The bridge between regular cost functions and omega-regular languages

Thomas Colcombet and Nathanaël Fijalkow ICALP July 152016

A quantitative extension of
 The bridge between regular cost functions and omega-regular languages

	The bridge between regular cost functions and	A quantitative extension of regular languages
Regular languages over words of length ω	omega-regular languages	

Thomas Colcombet and Nathanaël Fijalkow ICALP July 152016

Thomas Colcombet and Nathanaël Fijalkow ICALP July 152016

Regular cost functions

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
$(L+\varepsilon)^{n}=L^{*}$?

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
$(L+\varepsilon)^{n}=L^{*}$?
(Finite power property [Simon])
Over all words u (infinite trees t), the fixpoint of $\phi(x, Z)$ is reached within at most n steps?

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
$(L+\varepsilon)^{n}=L^{*} \quad ?$
(Finite power property [Simon])
Over all words u (infinite trees t), the fixpoint of $\phi(x, Z)$ is reached within at most n steps? (boundedness of fixpoint [Blumensath\&Otto\&Weyer])

For all words u (tree t), there exists a regular expression of star-height k of size n that accepts a subset of L that contains u (resp. t)?
(star-height problem [Hashiguchii, Kirsten, C\&Lödling])

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
$(L+\varepsilon)^{n}=L^{*}$?
(Finite power property [Simon])
Over all words u (infinite trees t), the fixpoint of $\phi(x, Z)$ is reached within at most n steps? (boundedness of fixpoint [Blumensath\&Otto\&Weyer])

For all words u (tree t), there exists a regular expression of star-height k of size n that accepts a subset of L that contains u (resp. t)?
(star-height problem [Hashiguchi, Kirsten, C\&Lödling])
For all infinite trees t, there exists a parity automaton of index [i,j], and size n that accepts a subset of L that contains t? (Mostowski [CL,CKLvB])

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
$(L+\varepsilon)^{n}=L^{*} \quad$?
(Finite power property [Simon])
Over all words u (infinite trees t), the fixpoint of $\phi(x, Z)$ is reached within at most n steps? (boundedness of fixpoint [Blumensath\&Otto\&Weyer])

For all words u (tree t), there exists a regular expression of star-height k of size n that accepts a subset of L that contains u (resp. t)?
(star-height problem [Hashiguchil, Kirsten, C\&Lödling])
For all infinite trees t, there exists a parity automaton of index [i,j], and size n that accepts a subset of L that contains t? (Mostowski [CL,CKLvB]) The Church synthesis problem can be solved up to an error of n bits?
([Rabinovitch\&Velner])

Regular cost functions

Regular languages:
toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
$(L+\varepsilon)^{n}=L^{*} \quad$?
(Finite power property [Simon])
Over all words u (infinite trees t), the fixpoint of $\phi(x, Z)$ is reached within at most n steps? (boundedness of fixpoint [Blumensath\&Otto\&Weyer])

For all words u (tree t), there exists a regular expression of star-height k of size n that accepts a subset of L that contains u (resp. t)?
(star-height problem [Hashiguchil, Kirsten, C\&Lödling])
For all infinite trees t, there exists a parity automaton of index [i,j], and size n that accepts a subset of L that contains t? (Mostowski [CL,CKLvB])

The Church synthesis problem can be solved up to an error of n bits?
([Rabinovitch\&Velner])
For all these questions, we do not care about precise values.

