Characterization of Logics on Infinite Linear Orderings

Linear orderings Words Logics

Monadic Second-Order Logic

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, «t is reachable from s »: every set containing s and closed under edge relation also contains t .

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, «t is reachable from s »: every set containing s and closed under edge relation also contains t .

Words signature: binary order + predicates for each letter.

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from $\mathrm{s} »$: every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all $x<y$ there is some z such that $x<z<y$

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from $\mathrm{s} »$: every set containing s and closed under edge relation also contains t .

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all $x<y$ there is some z such that $x<z<y$
In MSO, « is scattered»: no (induced) sub-ordering is dense

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from $\mathrm{s} »$: every set containing s and closed under edge relation also contains t .

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all $x<y$ there is some z such that $x<z<y$
In MSO, « is scattered »: no (induced) sub-ordering is dense In MSO, « is finite »: the first and last positions exist and are reachable one from the other by successor steps

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantify over elements x, y, \ldots
- quantify over sets of elements X, Y, \ldots (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from $\mathrm{s} »$: every set containing s and closed under edge relation also contains t .

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all $x<y$ there is some z such that $x<z<y$
In MSO, « is scattered »: no (induced) sub-ordering is dense In MSO, « is finite »: the first and last positions exist and are reachable one from the other by successor steps In MSO, « is complete »: all subsets have a supremum

History

History

Elgot - Büchi60
$\mathrm{MSO}=$ reg (finite words)
decidable

History

> Elgot - Büchi60 $\mathrm{MSO}=$ reg (finite words) decidable
[Büchi62]: w-words decidable
(Q,<): [Rabin69]
(Q,<): [Shelah75]
$(\mathrm{R},<)$: [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] over countable linear orderings

History

Elgot - Büchi60 $\mathrm{MSO}=$ reg (finite words) decidable

[Büchi62]: w-words decidable
(Q, <): [Rabin69]
[Schützenberger65]
[McNaughton\&Papert71]
FO-definable = aperiodic
(Q,<): [Shelah75]
$(\mathrm{R},<)$: [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis]
Many logics... over countable linear orderings

History

Elgot - Büchi60 $\mathrm{MSO}=$ reg (finite words) decidable

[Büchi62]: w-words decidable
(Q, <): [Rabin69]
[Schützenberger65]
[McNaughton\&Papert71]
FO-definable = aperiodic
(Q,<): [Shelah75]
$(\mathrm{R},<)$: [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis]
Many logics... over countable linear orderings

Linear orderings and infinite words

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba a

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba a
domain $\omega(\mathrm{N},<)$

Linear orderings and infinite words

Linear ordering: $a=(L,<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba a
domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cab b a a domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$
…onoonoom
well ordered domain (ordinal)
$\frac{\omega}{\omega} \frac{\omega \text { times }}{\omega}$

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba a
domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$
…00000-0.0
well ordered domain (ordinal)
$\frac{\omega}{\omega} \frac{\omega \text { times }}{\omega}$
scattered
(no dense sub-ordering)

Linear orderings and infinite words

Linear ordering: $a=(L,<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba_a domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$
perfect shuffle $\{a, b\}$
..............a.....
domain (Q,<)
every letter appears densely
(unique up to isomorphism)
well ordered domain (ordinal)
$\frac{\omega}{\omega} \frac{\omega \text { times }}{\omega}$
scattered
(no dense sub-ordering)

Linear orderings and infinite words

Linear ordering: $a=(L,<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba_a domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$
\cdots
well ordered domain (ordinal)
$\frac{\omega}{\omega} \frac{\omega \text { times }}{\omega}$
scattered
(no dense sub-ordering)

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba_a domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$
well ordered domain (ordinal)

scattered
(no dense sub-ordering)
$\frac{\omega}{\omega} \frac{\omega \text { times }}{\omega}$
perfect shuffle $\{a, b\}$
....................
domain (Q,<)
every letter appears densely
(unique up to isomorphism)
complete
incomplete

Linear orderings and infinite words

Linear ordering: $\mathrm{a}=(\mathrm{L},<)$ with $<$ total (here L is always countable)
(Countable) word: map $u: a \rightarrow A$ (A alphabet)
finite
cabba_a domain $\omega(\mathrm{N},<)$
domain $\omega^{\star}(-N,<)$
well ordered domain (ordinal)
$\omega \frac{\omega}{\omega} \frac{0-000 \cdots}{\omega}+$
scattered
(no dense sub-ordering)
scattered
\qquad
perfect shuffle $\{a, b\}$
.........a........b..
domain (Q,<)
every letter appears densely
(unique up to isomorphism)
complete
incomplete

= natural Dedekind cut

Restricting the set quantifier

Range of set quantifiers

Name of the logic
singleton sets
cuts
finite sets
finite sets and cuts
well ordered sets
scattered sets
all sets
first-order logic (FO)
« is dense », « has length k »
first-order logic with cuts (FO[cut])
« is well ordered », « is complete », « is finite »
weak monadic second-order logic (WMSO)
« is finite », « has even length "
MSO[finite,cut]
« there is an even number of gaps »
MSO[ordinal]

MSO[scattered]
« is scattered »
MSO
« there are two sets 'dense in each other'»

Structure

MSO[ordinal]

MSO[scattered]
MSO

Structure

Can we separate these logics?

