
On the Expressiveness of Deterministic

Transducers over Infinite Trees?

Thomas Colcombet1 and Christof Löding2
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Abstract. We introduce top-down deterministic transducers with ra-
tional lookahead (transducer for short) working on infinite terms. We

show that for such a transducer eT , there exists an MSO-transduction
T such that for any graph G, unfold(T (G)) = eT (unfold(G)). Recipro-
cally, we show that if an MSO-transduction T “preserves bisimilarity”,
then there is a transducer eT such that for any graph G, unfold(T (G)) =
eT (unfold(G)). According to this, transducers can be seen as a complete
method of implementation of MSO-transductions that preserve bisimi-
larity. One application is for transformations of equational systems.

1 Introduction

The theory of tree transducers has been widely studied since the 1970s (see e.g.
[9]). Tree transducers are abstract machines describing relations between finite
terms. Among the numerous known families of transducers one happens to be
a good compromise between decidability and expressiveness requirements : the
top-down tree transducers with regular lookahead [15]. Those transducers are
closed by composition, and preserve the regularity of sets of terms by inverse
image.

One application of tree transducers is to implement relations between do-
mains different from trees, in particular graphs. The principle is to attach a
semantics from tuple of graphs to graphs of correct arity to each symbol and
to use this semantic to evaluate any tree build upon those symbols. The result-
ing object is a graph called the interpretation of the tree. In this context, tree
transducers describe relations between graphs through the trees representing
them. Engelfriet studied this approach [16] and as it turns out top-down tree
transducers with regular lookahead suit particularly well in this setting.

Top-down tree transducers have also been extended to macro tree transduc-
ers [18] which are themselves equivalent to so-called tree-to-graph transducers
[19]. Those devices are strictly more expressive than top-down tree transducers.
Drewes compares them with respect to translations between algebras [13]. The
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representation by monadically definable transformations of those transducers
has been studied extensively (see e.g. [17, 4]), however, those results cannot be
seen as the finite case counterpart of the results presented in this paper.

We describe in the present paper a similar theory for top-down tree transduc-
ers, but working on infinite terms. Such infinite terms can be interpreted into in-
finite objects as investigated first by Courcelle for graphs [10, 1, 2, 7] (technically
the interpretation is extended to infinite terms by a limit passing argument). The
same need for transducers appears in this context. However, a slightly different
point of view can be adopted : each infinite tree can be obtained as the unfolding
of a (possibly infinite) graph. To this respect, interpreting the term is equivalent
to solving the graph seen as an equational system. For this reason, we investigate
how transducers of terms can be compared with transformations of graphs : this
approach produces tools for transforming (possibly infinite) equational systems.
This approach is extensively used in [8].

In this paper we introduce top-down transducers with rational lookahead
— we say simply transducers from now — working on infinite trees. We define
the notion of rationality by means of monadic second-order definability : a set
of (possibly infinite) trees is rational if it is the set of tree models of some
monadic second-order formula. A transducer is a deterministic device with a
finite number of states that reads a (possibly infinite) input tree starting from
the root and produces a (possibly infinite) output tree. Each transition consists
in either consuming the input root symbol, producing an output symbol, or
verifying that the input tree belongs to some rational set (this ability is called
the ‘lookahead’).

Major results concerning the finite tree case still hold for those transducers :
we show the closure by composition of transducers and the rationality of the
inverse image of a rational set by a transducer. However, an extra hypothesis of
determinism of the transducer is necessary in our proof. We also investigate the
relationships of those transducers with respect to unfolding and monadic second-
order transductions (MSO-transductions for short). We establish that the result
of a transducer applied to the unfolding of a graph can also be obtained by the
successive application of an MSO-transduction followed by an unfolding. We say
in this case that the MSO-transduction implements the transducer. Let us note
that such an MSO-transduction is by definition bisimilarity preserving. In fact,
a converse to this result also holds and is the most involved proof presented in
this work : every MSO-transduction implements a transducer provided that it
preserves bisimilarity. For this reason transducers can be understood as the tree
theoretic counterpart to MSO-transductions.

Among consequences of those results are that regularity of terms (but not
rationality of sets of terms) is preserved by transducers. More generally, term
solutions of safe higher-order program schemes of level n are closed under appli-
cation of transducers [20, 6, 5].

