
The bridge between
regular cost functions

and
omega-regular languages

Thomas Colcombet and Nathanaël Fijalkow
ICALP

July 15 2016

The bridge between
regular cost functions

and
omega-regular languages

Thomas Colcombet and Nathanaël Fijalkow
ICALP

July 15 2016

A quantitative
extension of

regular
languages

The bridge between
regular cost functions

and
omega-regular languages

Thomas Colcombet and Nathanaël Fijalkow
ICALP

July 15 2016

Regular
languages
over words of
length ω

A quantitative
extension of

regular
languages

The bridge between
regular cost functions

and
omega-regular languages

Thomas Colcombet and Nathanaël Fijalkow
ICALP

July 15 2016

Regular
languages
over words of
length ω

A way to transfer results
and constructions

A quantitative
extension of

regular
languages

Regular cost functions

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:
(L+ ")n = L⇤ ? (Finite power property [Simon])

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:

Over all words u (infinite trees t), the fixpoint of φ(x,Z) is reached within at
most n steps?

(L+ ")n = L⇤ ? (Finite power property [Simon])

(boundedness of fixpoint [Blumensath&Otto&Weyer])

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:

For all words u (tree t), there exists a regular expression of star-height k of
size n that accepts a subset of L that contains u (resp. t)?

Over all words u (infinite trees t), the fixpoint of φ(x,Z) is reached within at
most n steps?

(L+ ")n = L⇤ ? (Finite power property [Simon])

(boundedness of fixpoint [Blumensath&Otto&Weyer])

(star-height problem [Hashiguchi, Kirsten, C&Löding])

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:

For all words u (tree t), there exists a regular expression of star-height k of
size n that accepts a subset of L that contains u (resp. t)?

For all infinite trees t, there exists a parity automaton of index [i,j], and
size n that accepts a subset of L that contains t?

Over all words u (infinite trees t), the fixpoint of φ(x,Z) is reached within at
most n steps?

(L+ ")n = L⇤ ? (Finite power property [Simon])

(boundedness of fixpoint [Blumensath&Otto&Weyer])

(star-height problem [Hashiguchi, Kirsten, C&Löding])

(Mostowski [CL,CKLvB])

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:

For all words u (tree t), there exists a regular expression of star-height k of
size n that accepts a subset of L that contains u (resp. t)?

For all infinite trees t, there exists a parity automaton of index [i,j], and
size n that accepts a subset of L that contains t?

Over all words u (infinite trees t), the fixpoint of φ(x,Z) is reached within at
most n steps?

The Church synthesis problem can be solved up to an error of n bits?

(L+ ")n = L⇤ ? (Finite power property [Simon])

(boundedness of fixpoint [Blumensath&Otto&Weyer])

(star-height problem [Hashiguchi, Kirsten, C&Löding])

(Mostowski [CL,CKLvB])

([Rabinovitch&Velner])

Regular cost functions
Regular languages:
 toolbox for solving boolean problems over words and trees
Regular cost functions generalize it to:
 toolbox for solving boundedness questions over words and trees
For instance, can you bound n such that:

For all words u (tree t), there exists a regular expression of star-height k of
size n that accepts a subset of L that contains u (resp. t)?

For all infinite trees t, there exists a parity automaton of index [i,j], and
size n that accepts a subset of L that contains t?

Over all words u (infinite trees t), the fixpoint of φ(x,Z) is reached within at
most n steps?

The Church synthesis problem can be solved up to an error of n bits?

For all these questions, we do not care about precise values.

(L+ ")n = L⇤ ? (Finite power property [Simon])

(boundedness of fixpoint [Blumensath&Otto&Weyer])

(star-height problem [Hashiguchi, Kirsten, C&Löding])

(Mostowski [CL,CKLvB])

([Rabinovitch&Velner])

Regular cost functions ideas

Regular cost functions ideas
A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small }

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small } { u : f(u) is large }

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small } { u : f(u) is large }complement

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small } { u : f(u) is large }complement

it has a formal meaning in
non-standard analysis

ext ext

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small } { u : f(u) is large }complement

it has a formal meaning in
non-standard analysis

ext ext

Functions that are large on the same inputs are ≈-equivalent.