Structure

Can we separate these logics?

Structure

MSO[scattered]

Can we separate these logics?

Can we characterize effectively these logics?

MSO

An algebraic approach: o-monoid

Generalized concatenation

Generalized concatenation

. A linear ordering a

Generalized concatenation

Generalized concatenation

generalized
concatenation

$$
\prod_{i \in \alpha} u_{i}
$$

Generalized concatenation

generalized
concatenation

$$
\prod_{i \in \alpha} u_{i}
$$

Said differently, this is a flattening operation :
$\prod:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$

o-monoids

o-monoids

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

o-monoids
 $$
\pi(a)=a
$$

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

o-monoids

$$
\pi(a)=a
$$

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

Example: $\left(A^{\circ}, \Pi\right)$ is the free o-monoid generated by A .

o-monoids

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

Example: $\left(A^{\circ}, \Pi\right)$ is the free o-monoid generated by A .
Example:

$$
\pi(u)= \begin{cases}1 & \text { if } u \text { consists only of } 1 \text { 's } \\ f & \text { if } u \text { has one but finitely many f's, and no } 0 \\ 0 & \text { otherwise }\end{cases}
$$

o-monoids

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

Example: $\left(A^{\circ}, \Pi\right)$ is the free o-monoid generated by A .
Example:

$$
\pi(u)= \begin{cases}1 & \text { if } u \text { consists only of } 1 \text { 's } \\ f & \text { if } u \text { has one but finitely many f's, and no } 0 \\ 0 & \text { otherwise }\end{cases}
$$

A morphism of o-monoid h is such that $h\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} h\left(u_{i}\right)\right)$

o-monoids

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

Example: $\left(A^{\circ}, \Pi\right)$ is the free o-monoid generated by A .
Example:

$$
\pi(u)= \begin{cases}1 & \text { if } u \text { consists only of } 1 \text { 's } \\ f & \text { if } u \text { has one but finitely many f's, and no } 0 \\ 0 & \text { otherwise }\end{cases}
$$

A morphism of o-monoid h is such that $h\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} h\left(u_{i}\right)\right)$
Given a finite monoid M, a o-morphism h from A° to M, and $F \subseteq M$, M,h,F recognizes $\left\{u \in A^{\circ}: h(u) \in F\right\}$

o-monoids

A o-monoid $(M, \boldsymbol{\pi})$ is a set M equipped with a product $\boldsymbol{\pi}: \mathrm{M}^{\circ} \rightarrow \mathrm{M}$ that satisfies generalized associativity:

$$
\pi\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} \pi\left(u_{i}\right)\right)
$$

Example: $\left(A^{\circ}, \Pi\right)$ is the free o-monoid generated by A .
Example:

$$
\pi(u)= \begin{cases}1 & \text { if } u \text { consists only of } 1 \text { 's } \\ f & \text { if } u \text { has one but finitely many } \mathrm{f}^{\prime} \mathrm{s}, \text { and no } 0 \\ 0 & \text { otherwise }\end{cases}
$$

A morphism of o-monoid h is such that $h\left(\prod_{i \in \alpha} u_{i}\right)=\pi\left(\prod_{i \in \alpha} h\left(u_{i}\right)\right)$
Given a finite monoid M, a o-morphism h from A° to M, and $F \subseteq M$, M,h,F recognizes $\left\{u \in A^{\circ}: h(u) \in F\right\}$

Example: with $F=\{1, f\}$

$$
h(u)= \begin{cases}1 & \text { if } u \text { has no } a ' s \\ f & \text { if } u \text { has finitely many } a \\ 0 & \text { ortherwise }\end{cases}
$$

M,h,F recognize
« finitely many a's»

Recognizability = definability

Recognizability = definability

Schützenberger-Elgot-Büchi: A language of finite words is definable in monadic second-order logic if and only if it is recognizable by a finite monoid.

Furthermore, there is a minimal such monoid: the syntactic monoid.

Recognizability = definability

Schützenberger-Elgot-Büchi: A language of finite words is definable in monadic second-order logic if and only if it is recognizable by a finite monoid.

Furthermore, there is a minimal such monoid: the syntactic monoid.