The remainder of the paper is divided as follows. In the next section we give
the basic definitions on graphs, MSO-transductions, and transducers. In Sec-
tion 3 we state some basic properties of deterministic transducers and show that



the functions computed by them can also be obtained using MSO-transductions
followed by unfolding. In the last section we present the result that MSO-
transductions that preserve bisimilarity of graphs can be simulated by deter-
ministic transducers on the unfoldings of the graphs.

2 Definitions

An (edge-labeled) graph G over an alphabet Σ is a pair G = (VG, EG) where VG

is the set of vertices and EG ⊆ VG×Σ×VG is the set of edges. A rooted graph G
is of the form G = (VG, EG, rG) where VG and EG are as before and rG ∈ VG is
the root of G. A directed path in G is a sequence of vertices such that successive
vertices u, v in this sequence are connected by an edge (u, a, v) ∈ EG for some
a ∈ Σ. A sequence of vertices is an undirected path if successive vertices u, v in
this sequence are connected by an edge (u, a, v) ∈ EG or (v, a, u) ∈ EG. For two
vertices u, v ∈ VG a connection of u and v is a path from u to v that does not
contain any vertex twice.

A (undirected) tree t is a graph such that for each two vertices u, v ∈ Vt there
is exactly one undirected connection between u and v. A rooted tree t is a tree
such that for each v ∈ Vt there is a directed path from the root rt of t to v. For
a rooted graph G we denote by unfold(G) the rooted tree that is obtained by
unfolding G from the root rG. If we want to unfold G from a vertex v different
from the root, then we write this as unfold(G, v).

For a ranked alphabet F and f ∈ F we write |f | for the arity of f . By |F|max

we denote the maximal rank of a symbol in F . We represent terms over F as
rooted trees over the alphabet ΣF = F ∪ {1, . . . , |F|max}. A term over F is a
rooted tree t over ΣF such that

– there is exactly one edge starting from rt and this edge is labeled with a
letter from F ,

– if there is an edge (v, f, v′) ∈ Et for some f ∈ F , then this is the only edge
starting from v and there are exactly |f | edges starting from v′ labeled by
1, . . . , |f |, respectively, and

– if there is an edge (v, `, v′) ∈ Et with ` ∈ {1, . . . , |F|max}, then there is an
edge labeled by a letter from F starting from v′.

The set of all F-terms is denoted by T (F).
We say that a rooted graph G represents a term iff unfold(G) is a term. We

are only interested in graphs representing terms. Therefore, in the following an
F-graph always means a rooted graph over ΣF that represents a term. So, the
F-trees are exactly the F-terms. For two F-graphs G and G′ we write G ∼ G′

if G and G′ represent the same term, i.e., if unfold(G) = unfold(G′). Since F-
graphs are deterministic they have the same unfolding iff they are bisimilar.
Hence, on F-graphs the relation ∼ corresponds to bisimulation equivalence (cf.
[22]).

According to the above definition of terms there is a natural partition of the
vertices of an F-graph into those vertices being the source of an F-edge and those



vertices being the source of edges labeled with natural numbers. We denote the
former of these two sets by V F

G = {v ∈ VG | ∃f ∈ F , u ∈ VG : (v, f, u) ∈ EG}.
Since the vertices that are not from V F

G are those that have to be inserted when
passing from the usual representation of terms to our representation we call them
auxiliary vertices. The vertices from V F

G are called main vertices.

MSO-Transductions. For the remainder of this article we fix two ranked alpha-
bets F , F ′ and write Σ, Σ′ instead of ΣF and ΣF ′ . We assume the standard
syntax and semantics of MSO logic over graphs, i.e., quantification over individ-
ual vertices (first-order quantification) and quantification over sets of vertices
(monadic second-order quantification). For an introduction to MSO logic we
refer the reader to [14]. An MSO-transduction T is of the form

T = (Σ,Σ′, (φa,i,j(x, y))a∈Σ′,i,j∈[1,n], (ρi(x, y))i∈[1,n], n)

with MSO-formulas φa,i,j(x, y) and ρi(x, y) over the signature (Ea)a∈Σ , where
each Ea is a binary symbol interpreted as the set of a-labeled edges.

