Min that $(\mathcal{E}, \mathcal{M})$ -divides all objects,
- furthermore $\operatorname{Min} \approx \operatorname{Obs}(\operatorname{Reach}(X)) \approx \operatorname{Reach}(\operatorname{Obs}(X))$ for all X , where
 - Reach(X) is the factorization of the only arrow from I to X, and
 - $\mathtt{Obs}(X)$ is the factorization of the only arrow from X to F.

Lemma: In a category with initial object, final object, and a factorization system $(\mathcal{E}, \mathcal{M})$ then:

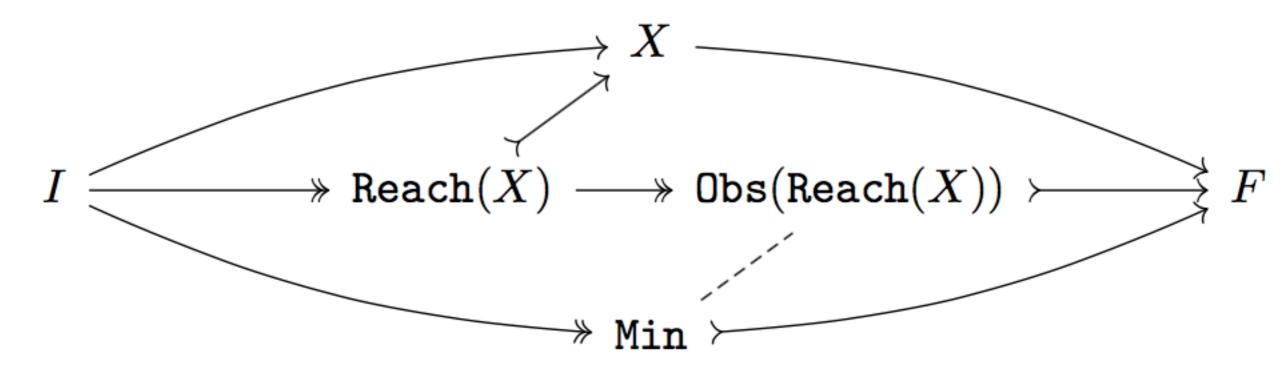
- there exists an object Min that $(\mathcal{E}, \mathcal{M})$ -divides all objects,
- furthermore $\operatorname{Min} \approx \operatorname{Obs}(\operatorname{Reach}(X)) \approx \operatorname{Reach}(\operatorname{Obs}(X))$ for all X , where
 - $\operatorname{Reach}(X)$ is the factorization of the only arrow from I to X, and
 - $\mathtt{Obs}(X)$ is the factorization of the only arrow from X to F.

Proof: Min is the factorization of the only arrow from I to F. And...

Lemma: In a category with initial object, final object, and a factorization system $(\mathcal{E}, \mathcal{M})$ then:

- there exists an object Min that $(\mathcal{E},\mathcal{M})$ -divides all objects,
- furthermore $\operatorname{Min} \approx \operatorname{Obs}(\operatorname{Reach}(X)) \approx \operatorname{Reach}(\operatorname{Obs}(X))$ for all X , where
 - Reach(X) is the factorization of the only arrow from I to X, and
 - Obs(X) is the factorization of the only arrow from X to F.

Proof: Min is the factorization of the only arrow from I to F. And...



At this point...

We know that:

 C-automata and C-languages can be defined generally in a category C, yielding a

category Auto(L) of « C-automata for the language L »

- for having a minimal object in a category, it is sufficient to have:
 - 1) an initial and a final object in the category for the language,
 - 2) a factorization system in tC,
- that the existence of initial and final automata arise from simple assumptions on C,
- that the factorization system for automata is inherited from C,
- that standard minimization for **DFA** and **field weighted automata** are obtained this way.

At this point...

We know that:

 C-automata and C-languages can be defined generally in a category C, yielding a

category Auto(L) of « C-automata for the language L »

- for having a minimal object in a category, it is sufficient to have:
 - 1) an initial and a final object in the category for the language,
 - 2) a factorization system in tC,
- that the existence of initial and final automata arise from simple assumptions on C,
- that the factorization system for automata is inherited from C,
- that standard minimization for DFA and field weighted automata are obtained this way.

But, what about minimizing duvs-automata?