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small } { u : f(u) is large }complement

it has a formal meaning in
non-standard analysis

ext ext

Example: f(u) = the length of longest block of consecutive a’s

(asmallb)⇤asmall (a⇤b)⇤alarge(ba⇤)⇤complement

Functions that are large on the same inputs are ≈-equivalent.

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Regular cost functions ideas

{ u : f(u) is small } { u : f(u) is large }complement

it has a formal meaning in
non-standard analysis

ext ext

Example: f(u) = the length of longest block of consecutive a’s

(asmallb)⇤asmall (a⇤b)⇤alarge(ba⇤)⇤complement

B-rational expressions S-rational expressions
B-automata S-automata
cost MSO cost MSO*

(stabilisation monoids,up-sets) (stabilisation monoids,down-sets)

complement

=
=

=

=
=

=

Main theorem of regular cost functions:

Functions that are large on the same inputs are ≈-equivalent.

A regular cost function
can be seen as two (unusual)
languages:

f : A⇤ ! N [{1}

Difficulties of REG(cost functions)

Difficulties of REG(cost functions)
Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.
Automata cannot be determinized, while it is required for treating
the case of trees.
One has to resort in history-deterministic automata which are more
involved to handle.

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.
Automata cannot be determinized, while it is required for treating
the case of trees.
One has to resort in history-deterministic automata which are more
involved to handle.

Similarities with REG(infinite objects)

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.
Automata cannot be determinized, while it is required for treating
the case of trees.
One has to resort in history-deterministic automata which are more
involved to handle.

Similarities with REG(infinite objects)
(ab)na = a(ba)n (n large) (ab)! = a(ba)!

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.
Automata cannot be determinized, while it is required for treating
the case of trees.
One has to resort in history-deterministic automata which are more
involved to handle.

High levels ideas are similar:
- use of games for dealing with trees
- use of the ideal decomposition of monoids

Similarities with REG(infinite objects)
(ab)na = a(ba)n (n large) (ab)! = a(ba)!

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.
Automata cannot be determinized, while it is required for treating
the case of trees.
One has to resort in history-deterministic automata which are more
involved to handle.

High levels ideas are similar:
- use of games for dealing with trees
- use of the ideal decomposition of monoids

Similarities with REG(infinite objects)

The most efficient translations from B/S-automata to history-
deterministic B/S-automata mimic the ideas of Safra's construction.

(ab)na = a(ba)n (n large) (ab)! = a(ba)!

Manipulating bounds everywhere in the proofs is costly. ns-analysis

Difficulties of REG(cost functions)

Constructions are complicated, and in particular more complicated
than for infinite words.
Automata cannot be determinized, while it is required for treating
the case of trees.
One has to resort in history-deterministic automata which are more
involved to handle.

High levels ideas are similar:
- use of games for dealing with trees
- use of the ideal decomposition of monoids

Similarities with REG(infinite objects)

The most efficient translations from B/S-automata to history-
deterministic B/S-automata mimic the ideas of Safra's construction.

This work makes formal some similarities, and use it to factorizing proofs.

(ab)na = a(ba)n (n large) (ab)! = a(ba)!

Manipulating bounds everywhere in the proofs is costly. ns-analysis

The bridge

The bridge
Regular

languages of
ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Regular
languages of

ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Definition: For , L ✓ A!

Lol : A⇤ ! N [{1}
u 7! sup{n : u = vw1 . . . wnv

0

w1, . . . , wn 6= "

v{w1, . . . , wn}! ✓ L}

Regular
languages of

ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Lemma: For regular,
 is a regular cost function.

L ✓ A!

Lol

Definition: For , L ✓ A!