In order to obtain a unique root we require that for all F-graphs G and all
v ∈ VG there is at most one u ∈ VG and i ∈ [1, n] such that G |= ρi(v, u). For
each F-graph G we define the graph T (G) over Σ ′ that is obtained by applying
T to G as follows. If there are no u ∈ VG and i ∈ [1, n] with G |= ρi(rG, u), then
T (G) is undefined. Otherwise,

– VT (G) = V × [1, n],
– for a ∈ Σ′ and i, j ∈ [1, n] there is an edge ((v, i), a, (u, j)) in ET (G) iff
G |= φa,i,j(v, u), and

– rT (G) = (u, i) for the unique u and i with G |= ρi(rG, u).

Note that our definition of MSO-transduction slightly differs from the standard
definition (cf. [11]). We are interested in rooted graphs and thus we need the
formulas ρi(x, y) to define the roots of the transformed graph. Since furthermore,
our main interest is on the unfolding of the transformed graphs, we do not need a
formula restricting the domain of T . We sometimes write T (G, v) for some vertex
v of G to denote the application of T to the graph G with its root changed to v.

The definition of an MSO-transduction does not enforce that T (G) represents
an F ′-term when applied to a graph G representing an F-term. Furthermore,
we are interested in simulating MSO-transductions by transducers working on
terms. Thus, we want to consider MSO-transductions that, when applied to two
F-graphs representing the same term, yield two F ′-graphs again representing
the same term. This is captured by the following definition.

We call an MSO-transduction T bisimilarity preserving iff

– T (G) (if it is defined) is an F ′-graph for each F-graph G and
– for all F-graphs G and G′, if G ∼ G′, then T (G) is defined iff T (G′) is

defined and T (G) ∼ T (G′).

So, bisimilarity preserving MSO-transductions transform F-graphs into F ′-graphs
and preserve bisimulation equivalence of graphs. In particular, because of the



first condition, all the formulas φa,i,j(x, y) in a bisimilarity preserving MSO-
transduction T must be deterministic in the following sense. For all F-graphs G
and v ∈ VG there is at most one u ∈ VG such that G |= φa,i,j(v, u). We call an
MSO-transduction with this property deterministic.

Transducers with Rational Lookahead. A top down tree transducer with rational
lookahead (transducer for short) is a tuple T̃ = (Q,F ,F ′, q0, ∆) with:

– Q a finite set of states,
– q0 ∈ Q the initial state, and
– ∆ a finite set of rules of one of the following forms:

(production rule): q(x) → g(q1(x), ..., q|g|(x)) with g ∈ F ′, x a variable,
and q1, . . . , q|g| ∈ Q.

(consumption rule): q(f(x1, ..., x|f |)) → q′(xi) with f ∈ F , q, q′ ∈ Q, and
x1, . . . , x|f | variables.

(lookahead rule): q(x ∈ L) → q′(x) with L a rational set of F-terms
(called lookahead set), q, q′ ∈ Q, and x a variable.

Each rule of ∆ can be interpreted as a rewrite rule. A lookahead rule q(x ∈ L) →
q′(x) can only be applied to q(t) if t is a term from L. Hence the lookahead rules
allow to ‘inspect’ the input tree and collect some information about it.

A transducer T̃ = (Q,F ,F ′, q0, ∆) is deterministic if for each state q ∈ Q
and each F-term t the set of rules that can be applied to q(t)

– either consists of lookahead rules with pairwise disjoint lookahead sets, or
– contains exactly one production rule, or
– contains exactly one consumption rule.

According to the above definition we will speak of production states, consump-
tion states, and lookahead states.

The result T̃ (t) of applying T̃ to an F-term t is the term that is obtained

from t by applying the rewrite rules of T̃ ‘to the limit’, starting from q0(t). In the

formal definition of T̃ (t) we have to be careful because we cannot simply define
the image of an infinite term as the limit of a sequence of images of finite terms.
Because of the lookahead the functions computed by deterministic transducers
need not to be continuous.