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

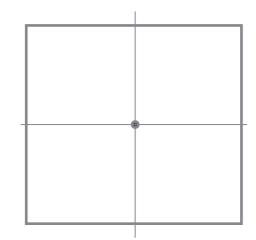
$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$



$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

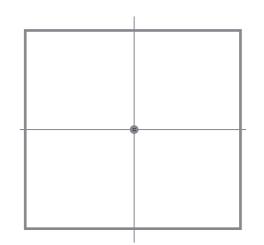
$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$



Duvs-automaton

$$Q = \{ ext{odd}, ext{even} \} imes \mathbb{R}$$
 $i(x) = (ext{even}, x)$
 $f(ext{even}, x) = x$
 $f(ext{odd}, x) = 0$
 $\delta_a(ext{even}, x) = (ext{even}, 2x)$
 $\delta_a(ext{odd}, x) = (ext{odd}, 2x)$
 $\delta_b(ext{even}, x) = (ext{odd}, x)$
 $\delta_b(ext{odd}, x) = (ext{even}, x)$
 $\delta_c(ext{even}, x) = (ext{even}, 0)$
 $\delta_c(ext{odd}, x) = (ext{odd}, 0)$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

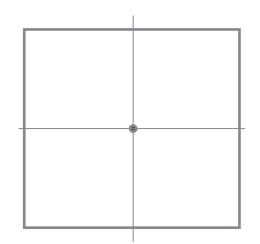
$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$



Duvs-automaton

$$Q = \{ ext{odd}, ext{even} \} imes \mathbb{R}$$
 $i(x) = (ext{even}, x)$ $f(ext{even}, x) = x$ $f(ext{odd}, x) = 0$ $\delta_a(ext{even}, x) = (ext{even}, 2x)$ $\delta_a(ext{odd}, x) = (ext{odd}, 2x)$ $\delta_b(ext{even}, x) = (ext{odd}, x)$ $\delta_b(ext{odd}, x) = (ext{even}, x)$ $\delta_c(ext{even}, x) = (ext{even}, 0)$ $\delta_c(ext{odd}, x) = (ext{odd}, 0)$

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

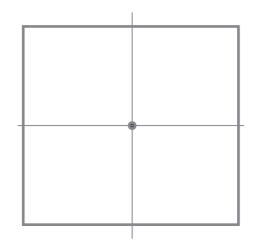
$$i(x) = (x,0)$$

$$f(x,y) = x$$

$$\delta_a(x,y) = (2x,2y)$$

$$\delta_b(x,y) = (y,x)$$

$$\delta_c(x,y) = (0,0)$$



Duvs-automaton

$$Q = \{ ext{odd}, ext{even} \} imes \mathbb{R}$$
 $i(x) = (ext{even}, x)$
 $f(ext{even}, x) = x$
 $f(ext{odd}, x) = 0$
 $\delta_a(ext{even}, x) = (ext{even}, 2x)$
 $\delta_a(ext{odd}, x) = (ext{odd}, 2x)$
 $\delta_b(ext{even}, x) = (ext{odd}, x)$
 $\delta_b(ext{odd}, x) = (ext{even}, x)$
 $\delta_c(ext{even}, x) = (ext{even}, 0)$
 $\delta_c(ext{odd}, x) = (ext{odd}, 0)$

Glue(Vec)-automaton

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

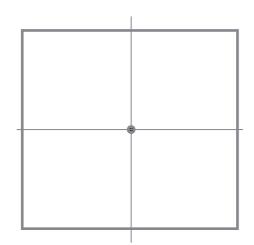
$$i(x) = (x,0)$$

$$f(x,y) = x$$

$$\delta_a(x,y) = (2x,2y)$$

$$\delta_b(x,y) = (y,x)$$

$$\delta_c(x,y) = (0,0)$$



Duvs-automaton

$$Q = \{ ext{odd}, ext{even} \} imes \mathbb{R}$$
 $i(x) = (ext{even}, x)$
 $f(ext{even}, x) = x$
 $f(ext{odd}, x) = 0$
 $\delta_a(ext{even}, x) = (ext{even}, 2x)$
 $\delta_a(ext{odd}, x) = (ext{odd}, 2x)$
 $\delta_b(ext{even}, x) = (ext{odd}, x)$
 $\delta_b(ext{odd}, x) = (ext{even}, x)$
 $\delta_c(ext{even}, x) = (ext{even}, 0)$
 $\delta_c(ext{odd}, x) = (ext{odd}, 0)$

Glue(Vec)-automaton

$$L_{\text{Vec}}(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even, and } |u|_c = 0\\ 0 & \text{otherwise} \end{cases}$$

Vec-automaton

$$Q = \mathbb{R}^2$$

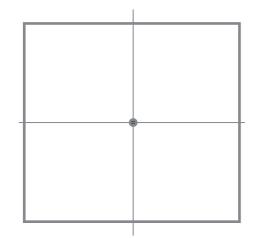
$$i(x) = (x, 0)$$

$$f(x, y) = x$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

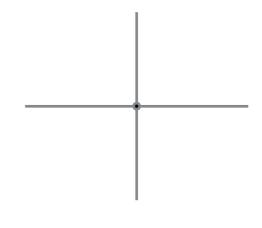
$$\delta_c(x, y) = (0, 0)$$



Duvs-automaton

$$\begin{split} Q &= \{ \text{odd}, \text{even} \} \times \mathbb{R} \\ i(x) &= (\text{even}, x) \\ f(\text{even}, x) &= x \\ f(\text{odd}, x) &= 0 \\ \delta_a(\text{even}, x) &= (\text{even}, 2x) \\ \delta_a(\text{odd}, x) &= (\text{odd}, 2x) \\ \delta_b(\text{even}, x) &= (\text{odd}, x) \\ \delta_b(\text{odd}, x) &= (\text{even}, x) \\ \delta_c(\text{even}, x) &= (\text{even}, 0) \\ \delta_c(\text{odd}, x) &= (\text{odd}, 0) \end{split}$$

Glue(Vec)-automaton



A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:
 - 1) is trivial over each base space
 - 2) defines linear bijections between subspaces when restricted to pairs of base spaces.