Theorem [Shelah75 \& CCP11]: A language of countable words is definable if and only if it is recognizable by a finite o-monoid.
Furthermore there is a syntactic o-monoid.
Furthermore, finite o-monoids can be effectively handled.

Effectiveness: induced operations

Effectiveness: induced operations

Unit: M
$1=\pi(\varepsilon)$

Effectiveness: induced operations

Unit: $\mathrm{M} \quad$ Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$
$1=\pi(\varepsilon)$

$$
a \cdot b=\pi(a b)
$$

Effectiveness: induced operations

Unit: $\mathrm{M} \quad$ Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$

$$
1=\pi(\varepsilon)
$$

$$
a \cdot b=\pi(a b)
$$

w-iteration: $\mathrm{M} \rightarrow \mathrm{M}$

$$
a^{\omega}=\pi(\underbrace{a a a \ldots}_{\omega})
$$

Effectiveness: induced operations

Unit: $\mathrm{M} \quad$ Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$

$$
1=\pi(\varepsilon)
$$

$$
a \cdot b=\pi(a b)
$$

w-iteration: $\mathrm{M} \rightarrow \mathrm{M}$

$$
\begin{gathered}
\omega^{\star} \text {-iteration } \\
a^{\omega}=\pi(\underbrace{\ldots a a a}_{\omega *})
\end{gathered}
$$

Effectiveness: induced operations

Unit: $\mathrm{M} \quad$ Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$

$$
1=\pi(\varepsilon)
$$

$$
a \cdot b=\pi(a b)
$$

shuffle $\eta: \mathcal{P}(\mathrm{M}) \rightarrow \mathrm{M}$
$\{a, b\}^{\eta}=\pi($ perfectshuffle $(a, b))$
w-iteration: $\mathrm{M} \rightarrow \mathrm{M}$
ω^{*}-iteration
$a^{\omega}=\pi(\underbrace{a a a \ldots}_{\omega})$
$a^{\omega}=\pi(\underbrace{\ldots a a a}_{\omega *})$

Effectiveness: induced operations

Unit: $\mathrm{M} \quad$ Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$

$$
1=\pi(\varepsilon)
$$

$$
a \cdot b=\pi(a b)
$$

w-iteration: $\mathrm{M} \rightarrow \mathrm{M}$

$$
a^{\omega}=\pi(\underbrace{a a a \ldots}_{\omega})
$$

shuffle $\eta: \mathcal{P}(M) \rightarrow M$
$\{a, b\}^{\eta}=\pi($ perfectshuffle $(a, b))$

a b a b a b
domain (Q,<)
every letter appears densely (unique up to isomorphism)

Effectiveness: induced operations

Unit: M
$1=\pi(\varepsilon)$

Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$

$$
a \cdot b=\pi(a b)
$$

ω^{*}-iteration
$a^{\omega}=\pi(\underbrace{\ldots a a a}_{\omega *})$
shuffle $\eta: \mathcal{P}(\mathrm{M}) \rightarrow \mathrm{M}$
$\{a, b\}^{\eta}=\pi($ perfectshuffle $(a, b))$

$$
a \quad b \text { a } b \text { a b }
$$

domain (Q,<)
every letter appears densely (unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that:
every operations induced by a product satisfy equalities (A),

and

given $1, ;, \omega, \omega^{*}, \eta$ over some finite M satisfying these equalities, there is a product π inducting them.

Effectiveness: induced operations

Unit: M
$1=\pi(\varepsilon)$

Binary product: $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$

$$
a \cdot b=\pi(a b)
$$

ω^{*}-iteration
$a^{\omega}=\pi(\underbrace{\ldots a a a}_{\omega *})$
shuffle $\eta: \mathcal{P}(\mathrm{M}) \rightarrow \mathrm{M}$
$\{a, b\}^{\eta}=\pi($ perfectshuffle $(a, b))$

$$
a \quad b \text { a } b \text { a b }
$$

domain $(\mathrm{Q},<)$
every letter appears densely (unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that: every operations induced by a product satisfy equalities (A),

and

given $1, \cdot, \omega, \omega^{*}, \eta$ over some finite M satisfying these equalities, there is a product π inducting them.

$$
\begin{gathered}
a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
\left(a^{n}\right)^{\omega}=a^{\omega} \\
(a \cdot b)^{\omega}=a \cdot(b \cdot a)^{\omega} \\
\{a\}^{\eta}=\{a\}^{\eta} \cdot a \cdot\{a\}^{\eta}
\end{gathered}
$$

Examples

Examples

« finitely many a's »

	1	f	0
1	1	f	0
f	f	f	0
0	0	0	0

	1	f	0
ω	1	0	0

	1	f	0
ω^{*}	1	0	0

	$\{1\}$	$\left\{f,{ }^{*}\right\},\left\{0,{ }^{*}\right\}$	
η	1	0	
$f(\mathrm{~b})=1$			

$$
F=\{1, f\}
$$

Examples

« finitely many a's »