Regular cost functions ideas

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
can be seen as two (unusual) languages:

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
can be seen as two (unusual) languages:
$\{\mathrm{u}: \mathrm{f}(\mathrm{u})$ is small $\}$

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
can be seen as two (unusual) languages:

$$
\{\mathrm{u}: \mathrm{f}(\mathrm{u}) \text { is small }\}
$$

$\{\mathrm{u}: \mathrm{f}(\mathrm{u})$ is large $\}$

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
can be seen as two (unusual) languages:
$\{\mathrm{u}: \mathrm{f}(\mathrm{u})$ is small $\}$

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \quad$ it has a formal meaning in can be seen as two (unusual) languages:

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \quad$ it has a formal meaning in can be seen as two (unusual) languages:

$\{\mathbf{u}: \mathrm{f}(\mathrm{u}) \text { is small }\}^{\text {ext }} \xrightarrow[\sim]{\text { complement }}\{\mathbf{u}: \mathrm{f}(\mathrm{u}) \text { is large }\}^{\text {ext }}$

Functions that are large on the same inputs are $\approx-$ equivalent.

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \quad$ it has a formal meaning in can be seen as two (unusual) languages:

Functions that are large on the same inputs are $\approx-$ equivalent.
Example: $f(u)=$ the length of longest block of consecutive a's

$$
\left(a^{\text {small }} b\right)^{*} a^{\text {small }} \underset{\text { complement }}{ }\left(a^{*} b\right)^{*} a^{\text {large }}\left(b a^{*}\right)^{*}
$$

Regular cost functions ideas

A regular cost function $f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \quad$ it has a formal meaning in can be seen as two (unusual) languages:

Functions that are large on the same inputs are $\approx-$ equivalent.
Example: $f(u)=$ the length of longest block of consecutive a's

$$
\left(a^{\text {small }} b\right)^{*} a^{\text {small }} \underset{\sim}{c o m p l e m e n t}\left(a^{*} b\right)^{*} a^{\text {large }}\left(b a^{*}\right)^{*}
$$

Main theorem of regular cost functions:

B-rational expressions

(stabilisation monoids,up-sets)

S-rational expressions S-automata cost $\mathrm{MSO}_{\|}$
(stabilisation monoids,down-sets)

Difficulties of REG(cost functions)

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Automata cannot be determinized, while it is required for treating the case of trees.
One has to resort in history-deterministic automata which are more involved to handle.

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Automata cannot be determinized, while it is required for treating the case of trees.
One has to resort in history-deterministic automata which are more involved to handle.
Similarities with REG(infinite objects)

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Automata cannot be determinized, while it is required for treating the case of trees.
One has to resort in history-deterministic automata which are more involved to handle.

Similarities with REG(infinite objects)

$$
(a b)^{n} a=a(b a)^{n} \quad(n \text { large })
$$

$$
(a b)^{\omega}=a(b a)^{\omega}
$$

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Automata cannot be determinized, while it is required for treating the case of trees.
One has to resort in history-deterministic automata which are more involved to handle.

Similarities with REG(infinite objects)

$$
(a b)^{n} a=a(b a)^{n} \quad(n \text { large }) \quad(a b)^{\omega}=a(b a)^{\omega}
$$

High levels ideas are similar:
use of games for dealing with trees

- use of the ideal decomposition of monoids

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Automata cannot be determinized, while it is required for treating the case of trees.
One has to resort in history-deterministic automata which are more involved to handle.

$$
\begin{aligned}
& \text { Similarities with REG(infinite objects) } \\
& (a b)^{n} a=a(b a)^{n} \quad(n \text { large }) \quad(a b)^{\omega}=a(b a)^{\omega}
\end{aligned}
$$

High levels ideas are similar:
use of games for dealing with trees
use of the ideal decomposition of monoids
The most efficient translations from B/S-automata to historydeterministic B/S-automata mimic the ideas of Safra's construction.

Difficulties of REG(cost functions)

Manipulating bounds everywhere in the proofs is costly. ns-analysis
Constructions are complicated, and in particular more complicated than for infinite words.