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:
 - 1) is trivial over each base space
 - 2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$(p, x, 0) \sim_{\text{glue}} (q, 0, x)$$

 $(q, x, 0) \sim_{\text{glue}} (r, 0, x)$
 $(r, x, 0) \sim_{\text{glue}} (p, 0, x)$

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:
 - 1) is trivial over each base space
 - 2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$(p, x, 0) \sim_{\text{glue}} (q, 0, x)$$
 $(q, x, 0) \sim_{\text{glue}} (r, 0, x)$
 $(r, x, 0) \sim_{\text{glue}} (p, 0, x)$

Morphisms are... complicated to describe...

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:
 - 1) is trivial over each base space
 - 2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$(p, x, 0) \sim_{\text{glue}} (q, 0, x)$$

 $(q, x, 0) \sim_{\text{glue}} (r, 0, x)$
 $(r, x, 0) \sim_{\text{glue}} (p, 0, x)$

Morphisms are... complicated to describe...

Aggregating objects from a category is a well known task in category theory: this is obtained by freely adding colimits.

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:
 - 1) is trivial over each base space
 - 2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$(p, x, 0) \sim_{\text{glue}} (q, 0, x)$$
 $(q, x, 0) \sim_{\text{glue}} (r, 0, x)$
 $(r, x, 0) \sim_{\text{glue}} (p, 0, x)$

Morphisms are... complicated to describe...

Aggregating objects from a category is a well known task in category theory: this is obtained by freely adding colimits.

The category of glueings of vector spaces is the restriction of the co-completion of Vec to some specific colimits: monocolimits.

A glueing of vector space is

- a disjoint union of vector spaces
- together with an equivalence relation which:
 - 1) is trivial over each base space
 - 2) defines linear bijections between subspaces when restricted to pairs of base spaces.

$$(p, x, 0) \sim_{\text{glue}} (q, 0, x)$$
 $(q, x, 0) \sim_{\text{glue}} (r, 0, x)$
 $(r, x, 0) \sim_{\text{glue}} (p, 0, x)$

Morphisms are... complicated to describe...

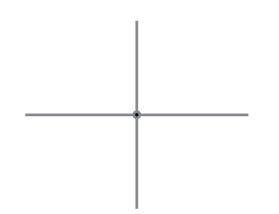
Aggregating objects from a category is a well known task in category theory: this is obtained by freely adding colimits.

The category of glueings of vector spaces is the restriction of the co-completion of Vec to some specific colimits: monocolimits.

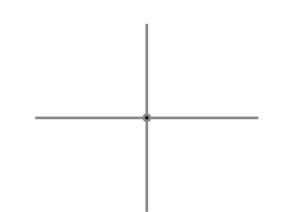
The advantage is that the concepts are well known, definition properly stated, and this can be applied to other categories than **Vec**.

$$Q = (\{ \texttt{odd} \} \times \mathbb{R}) \cup (\{ \texttt{even} \} \times \mathbb{R})$$
 with $(\texttt{even}, 0) \sim_{\texttt{glue}} (\texttt{odd}, 0)$

$$Q=(\{ ext{odd}\} imes\mathbb{R})\cup(\{ ext{even}\} imes\mathbb{R})$$
 with $(ext{even},0)\sim_{ ext{glue}}(ext{odd},0)$
$$i(x)=(ext{even},x)$$