Lol : A⇤ ! N [{1}
u 7! sup{n : u = vw1 . . . wnv

0

w1, . . . , wn 6= "

v{w1, . . . , wn}! ✓ L}

Regular
languages of

ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Lemma: For regular,
 is a regular cost function.

L ✓ A!

Lol

Definition: For , L ✓ A!

Lol : A⇤ ! N [{1}
u 7! sup{n : u = vw1 . . . wnv

0

w1, . . . , wn 6= "

v{w1, . . . , wn}! ✓ L}

Regular
languages of

ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Lemma: For regular,
 is a regular cost function.

L ✓ A!

Lol

Lemma: iff uv! 2 L

lim
n

Lol(uvn) = 1

Definition: For , L ✓ A!

Lol : A⇤ ! N [{1}
u 7! sup{n : u = vw1 . . . wnv

0

w1, . . . , wn 6= "

v{w1, . . . , wn}! ✓ L}

Regular
languages of

ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Lemma: For regular,
 is a regular cost function.

L ✓ A!

Lol

Lemma: The map is injective.ol

Lemma: iff uv! 2 L

lim
n

Lol(uvn) = 1

Definition: For , L ✓ A!

Lol : A⇤ ! N [{1}
u 7! sup{n : u = vw1 . . . wnv

0

w1, . . . , wn 6= "

v{w1, . . . , wn}! ✓ L}

Regular
languages of

ω-words

L ✓ A!

Regular
cost functions

(up to ≈)
f : A⇤ ! N [{1}The bridge

Lemma: For regular,
 is a regular cost function.

L ✓ A!

Lol

Lemma: The map is injective.ol

ω-regular like
cost functions

Lemma: iff uv! 2 L

lim
n

Lol(uvn) = 1

Definition: For , L ✓ A!

Lol : A⇤ ! N [{1}
u 7! sup{n : u = vw1 . . . wnv

0

w1, . . . , wn 6= "

v{w1, . . . , wn}! ✓ L}

Regular
languages of

ω-words

L ✓ A!

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)!

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0!

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even}

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even} hierarchical B-condition

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even} hierarchical B-condition
(up to ≈)

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even} hierarchical B-condition
(up to ≈)

Büchi automaton

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even} hierarchical B-condition
(up to ≈)

Büchi automaton Same automaton seen as
max-prefix-distance (up to ≈)

Büchi automaton case

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Goal: Lol ⇡ f

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

I.e. large iff large.Lol(u) f(u)

Goal: Lol ⇡ f

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Assume large.f(u)

I.e. large iff large.Lol(u) f(u)

Goal: Lol ⇡ f

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Assume large.f(u)

There is a prefix-run over u with a large number of Büchi transitions.

I.e. large iff large.Lol(u) f(u)

Goal: Lol ⇡ f

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Assume large.f(u)

There is a prefix-run over u with a large number of Büchi transitions.
It can be decomposed into with n large and each of
the β’s start and end in the state state, and contain at least one
Büchi transition.

↵�1 . . .�n�

I.e. large iff large.Lol(u) f(u)

Goal: Lol ⇡ f

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Assume large.f(u)

There is a prefix-run over u with a large number of Büchi transitions.
It can be decomposed into with n large and each of
the β’s start and end in the state state, and contain at least one
Büchi transition.

↵�1 . . .�n�

I.e. large iff large.Lol(u) f(u)

Goal: Lol ⇡ f

Hence is a set of accepting runs.↵{�1, . . . ,�n}!

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes for a finite u:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

A sequence of transitions starting
in an initial state, forming a path
reading the prefix of the input.

Assume large.f(u)

There is a prefix-run over u with a large number of Büchi transitions.
It can be decomposed into with n large and each of
the β’s start and end in the state state, and contain at least one
Büchi transition.

↵�1 . . .�n�

Hence is large.Lol(u) � n

I.e. large iff large.Lol(u) f(u)

Goal: Lol ⇡ f

Hence is a set of accepting runs.↵{�1, . . . ,�n}!