Automata cannot be determinized, while it is required for treating the case of trees.
One has to resort in history-deterministic automata which are more involved to handle.

$$
\begin{aligned}
& \text { Similarities with REG(infinite objects) } \\
& \begin{array}{l}
(a b)^{n} a=a(b a)^{n} \\
(n \text { large })
\end{array}(a b)^{\omega}=a(b a)^{\omega}
\end{aligned}
$$

High levels ideas are similar:
use of games for dealing with trees
use of the ideal decomposition of monoids
The most efficient translations from B/S-automata to historydeterministic B/S-automata mimic the ideas of Safra's construction.

This work makes formal some similarities, and use it to factorizing proofs.

The bridge

$L \subseteq A^{\omega}$
 \section*{The bridge}

$L \subseteq A^{\omega}$

The bridge ${ }_{f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}}$
(up to \approx)
Regular cost functions

$L \subseteq A^{\omega}$

The bridge $\begin{array}{l:l}A^{*} \rightarrow \mathbb{N} \cup\{\infty\}\end{array}$ (up to \approx)

Definition: For $L \subseteq A^{\omega}$,

$$
\begin{aligned}
& L^{\circ 1}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
&\left.v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

$L \subseteq A^{\omega}$

Definition: For $L \subseteq A^{\omega}$,

$$
\begin{aligned}
& L^{\circ \mathrm{l}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
&\left.v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

Lemma: For $L \subseteq A^{\omega}$ regular, $L^{\circ 1}$ is a regular cost function.
The bridge $_{f: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}}$ (up to \approx)

$L \subseteq A^{\omega}$

Definition: For $L \subseteq A^{\omega}$,

$$
\begin{aligned}
& L^{\circ 1}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
&\left.v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$ L^{01} is a regular cost function.

$L \subseteq A^{\omega}$

Definition: For $L \subseteq A^{\omega}$,

$$
\begin{aligned}
& L^{\mathrm{ol}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
&\left.v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

Lemma: For $L \subseteq A^{\omega}$ regular, L^{01} is a regular cost function.

$$
\lim _{n} L^{01}\left(u v^{n}\right)=\infty
$$

$L \subseteq A^{\omega}$

Definition: For $L \subseteq A^{\omega}$,

$$
\begin{aligned}
& L^{\circ \mathrm{l}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
& \\
& \left.v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

Lemma: For $L \subseteq A^{\omega}$ regular, L^{01} is a regular cost function.

Lemma: $u v^{\omega} \in L$ iff

$$
\lim _{n} L^{01}\left(u v^{n}\right)=\infty
$$

Lemma: The ol map is injective.

$L \subseteq A^{\omega}$

Definition: For $L \subseteq A^{\omega}$,

$$
\begin{aligned}
& L^{\circ \mathrm{l}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
& \\
& \left.v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

Lemma: For $L \subseteq A^{\omega}$ regular, L^{01} is a regular cost function.

Lemma: $u v^{\omega} \in L$ iff

$$
\lim _{n} L^{01}\left(u v^{n}\right)=\infty
$$

Lemma: The ol map is injective.

First examples of the bridge

$$
L \subseteq A^{\omega}
$$

$$
\begin{aligned}
L^{\circ 1}: A^{*} & \rightarrow \mathbb{N} \cup\{\infty\} \\
u & \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
& \left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

First examples of the bridge

$$
L \subseteq A^{\omega}
$$

$$
\begin{aligned}
& L^{\mathrm{ol}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
&\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

$$
\text { Buchi }=\left(1^{*} 2\right)^{\omega}
$$

First examples of the bridge

$$
L \subseteq A^{\omega}
$$

$$
\begin{aligned}
& L^{\mathrm{ol}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
&\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

$$
\text { Buchi }=\left(1^{*} 2\right)^{\omega}
$$

$$
|\cdot|_{2}
$$

First examples of the bridge

$$
L \subseteq A^{\omega}
$$

$$
\begin{aligned}
& L^{\circ \mathrm{ol}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
& \\
& \left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