$$\begin{split} Q &= (\{ \text{odd} \} \times \mathbb{R}) \cup (\{ \text{even} \} \times \mathbb{R}) \\ \text{with } (\text{even}, 0) \sim_{\text{glue}} (\text{odd}, 0) \\ i(x) &= (\text{even}, x) \\ f(\text{even}, x) &= x \\ f(\text{odd}, x) &= 0 \end{split}$$



```
\begin{split} Q &= (\{ \operatorname{odd} \} \times \mathbb{R}) \cup (\{ \operatorname{even} \} \times \mathbb{R}) \\ & \text{with } (\operatorname{even}, 0) \sim_{\text{glue}} (\operatorname{odd}, 0) \\ & i(x) = (\operatorname{even}, x) \\ & f(\operatorname{even}, x) = x \\ & f(\operatorname{odd}, x) = 0 \end{split} \right\} \quad \text{agrees on } (\operatorname{even}, 0) \sim_{\text{glue}} (\operatorname{odd}, 0) \end{split}
```

```
\begin{split} Q &= (\{ \operatorname{odd} \} \times \mathbb{R}) \cup (\{ \operatorname{even} \} \times \mathbb{R}) \\ & \text{with } (\operatorname{even}, 0) \sim_{\text{glue}} (\operatorname{odd}, 0) \\ i(x) &= (\operatorname{even}, x) \\ f(\operatorname{even}, x) &= x \\ f(\operatorname{odd}, x) &= 0 \end{split} \right\} \quad \text{agrees on } (\operatorname{even}, 0) \sim_{\text{glue}} (\operatorname{odd}, 0) \\ \delta_a(\operatorname{even}, x) &= (\operatorname{even}, 2x) \\ \delta_a(\operatorname{odd}, x) &= (\operatorname{odd}, 2x) \end{split}
```

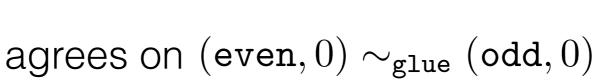
```
\begin{split} Q &= (\{ \operatorname{odd} \} \times \mathbb{R}) \cup (\{ \operatorname{even} \} \times \mathbb{R}) \\ & \text{with } (\operatorname{even}, 0) \sim_{\operatorname{glue}} (\operatorname{odd}, 0) \\ & i(x) = (\operatorname{even}, x) \\ & f(\operatorname{even}, x) = x \\ & f(\operatorname{odd}, x) = x \\ & f(\operatorname{odd}, x) = 0 \end{split} \quad \text{agrees on } (\operatorname{even}, 0) \sim_{\operatorname{glue}} (\operatorname{odd}, 0) \\ & \delta_a(\operatorname{even}, x) = (\operatorname{even}, 2x) \\ & \delta_a(\operatorname{odd}, x) = (\operatorname{odd}, 2x) \end{split} \quad \text{agrees on } (\operatorname{even}, 0) \sim_{\operatorname{glue}} (\operatorname{odd}, 0) \end{split}
```

The minimal automaton for our example is:

```
Q = (\{ \mathtt{odd} \} \times \mathbb{R}) \cup (\{ \mathtt{even} \} \times \mathbb{R})
with (even, 0) \sim_{\mathtt{glue}} (\mathtt{odd}, 0)
i(x) = (even, x)
```

 $f(\mathtt{even}, x) = x$ $f(\mathtt{odd}, x) = 0$

 $\delta_c(\text{odd}, x) = (\text{odd}, 0)$



```
\delta_a(\text{even}, x) = (\text{even}, 2x)
                                                     agrees on (even, 0) \sim_{\tt glue} (\mathtt{odd}, 0)
\delta_a(\text{odd},x) = (\text{odd},2x)
\delta_b(\text{even}, x) = (\text{odd}, x)
                                                     agrees on (even, 0) \sim_{\mathtt{glue}} (\mathtt{odd}, 0)
\delta_b(\text{odd}, x) = (\text{even}, x)
\delta_c(\text{even}, x) = (\text{even}, 0)
                                                     agrees on (even, 0) \sim_{\tt glue} (\mathtt{odd}, 0)
```

There exists an initial and a final automaton for a Glue(Vec)-language.

There exists an initial and a final automaton for a Glue(Vec)-language.

There is a natural factorization system « (surjection like,injection like) ».

There exists an initial and a final automaton for a Glue(Vec)-language.

There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

There exists an initial and a final automaton for a Glue(Vec)-language.

There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

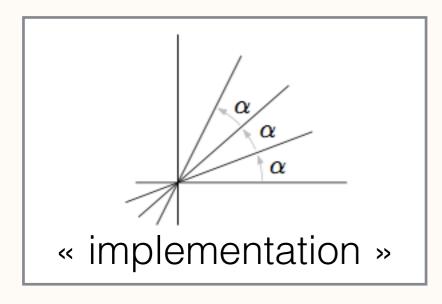
$$L(a^n)(x) = x\cos(n\alpha)$$

There exists an initial and a final automaton for a Glue(Vec)-language.

There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

$$L(a^n)(x) = x\cos(n\alpha)$$

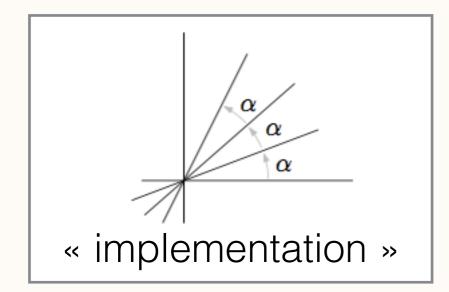


There exists an initial and a final automaton for a Glue(Vec)-language.