Büchi automaton case
A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

Büchi automaton case

Assume is large.Lol(u)

A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

Büchi automaton case

Assume is large.Lol(u) with n large,
and v{w1, . . . , wn}! ✓ Lu = v w1 w2 . . . wn t

A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

Büchi automaton case

Assume is large.Lol(u)

By Ramsey these can be
regrouped into:

with n large,
and v{w1, . . . , wn}! ✓ Lu = v w1 w2 . . . wn t

A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

Büchi automaton case

Assume is large.Lol(u)

By Ramsey these can be
regrouped into:

with n large,
and v{w1, . . . , wn}! ✓ Lu = v w1 w2 . . . wn t

u = v0 w0
1 w0

2 . . . w0
n0 t0

with n’ large, all w’’s corresponding to
the same idempotent e in the
transition semigroup of the automaton:

P(Q⇥ {1, 2}⇥Q)

A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

Büchi automaton case

Assume is large.Lol(u)

By Ramsey these can be
regrouped into:

with n large,
and v{w1, . . . , wn}! ✓ Lu = v w1 w2 . . . wn t

u = v0 w0
1 w0

2 . . . w0
n0 t0

with n’ large, all w’’s corresponding to
the same idempotent e in the
transition semigroup of the automaton:

P(Q⇥ {1, 2}⇥Q)Since
this idempotent contains some
`reachable’ (p,2,p).

v0{w0
1, . . . , w

0
n}! ✓ L

A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

Büchi automaton case

Assume is large.Lol(u)

By Ramsey these can be
regrouped into:

with n large,
and v{w1, . . . , wn}! ✓ Lu = v w1 w2 . . . wn t

u = v0 w0
1 w0

2 . . . w0
n0 t0

with n’ large, all w’’s corresponding to
the same idempotent e in the
transition semigroup of the automaton:

P(Q⇥ {1, 2}⇥Q)Since
this idempotent contains some
`reachable’ (p,2,p).

v0{w0
1, . . . , w

0
n}! ✓ L

This witnesses that is large.f(u)

A Büchi automaton accepts the
language L of ω-words such that
there is a (infinite) run with
infinitely many Büchi transitions.

Seen as a max-prefix-distance,
it computes:
f(u) = maximum number of Büchi
transitions seen on a prefix-run over u.

Goal: Lol ⇡ f

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even} hierarchical B-condition
(up to ≈)

Büchi automaton Same automaton seen as
max-prefix-distance (up to ≈)

First examples of the bridge
L ✓ A! Lol : A⇤ ! N [{1}

u 7! sup{n : u = vw1 . . . wnv
0

w1, . . . , wn 6= "

u{w1, . . . , wn}! ✓ L}

Buchi = (1⇤2)! | · |2

coBuchi = (0 + 1)⇤0! maxblock0

parity i,j = {u 2 [i, j]! | lim sup
n

un even} hierarchical B-condition
(up to ≈)

Büchi automaton Same automaton seen as
max-prefix-distance (up to ≈)

Rabin automaton Same automaton seen as
max-prefix-B automaton (up to ≈)

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

ol

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Proof: An ω-regular like cost function is of the form for some regular
language of ω-words .

Lol

L

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Proof: An ω-regular like cost function is of the form for some regular
language of ω-words .

Lol

L

There exists a deterministic Rabin automaton for it [McNaughton/Safra].

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Proof: An ω-regular like cost function is of the form for some regular
language of ω-words .

Lol

L

There exists a deterministic Rabin automaton for it [McNaughton/Safra].
This is a max-prefix-B-automaton for .Lol

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Proof: An ω-regular like cost function is of the form for some regular
language of ω-words .

Lol

L

There exists a deterministic Rabin automaton for it [McNaughton/Safra].
This is a max-prefix-B-automaton for .Lol

Since it is deterministic and complete it is in fact a deterministic-B-
automaton (all states set to final).

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Proof: An ω-regular like cost function is of the form for some regular
language of ω-words .