$$
\text { Buchi }=\left(1^{*} 2\right)^{\omega}
$$

$$
|\cdot|_{2}
$$

$$
\text { coBuch }=(0+1)^{*} 0^{\omega}
$$

First examples of the bridge

$$
L \subseteq A^{\omega}
$$

$$
\begin{aligned}
& L^{\circ \mathrm{l}}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\} \\
& u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
& w_{1}, \ldots, w_{n} \neq \varepsilon \\
& \\
& \left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
\end{aligned}
$$

$$
\text { Buchi }=\left(1^{*} 2\right)^{\omega}
$$

$$
\text { coBuchi }=(0+1)^{*} 0^{\omega}
$$

$$
|\cdot|_{2}
$$

maxblock $_{0}$

First examples of the bridge

$$
L \subseteq A^{\omega}
$$

$$
L^{\circ 1}: A^{*} \rightarrow \mathbb{N} \cup\{\infty\}
$$

$$
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right.
$$

$$
w_{1}, \ldots, w_{n} \neq \varepsilon
$$

$$
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\}
$$

$$
\text { Buchi }=\left(1^{*} 2\right)^{\omega}
$$

$$
\operatorname{coBuchi}=(0+1)^{*} 0^{\omega}
$$

parity $_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup u_{n}\right.$ even $\}$

First examples of the bridge

$$
\begin{gathered}
L \subseteq A^{\omega} \\
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
w_{1}, \ldots, w_{n} \neq \varepsilon \\
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\} \\
\text { Buchi }=\left(1^{*} 2\right)^{\omega} \\
\text { coBuchi }=(0+1)^{*} 0^{\omega}
\end{gathered}|\cdot|_{2}, \begin{gathered}
\\
\text { maxblock }_{0}
\end{gathered}
$$

parity $_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup u_{n}\right.$ even $\}$

First examples of the bridge

$$
\begin{gathered}
L \subseteq A^{\omega} \\
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
w_{1}, \ldots, w_{n} \neq \varepsilon \\
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\} \\
\text { Buchi }=\left(1^{*} 2\right)^{\omega} \\
\text { coBuchi }=(0+1)^{*} 0^{\omega}
\end{gathered}|\cdot|_{2}, \begin{gathered}
\\
\text { maxblock }_{0}
\end{gathered}
$$

parity $_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup u_{n}\right.$ even $\}$
hierarchical B-condition
(up to \approx)

First examples of the bridge

$$
\begin{gather*}
L \subseteq A^{\omega} \\
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
w_{1}, \ldots, w_{n} \neq \varepsilon \\
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\} \\
\text { Buchi }=\left(1^{*} 2\right)^{\omega} \\
\text { coBuchi }=(0+1)^{*} 0^{\omega} \tag{2}
\end{gather*}
$$

parity $_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup u_{n}\right.$ even $\}$
hierarchical B-condition
(up to \approx)
Büchi automaton

First examples of the bridge

$$
\begin{gather*}
L \subseteq A^{\omega} \\
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
w_{1}, \ldots, w_{n} \neq \varepsilon \\
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\} \\
\text { Buchi }=\left(1^{*} 2\right)^{\omega} \\
\text { coBuchi }=(0+1)^{*} 0^{\omega} \tag{2}
\end{gather*}
$$

$$
\text { parity }_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup _{n} u_{n} \text { even }\right\}
$$

hierarchical B-condition (up to \approx)
Büchi automaton

Same automaton seen as max-prefix-distance (up to \approx)

Büchi automaton case

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.
1
A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{o l} \approx f$

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.
1
A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{01} \approx f$
I.e. $L^{\mathrm{ol}}(u)$ large iff $f(u)$ large.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{o l} \approx f$
I.e. $L^{\mathrm{ol}}(u)$ large iff $f(u)$ large.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.
1
A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Assume $f(u)$ large.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{\circ 1} \approx f$
I.e. $L^{\mathrm{ol}}(u)$ large iff $f(u)$ large.