There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

$$L(a^n)(x) = x\cos(n\alpha)$$

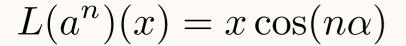


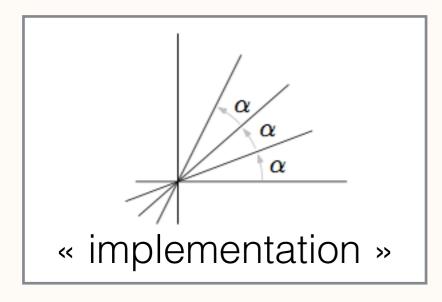
For α not a rational multiple of π , the minimal automaton contains countable many copies of \mathbb{R} , ...one for each n...

There exists an initial and a final automaton for a Glue(Vec)-language.

There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:





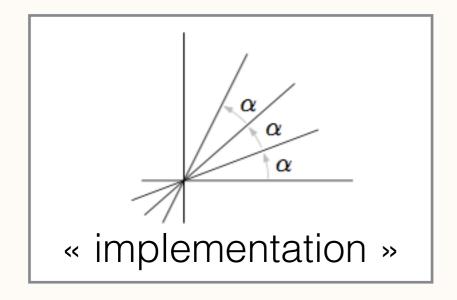
For α not a rational multiple of π , the minimal automaton contains countable many copies of \mathbb{R} , ...one for each n...

This is not what we wanted: we implicitly wanted to minimize among finite glueings of finite dimension vector spaces.

There exists an initial and a final automaton for a Glue(Vec)-language. There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

$$L(a^n)(x) = x\cos(n\alpha)$$



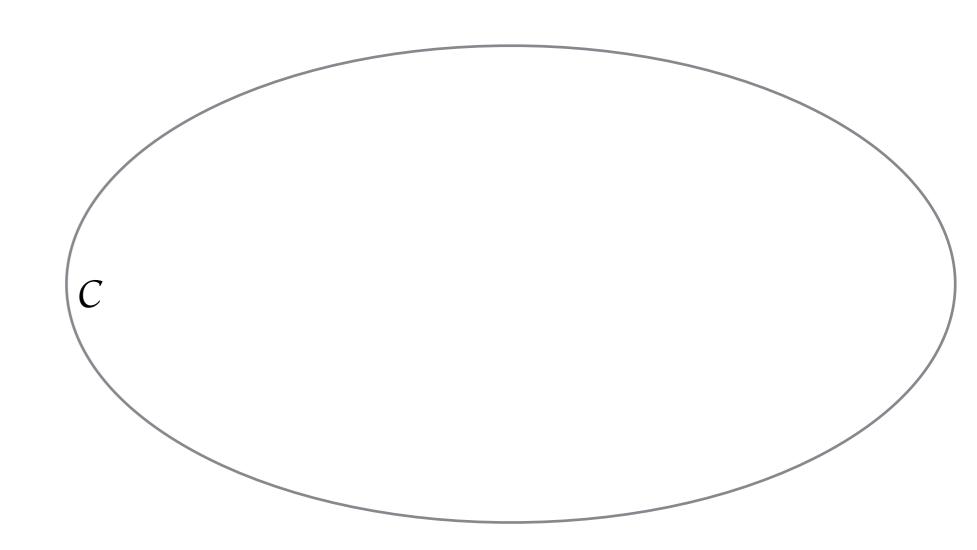
For a not a rational multiple of π , the minimal automaton contains countable many copies of \mathbb{R} , ...one for each n...

This is not what we wanted: we implicitly wanted to minimize among finite glueings of finite dimension vector spaces.

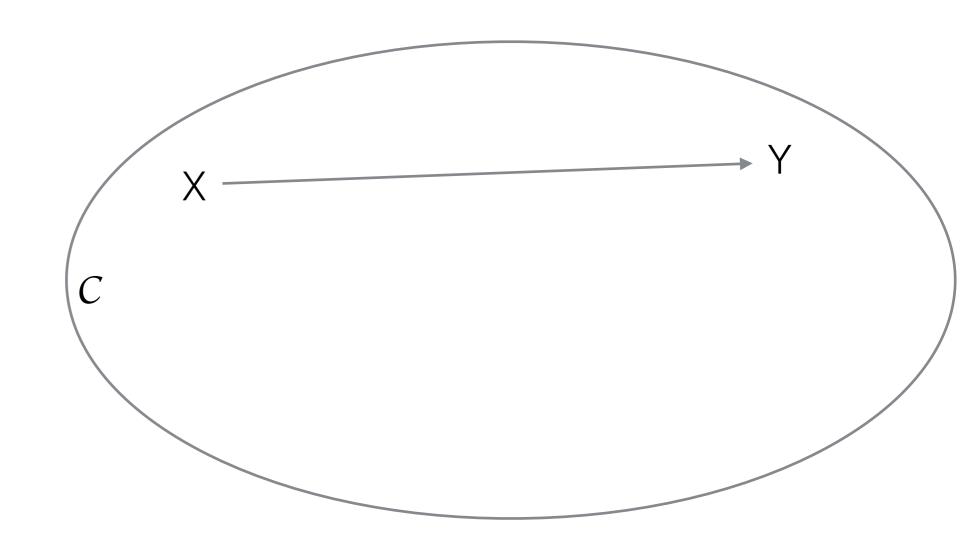
Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

We introduce the notion of « factorization through a subcatefory ».