	1	f	0
1	1	f	0
f	f	f	0
0	0	0	0

	1	f	0
ω	1	0	0

	1	f	0
ω^{\star}	1	0	0

«a's are left-closed»

	1	a	b	m	0
1	1	a	b	m	0
a	a	a	m	m	0
b	b	0	b	0	0
m	m	0	m	0	0
0	0	0	0	0	0

	1	a	b	m	0	$a=« \ldots$ aaa \ldots »
ω	1	a	b	0	0	$b=« \ldots b b b \ldots$ "

$\begin{array}{lll}1 \text { a b m 0 } & m=\text { "...aaa } \\ 0=\text { «* } b^{*} a^{*} »\end{array}$

Characterizing logics

First order cannot detect gaps...

Theorem[Schützenberger65,McNauthon\&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem[Schützenberger65,McNauthon\&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès\&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$
e \cdot e=e \quad e^{\omega} \cdot e^{\omega *}=e
$$

First order cannot detect gaps...

Theorem[Schützenberger65,McNauthon\&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès\&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$
e \cdot e=e \quad e^{\omega} \cdot e^{\omega *}=e
$$

First order cannot detect gaps...

Theorem[Schützenberger65,McNauthon\&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès\&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$
e \cdot \stackrel{\rightharpoonup}{e}=e \quad e^{\omega} \cdot e^{\omega *}=e
$$

Remark: «All idempotents are gap insensitive » implies aperiodicity.

First order cannot detect gaps...

Theorem[Schützenberger65,McNauthon\&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès\&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$
e \cdot \stackrel{\rightharpoonup}{e}=e \quad e^{\omega} \cdot e^{\omega *}=e
$$

Remark: «All idempotents are gap insensitive » implies aperiodicity.
Proof. Take n such that a^{n} is idempotent.

$$
a^{n}=\left(a^{n}\right)^{\omega} \cdot\left(a^{n}\right)^{\omega *}=a \cdot\left(a^{n}\right)^{\omega} \cdot\left(a^{n}\right)^{\omega *}=a^{n+1}
$$

First order cannot detect gaps...

Theorem[Schützenberger65,McNauthon\&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès\&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$
e \cdot \stackrel{\rightharpoonup}{e}=e \quad e^{\omega} \cdot e^{\omega *}=e
$$

Remark: «All idempotents are gap insensitive » implies aperiodicity. Proof: Take n such that a^{n} is idempotent.

$$
a^{n}=\left(a^{n}\right)^{\omega} \cdot\left(a^{n}\right)^{\omega *}=a \cdot\left(a^{n}\right)^{\omega} \cdot\left(a^{n}\right)^{\omega *}=a^{n+1}
$$

Remark: The equation remains true but is not sufficient in general.
 \section*{Weak monadic logic cannot detect
 \section*{Weak monadic logic cannot detect gaps... when in an infinite situation} gaps... when in an infinite situation}

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.
e

$e^{\omega} \cdot e^{\omega *}$

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\phi(\mathrm{X}) »$ recognized by a monoid satisfying the property.
e

Whatever X
we choose

$e^{\omega} \cdot e^{\omega *}$

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\phi(\mathrm{X}) »$ recognized by a monoid satisfying the property.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès\&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$
e^{\omega}=e
$$

IH : Assume « $\Phi(\mathrm{X})$ » recognized by a monoid satisfying the property.

MSO[ordinal]

cannot see scattered set

Lemma[C.\&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic omonoid such that every scattered idempotent is a shuffle idempotent.

$$
e=e^{\omega}=e^{\omega *} \quad e=\{e\}^{\eta}
$$

MSO[ordinal]

cannot see scattered set

Lemma[C.\&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic omonoid such that every scattered idempotent is a shuffle idempotent.

$$
e=e^{\omega}=e^{\omega *} \quad e=\{e\}^{\eta}
$$

MSO[scattered]

Lemma[C.\&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic omonoid such that every shuffle idempotent is shuffle simple.

For all K such that $e=K^{\eta}$, and a such that $e \cdot a \cdot e=e$, $(K \cup\{a\})^{\eta}=e$.

The picture

The picture

The picture

The picture

 idempotent which is not a shuffle idempotent.

Results

[C.\&Sreejith A.V.]: The following properties characterize the logics: (and these logics can be separated)

Every idempotent is gap insensitive

Aperiodicity
Every ordinal or ordinal* idempotent is gap insensitive

Every scattered idempotent is a shuffle idempotent

Every shuffle idempotent is shuffle simple

ν
ν
ν

To be continued...