Assume $f(u)$ large.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.
1
A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

There is a prefix-run over u with a large number of Büchi transitions.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{01} \approx f$
l.e. $L^{\text {ol }}(u)$ large iff $f(u)$ large.

Seen as a max-prefix-distance, it computes for a finite u:
$f(u)=$ maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Assume $f(u)$ large.
There is a prefix-run over u with a large number of Büchi transitions. It can be decomposed into $\alpha \beta_{1} \ldots \beta_{n} \gamma$ with n large and each of the β 's start and end in the state state, and contain at least one Büchi transition.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{01} \approx f$
I.e. $L^{\mathrm{ol}}(u)$ large iff $f(u)$ large.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi transitions seen on a prefix-run over u.

A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Assume $f(u)$ large.
There is a prefix-run over u with a large number of Büchi transitions. It can be decomposed into $\alpha \beta_{1} \ldots \beta_{n} \gamma$ with n large and each of the β 's start and end in the state state, and contain at least one Büchi transition.

Hence $\alpha\left\{\beta_{1}, \ldots, \beta_{n}\right\}^{\omega}$ is a set of accepting runs.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{01} \approx f$
I.e. $L^{\mathrm{ol}}(u)$ large iff $f(u)$ large.

Seen as a max-prefix-distance, it computes for a finite u :
$f(u)=$ maximum number of Büchi transitions seen on a prefix-run over u.

A sequence of transitions starting in an initial state, forming a path reading the prefix of the input.

Assume $f(u)$ large.
There is a prefix-run over u with a large number of Büchi transitions. It can be decomposed into $\alpha \beta_{1} \ldots \beta_{n} \gamma$ with n large and each of the β 's start and end in the state state, and contain at least one Büchi transition.

Hence $\alpha\left\{\beta_{1}, \ldots, \beta_{n}\right\}^{\omega}$ is a set of accepting runs.
Hence $L^{\circ 1}(u) \geq n$ is large.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Seen as a max-prefix-distance, it computes:
$\mathrm{f}(\mathrm{u})=$ maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: $\quad L^{o l} \approx f$

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Seen as a max-prefix-distance, it computes:
$\mathrm{f}(\mathrm{u})=$ maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: $\quad L^{\circ 1} \approx f$
Assume $L^{\text {ol }}(u)$ is large.

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{\circ 1} \approx f$
Assume $L^{\text {ol }}(u)$ is large.

$$
u=v w_{1} w_{2} \ldots w_{n} t
$$

Seen as a max-prefix-distance, it computes:
$\mathrm{f}(\mathrm{u})=$ maximum number of Büchi
transitions seen on a prefix-run over u.
with n large,
and $v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L$

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{\circ 1} \approx f$
Assume $L^{\text {ol }}(u)$ is large.

$$
u=v w_{1} w_{2} \ldots w_{n} t
$$

By Ramsey these can be regrouped into:

Seen as a max-prefix-distance, it computes:
$\mathrm{f}(\mathrm{u})=$ maximum number of Büchi
transitions seen on a prefix-run over u.
with n large,
and $v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L$

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{o l} \approx f$
Assume $L^{\text {ol }}(u)$ is large.

$$
u=v w_{1} w_{2} \ldots w_{n} t
$$

By Ramsey these can be regrouped into:

$$
u=v^{\prime} w_{1}^{\prime} w_{2}^{\prime} \ldots w_{n^{\prime}}^{\prime} t^{\prime}
$$

Seen as a max-prefix-distance, it computes:
$f(u)=$ maximum number of Büchi transitions seen on a prefix-run over u.
with n large,
and $v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L$
with n' large, all w"s corresponding to the same idempotent e in the transition semigroup of the automaton:

$$
\mathcal{P}(Q \times\{1,2\} \times Q)
$$

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{o l} \approx f$
Assume $L^{\text {ol }}(u)$ is large.

$$
u=v w_{1} w_{2} \ldots w_{n} t
$$

By Ramsey these can be regrouped into:

$$
u=v^{\prime} w_{1}^{\prime} w_{2}^{\prime} \ldots w_{n^{\prime}}^{\prime} t^{\prime}
$$

Since $v^{\prime}\left\{w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right\}^{\omega} \subseteq L$ this idempotent contains some `reachable’ (p,2,p).