We introduce the notion of « factorization through a subcatefory ».



We introduce the notion of « factorization through a subcatefory ».



We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

We introduce the notion of « factorization through a subcatefory ».

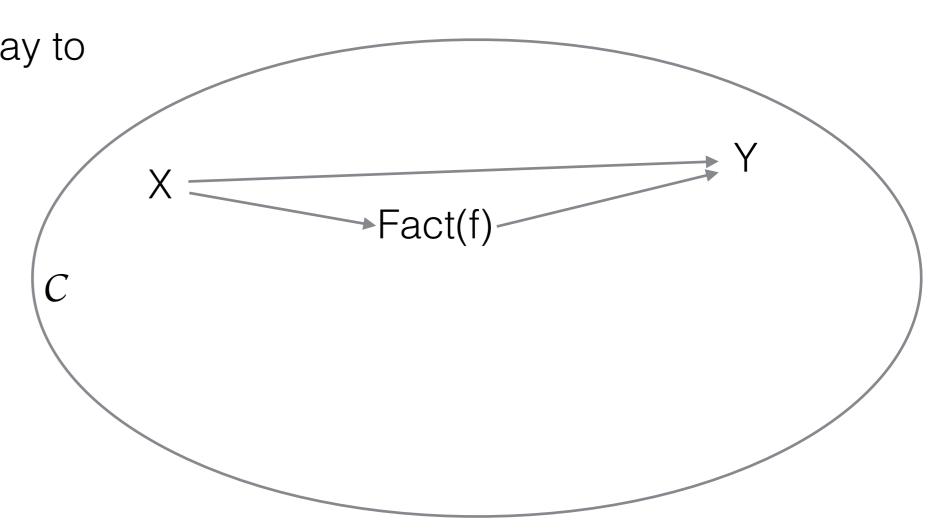
A factorization is a way to break an arrow in an optimally chosen middle point.

X
Fact(f)

We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

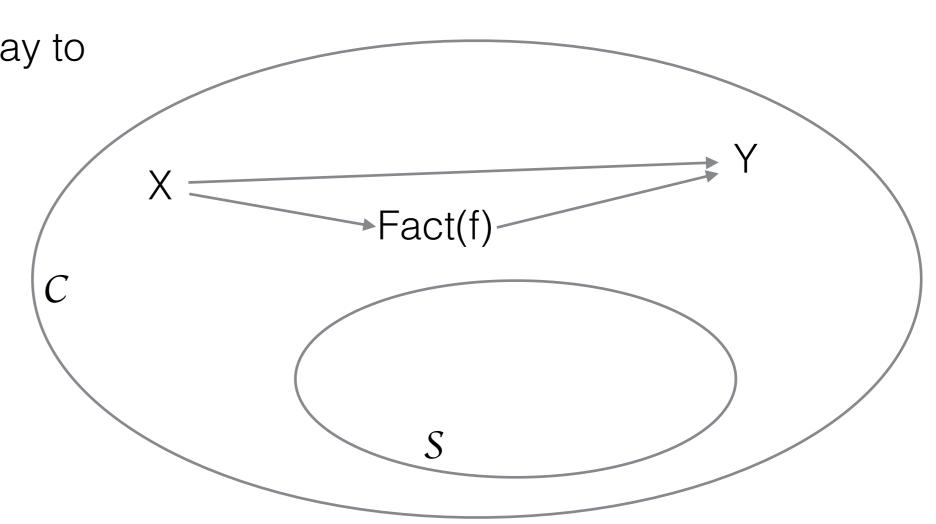
A factorization through is a way to break an arrow in an optimally chosen middle point in *S*.



