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For all infinite trees t, there exists a parity automaton of index [i,j], and 
size n that accepts a subset of L that contains t?

Over all words u (infinite trees t), the fixpoint of φ(x,Z) is reached within at 
most n steps?

The Church synthesis problem can be solved up to an error of n bits?

For all these questions, we do not care about precise values.
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it has a formal meaning in 
non-standard analysis

ext ext

Example: f(u) = the length of longest block of consecutive a’s

(asmallb)⇤asmall (a⇤b)⇤alarge(ba⇤)⇤complement

B-rational expressions S-rational expressions
B-automata S-automata
cost MSO cost MSO*

(stabilisation monoids,up-sets) (stabilisation monoids,down-sets)

complement

=
=

=

=
=

=

Main theorem of regular cost functions:

Functions that are large on the same inputs are ≈-equivalent.

A regular cost function 
can be seen as two (unusual) 
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Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated 
than for infinite words.
Automata cannot be determinized, while it is required for treating 
the case of trees. 
One has to resort in history-deterministic automata which are more 
involved to handle.

High levels ideas are similar: 
- use of games for dealing with trees 
- use of the ideal decomposition of monoids

Similarities with REG(infinite objects)

The most efficient translations from B/S-automata to history-
deterministic B/S-automata mimic the ideas of Safra's construction.

This work makes formal some similarities, and use it to factorizing proofs.

(ab)na = a(ba)n (n large) (ab)! = a(ba)!

Manipulating bounds everywhere in the proofs is costly. ns-analysis
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Assume                is large.Lol(u)

By Ramsey these can be 
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This witnesses that              is large.f(u)

A Büchi automaton accepts the 
language L of ω-words such that 
there is a (infinite) run with 
infinitely many Büchi transitions.

Seen as a max-prefix-distance, 
it computes:
f(u) = maximum number of Büchi 
transitions seen on a prefix-run over u. 

Goal: Lol ⇡ f
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What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such 
that an almighty oracle can decide what is the best transition to take 
knowing the run so far.

These automata are semantically deterministic, but not syntactically.
These are as good as deterministic automata when run in a branching 
context (i.e. a tree or a game).
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Why do we care ?
I am interested in regular cost functions, not the special case of 
ω-regular like cost functions. So why do I care if this subclass 
inherits all the good properties and constructions of the regular 
languages of ω-words?

Because (inspired from [Bojanczyk15]) :

determinization of 
ω-regular like cost 

functions +
positional 

determinacy 
of hierarchical 

B-games 
[C&Löding06]

= history-
determinization of 

regular cost functions 
[C09,C11 unp]
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We have provided a bridge from regular languages of infinite words to 
a subset of regular cost functions over finite words. 

This allows to transport constructions and results from the well studied 
and simpler theory of regular languages of infinite words to cost 
functions over infinite trees.

In particular a new, simple and optimal proof for transforming B-
automata in historic-deterministic form can be derived (a central 
result for working on games and trees).



Conclusion
We have provided a bridge from regular languages of infinite words to 
a subset of regular cost functions over finite words. 

This allows to transport constructions and results from the well studied 
and simpler theory of regular languages of infinite words to cost 
functions over infinite trees.

In particular a new, simple and optimal proof for transforming B-
automata in historic-deterministic form can be derived (a central 
result for working on games and trees).

TODO: 
Extend the approach to produce history deterministic S-automata.