Seen as a max-prefix-distance, it computes:
$f(u)=$ maximum number of Büchi transitions seen on a prefix-run over u.
with n large,
and $v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L$
with n' large, all w"s corresponding to the same idempotent e in the transition semigroup of the automaton:

$$
\mathcal{P}(Q \times\{1,2\} \times Q)
$$

Büchi automaton case

A Büchi automaton accepts the language L of ω-words such that there is a (infinite) run with infinitely many Büchi transitions.

Goal: $\quad L^{o l} \approx f$
Assume $L^{\text {ol }}(u)$ is large.

$$
u=v w_{1} w_{2} \ldots w_{n} t
$$

By Ramsey these can be regrouped into:

$$
u=v^{\prime} w_{1}^{\prime} w_{2}^{\prime} \ldots w_{n^{\prime}}^{\prime} t^{\prime}
$$

Since $v^{\prime}\left\{w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right\}^{\omega} \subseteq L$ this idempotent contains some `reachable’ (p,2,p).

This witnesses that $f(u)$ is large.
with n' large, all w's corresponding to the same idempotent e in the transition semigroup of the automaton:

$$
\mathcal{P}(Q \times\{1,2\} \times Q)
$$

Seen as a max-prefix-distance, it computes:
$f(u)=$ maximum number of Büchi transitions seen on a prefix-run over u.
with n large, and $v\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L$

First examples of the bridge

$$
\begin{gather*}
L \subseteq A^{\omega} \\
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
w_{1}, \ldots, w_{n} \neq \varepsilon \\
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\} \\
\text { Buchi }=\left(1^{*} 2\right)^{\omega} \\
\text { coBuchi }=(0+1)^{*} 0^{\omega} \tag{2}
\end{gather*}
$$

$$
\text { parity }_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup _{n} u_{n} \text { even }\right\}
$$

hierarchical B-condition (up to \approx)
Büchi automaton

Same automaton seen as max-prefix-distance (up to \approx)

First examples of the bridge

$$
\begin{gather*}
L \subseteq A^{\omega} \\
u \mapsto \sup \left\{n: u=v w_{1} \ldots w_{n} v^{\prime}\right. \\
w_{1}, \ldots, w_{n} \neq \varepsilon \\
\left.u\left\{w_{1}, \ldots, w_{n}\right\}^{\omega} \subseteq L\right\} \\
\text { Buchi }=\left(1^{*} 2\right)^{\omega} \\
\text { coBuchi }=(0+1)^{*} 0^{\omega} \tag{2}
\end{gather*}
$$

parity $_{i, j}=\left\{u \in[i, j]^{\omega} \mid \limsup u_{n}\right.$ even $\}$
hierarchical B-condition
(up to \approx)
Büchi automaton
Same automaton seen as max-prefix-distance (up to \approx)
Rabin automaton
Same automaton seen as max-prefix-B automaton (up to \approx)

The bridge

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).
Proof: An ω-regular like cost function is of the form L^{01} for some regular language of ω-words L.

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).
Proof: An ω-regular like cost function is of the form L^{01} for some regular language of ω-words L.
There exists a deterministic Rabin automaton for it [McNaughton/Safra].

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).
Proof: An ω-regular like cost function is of the form L^{01} for some regular language of ω-words L.
There exists a deterministic Rabin automaton for it [MIcNaughton/Safra].
This is a max-prefix-B-automaton for $L^{\circ 1}$.