We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

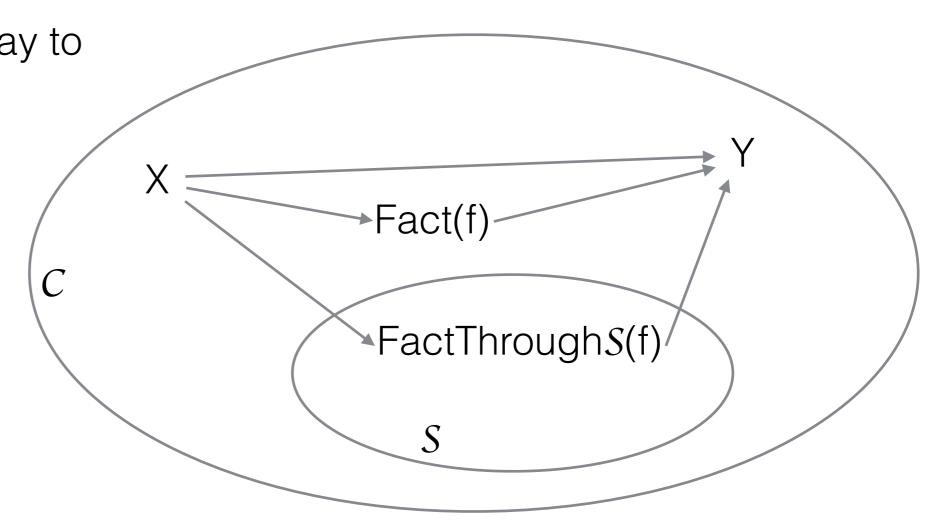
A factorization through is a way to break an arrow in an optimally chosen middle point in *S*.



We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

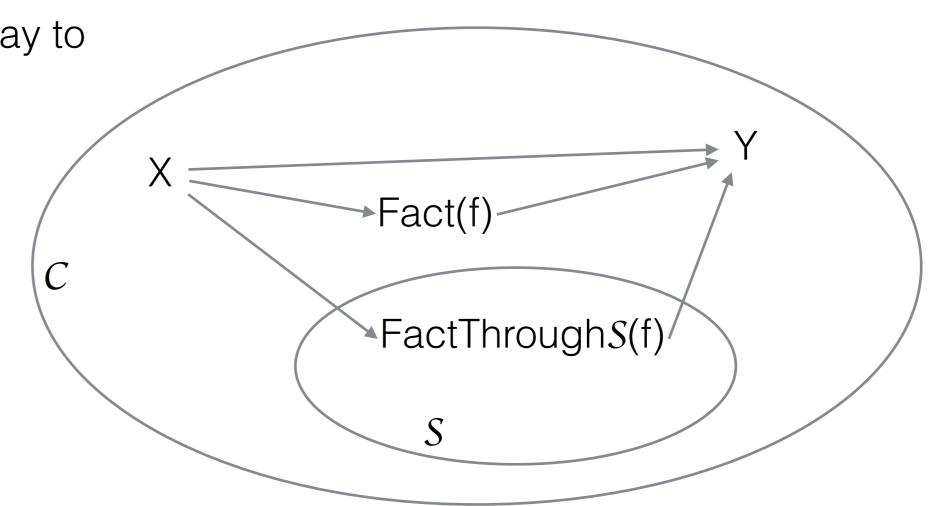
A factorization through is a way to break an arrow in an optimally chosen middle point in *S*.



We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in *S*.

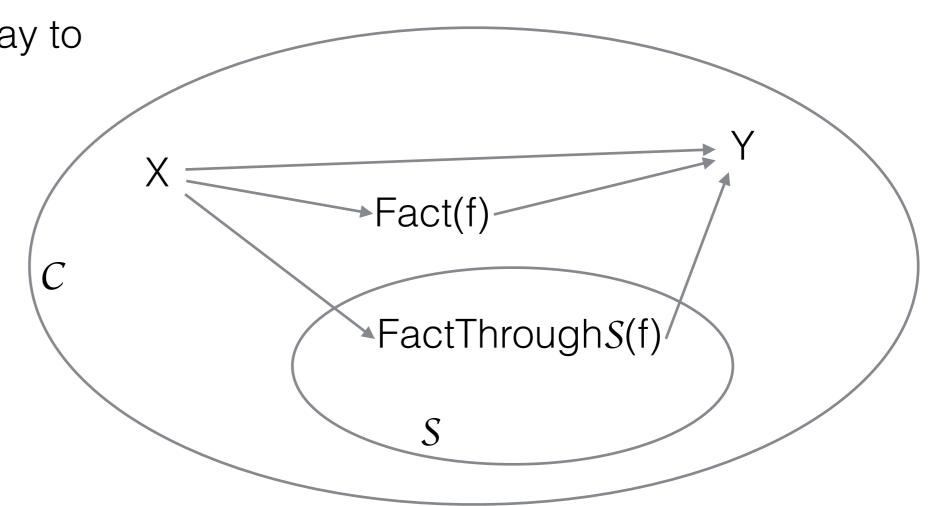


Minimization can now be phrased as « finding the optimal automata for the language among finite glueings of finite dimension vector spaces »

We introduce the notion of « factorization through a subcatefory ».

A factorization is a way to break an arrow in an optimally chosen middle point.

A factorization through is a way to break an arrow in an optimally chosen middle point in *S*.