Lol

L

There exists a deterministic Rabin automaton for it [McNaughton/Safra].
This is a max-prefix-B-automaton for .Lol

Since it is deterministic and complete it is in fact a deterministic-B-
automaton (all states set to final).

Determinization
directly imported

Regular
cost functions

The bridge
Regular

languages of
ω-words

ω-regular like
cost functions

Consequence: For all ω-regular like cost function, there exists
effectively a B-deterministic a that recognizes it (up to ≈).

ol

Proof: An ω-regular like cost function is of the form for some regular
language of ω-words .

Lol

L

There exists a deterministic Rabin automaton for it [McNaughton/Safra].
This is a max-prefix-B-automaton for .Lol

Since it is deterministic and complete it is in fact a deterministic-B-
automaton (all states set to final).

Determinization

LAR
directly imported

Why do we care ?

Why do we care ?
I am interested in regular cost functions, not the special case of
ω-regular like cost functions. So why do I care if this subclass
inherits all the good properties and constructions of the regular
languages of ω-words?

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

Example one-counter-B:

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

p q r

a,b:- a,b:-a:inc

b:- b:-

A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

Example one-counter-B:

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

p q r

a,b:- a,b:-a:inc

b:- b:-

minblock(an0ban1 . . . bank) = min(n0, . . . , nk)

A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

Example one-counter-B:

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

p q r

a,b:- a,b:-a:inc

b:- b:- p q r

a,b:- a,b:-a:inc

b:-
b:-

a:res

minblock(an0ban1 . . . bank) = min(n0, . . . , nk)

A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

Example one-counter-B:

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

These automata are semantically deterministic, but not syntactically.

p q r

a,b:- a,b:-a:inc

b:- b:- p q r

a,b:- a,b:-a:inc

b:-
b:-

a:res

minblock(an0ban1 . . . bank) = min(n0, . . . , nk)

A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

Example one-counter-B:

What is history-determinism?
(good-for-games automata [Henzinger&Piterman])

An history deterministic automaton is a non-deterministic automaton such
that an almighty oracle can decide what is the best transition to take
knowing the run so far.

These automata are semantically deterministic, but not syntactically.
These are as good as deterministic automata when run in a branching
context (i.e. a tree or a game).

p q r

a,b:- a,b:-a:inc

b:- b:- p q r

a,b:- a,b:-a:inc

b:-
b:-

a:res

minblock(an0ban1 . . . bank) = min(n0, . . . , nk)

A counter can be incremented or reset.
Maximal value counts.
Infimum over all runs.

Example one-counter-B:

Why do we care ?
I am interested in regular cost functions, not the special case of
ω-regular like cost functions. So why do I care if this subclass
inherits all the good properties and constructions of the regular
languages of ω-words?

Why do we care ?
I am interested in regular cost functions, not the special case of
ω-regular like cost functions. So why do I care if this subclass
inherits all the good properties and constructions of the regular
languages of ω-words?

Because (inspired from [Bojanczyk15]) :

determinization of
ω-regular like cost

functions +
positional

determinacy
of hierarchical

B-games
[C&Löding06]

= history-
determinization of

regular cost functions
[C09,C11 unp]

Conclusion
We have provided a bridge from regular languages of infinite words to
a subset of regular cost functions over finite words.

This allows to transport constructions and results from the well studied
and simpler theory of regular languages of infinite words to cost
functions over infinite trees.

In particular a new, simple and optimal proof for transforming B-
automata in historic-deterministic form can be derived (a central
result for working on games and trees).

Conclusion
We have provided a bridge from regular languages of infinite words to
a subset of regular cost functions over finite words.

This allows to transport constructions and results from the well studied
and simpler theory of regular languages of infinite words to cost
functions over infinite trees.

In particular a new, simple and optimal proof for transforming B-
automata in historic-deterministic form can be derived (a central
result for working on games and trees).

TODO:
Extend the approach to produce history deterministic S-automata.