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).
Proof: An ω-regular like cost function is of the form L^{01} for some regular language of ω-words L.
There exists a deterministic Rabin automaton for it [MIcNaughton/Safra].
This is a max-prefix-B-automaton for $L^{o l}$.
Since it is deterministic and complete it is in fact a deterministic-Bautomaton (all states set to final).

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).
Proof: An ω-regular like cost function is of the form L^{01} for some regular language of ω-words L.
There exists a deterministic Rabin automaton for it [McNaughton/Safra].
This is a max-prefix-B-automaton for $L^{\circ 1}$.
Since it is deterministic and complete it is in fact a deterministic-Bautomaton (all states set to final).

The bridge

Consequence: For all ω-regular like cost function, there exists effectively a B-deterministic a that recognizes it (up to \approx).
Proof: An ω-regular like cost function is of the form L^{01} for some regular language of ω-words L.
There exists a deterministic Rabin automaton for it [McNaughton/Safra].
This is a max-prefix-B-automaton for $L^{\circ 1}$.
Since it is deterministic and complete it is in fact a deterministic-Bautomaton (all states set to final).

Why do we care ?

Why do we care ?

I am interested in regular cost functions, not the special case of ω-regular like cost functions. So why do I care if this subclass inherits all the good properties and constructions of the regular languages of ω-words?

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

Example one-counter-B: A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

Example one-counter-B: A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

Example one-counter-B: A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

$\operatorname{minblock}\left(a^{n_{0}} b a^{n_{1}} \ldots b a^{n_{k}}\right)=\min \left(n_{0}, \ldots, n_{k}\right)$

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

Example one-counter-B: A counter can be incremented or reset. Maximal value counts. Infimum over all runs.

$\operatorname{minblock}\left(a^{n_{0}} b a^{n_{1}} \ldots b a^{n_{k}}\right)=\min \left(n_{0}, \ldots, n_{k}\right)$

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

Example one-counter-B: A counter can be incremented or reset. Maximal value counts. Infimum over all runs.

$\operatorname{minblock}\left(a^{n_{0}} b a^{n_{1}} \ldots b a^{n_{k}}\right)=\min \left(n_{0}, \ldots, n_{k}\right)$
These automata are semantically deterministic, but not syntactically.

What is history-determinism?

(good-for-games automata [Henzinger\&Piterman])
An history deterministic automaton is a non-deterministic automaton such that an almighty oracle can decide what is the best transition to take knowing the run so far.

Example one-counter-B: A counter can be incremented or reset. Maximal value counts. Infimum over all runs.

$$
\operatorname{minblock}\left(a^{n_{0}} b a^{n_{1}} \ldots b a^{n_{k}}\right)=\min \left(n_{0}, \ldots, n_{k}\right)
$$

These automata are semantically deterministic, but not syntactically.
These are as good as deterministic automata when run in a branching context (i.e. a tree or a game).

Why do we care ?

I am interested in regular cost functions, not the special case of ω-regular like cost functions. So why do I care if this subclass inherits all the good properties and constructions of the regular languages of ω-words?

Why do we care ?

I am interested in regular cost functions, not the special case of ω-regular like cost functions. So why do I care if this subclass inherits all the good properties and constructions of the regular languages of ω-words?

Because (inspired from [Bojanczyk15]) :

Conclusion

We have provided a bridge from regular languages of infinite words to a subset of regular cost functions over finite words.

This allows to transport constructions and results from the well studied and simpler theory of regular languages of infinite words to cost functions over infinite trees.

In particular a new, simple and optimal proof for transforming Bautomata in historic-deterministic form can be derived (a central result for working on games and trees).

Conclusion

We have provided a bridge from regular languages of infinite words to a subset of regular cost functions over finite words.

This allows to transport constructions and results from the well studied and simpler theory of regular languages of infinite words to cost functions over infinite trees.

In particular a new, simple and optimal proof for transforming Bautomata in historic-deterministic form can be derived (a central result for working on games and trees).

TODO:
Extend the approach to produce history deterministic S-automata.