Minimization can now be phrased as « finding the optimal automata for the language among finite glueings of finite dimension vector spaces »

(note that this distinction is not necessary for **Set** or **Vec**)

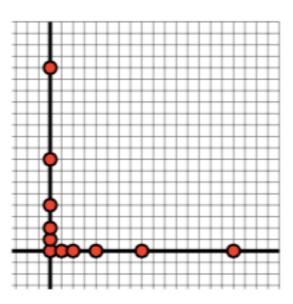
Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $X \subseteq V$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)

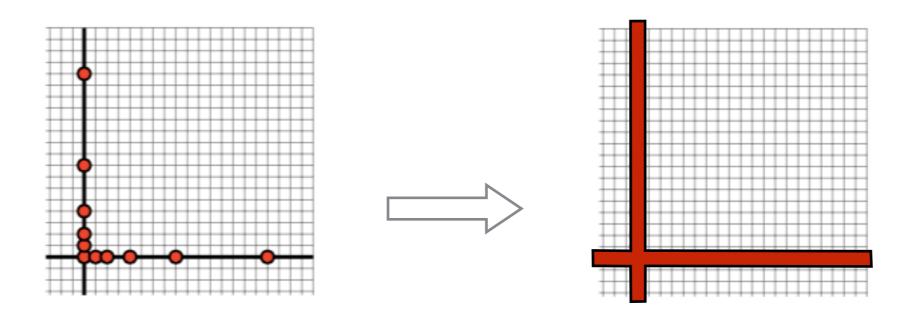
Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $X \subseteq V$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)



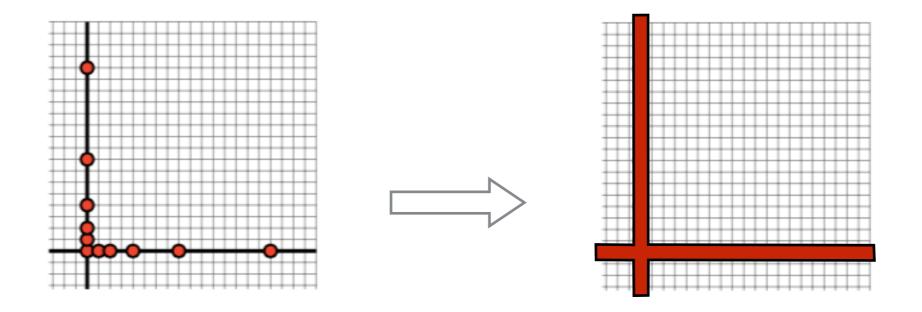
Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $X \subseteq V$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)



Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

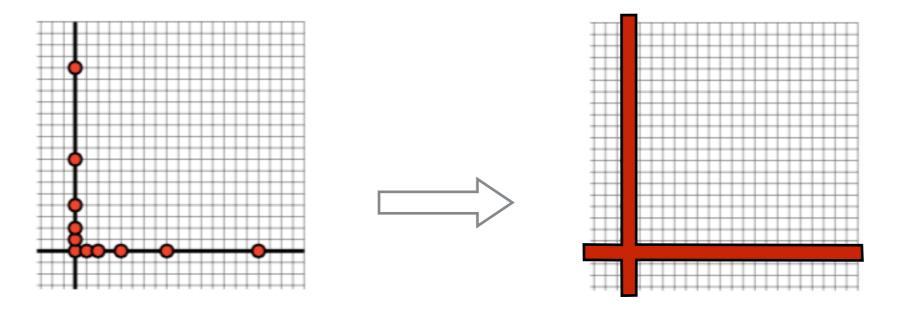
Essential idea in the machinery: For all set $X \subseteq V$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)



Configurations taken by the first Vec-automaton

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-automata, there exists a minimal automaton for the language among GlueFin(VecFin)-automata.

Essential idea in the machinery: For all set $X \subseteq V$ vector space, there exists a least (for inclusion finite union of subspaces that contains V.)



Configurations taken by the first **Vec**-automaton

Subspace that can be described as the glueing in 0 of two copies of \mathbb{R} .

Conclusion

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield **natural classes** of minimizable automata using **« glueings »**.

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».

Related works

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield **natural classes** of minimizable automata using **« glueings »**.

Related works

- Schützenberger's weighted automata, and its long continuations [Sakarovitch, Lombardy, Droste, Gastin, Vogler, ...]
- There is a long history of categorical view of minimization [Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke...]

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield **natural classes** of minimizable automata using **« glueings »**.

Related works

- Schützenberger's weighted automata, and its long continuations [Sakarovitch, Lombardy, Droste, Gastin, Vogler, ...]
- There is a long history of categorical view of minimization [Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke...]

And then?

- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of minimizable automata using « glueings ».

Related works

- Schützenberger's weighted automata, and its long continuations [Sakarovitch, Lombardy, Droste, Gastin, Vogler, ...]
- There is a long history of categorical view of minimization [Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke...]

And then?

- Make this construction effective... (generalization of sequencialization)
- tree automata
- algebras (monoids,...)
- infinite objects (omega-semigroup, o-semigroup, monads...).