Let T̃ = (Q,F ,F ′, q0, ∆) be a deterministic transducer and let F ′
⊥ be the

ranked alphabet F ′ augmented by a new symbol ⊥ of rank 0. By induction on
n we define for each state q ∈ Q and each infinite term t ∈ T (F) the term
δn(q, t) ∈ T (F ′

⊥) as δ0(q, t) = ⊥,

– if q(x) → g(q1(x), . . . , q|g|(x)) ∈ ∆, then δn+1(q, t) = g(δn(q1, t), . . . , δn(q|g|, t)),
– if q(f(x1, ..., x|f |)) → q′(xi) ∈ ∆, then δn+1(q, t) = δn(q′, ti) for t = f(t1, . . . , t|f |),
– if q(x ∈ L) → q′(x) ∈ ∆ and t ∈ L, then δn+1(q, t) = δn(q′, t).

If no transition of the transducer can be applied or if the right hand side in the
definition of δn+1(q, t) is undefined, then δn+1(q, t) is undefined.



First note that in each situation at most one rule can be applied because
of the determinism of the transducer. Therefore, if δn(q, t) is defined, then it is
unique. If we consider the complete partial order v on F ′

⊥-terms with t′ v t if
t′ is obtained from t by replacing subterms with ⊥, then one can easily show
by induction on n that the sequence (δn(q, t))n∈N is either increasing (w.r.t v)

or undefined from a certain point onward. In the former case we let T̃q(t) be

the limit of this sequence and in the latter case T̃q(t) is undefined. Now we can

define T̃ (t) = T̃q0
(t).

3 First results about transducers

In this section, we establish that the inverse image of a rational set by a trans-
ducer is also rational (Lemma 2). We also show that transducers can be imple-
mented by MSO-transductions (Theorem 1).

According to the current definition, it may happen that for some F-term t and
some state q the term T̃q(t) still contains the symbol ⊥. This phenomenon can be
a technical burden for the following proofs. We start this section by normalizing
transducers in such a way that this situation does not occur anymore.

Formally, let T̃ be a transducer from F-terms to F ′-terms of states Q, we
say that T̃ is normalized if for any state q ∈ Q and any F-term t, T̃q(t) 6= ⊥.

For T̃ to be normalized it is sufficient but not necessary to have a produc-
tion in each of its cycles. Consider for instance a transducer that would remove
all the occurrences of a given symbol — say a of arity 1 — provided that this
symbol has only a finite number of occurrences in the term. This transducer
contains cycles without production since an unbounded number of a can be re-
moved without producing any output symbol. However, by definition this cannot
happen infinitely often.

Lemma 1. Let T̃ be a transducer from F to F ′ and ⊥′ be a new symbol of arity
0. There exists effectively a transducer T̃ ′ from F-terms to (F ′ ∪ {⊥′})-terms

such that T̃ ′ = h◦ T̃ where h replaces every occurrence of the symbol ⊥ in a term
by ⊥′.

An important property of deterministic transducers is that their domain is ra-
tional. More precisely, as stated in Lemma 2, the inverse image of a rational
language by a normalized deterministic transducer is rational.

Lemma 2. Let T̃ be a deterministic transducer from F-terms to F ′-terms. If L
is a rational subset of T (F ′), then the set T̃−1(L) is also rational.

Let us notice that in this proof, the determinism of the transducer is explicitly
needed and we don’t know if the result remains true without this restriction.
This was not the case for transducers of finite trees. It also follows directly from
this lemma that the domain of a transducer is rational.

Finally, we aim at establishing Theorem 1 which expresses how a transducer
can be simulated by an MSO-transduction before unfolding. First of all we need



a result relating lookaheads with MSO-logic. It is a particular case of Courcelle’s
result in [12].

Lemma 3. For any rational set of F-terms L, there exists an MSO-formula
φ(x) such that for any F-graph G and any vertex v ∈ V F

G , unfold(G, v) ∈
L iff G |= φ(v).

We can now state the main result of this section.

Theorem 1. Let T̃ be a normalized deterministic transducer from F-terms to
F ′-terms. There exists effectively an MSO-transduction T such that for any F-
graph G and any vertex v ∈ V F

G , T (G, v) is defined iff T̃ (unfold(G, v)) is defined,

and in this case unfold(T (G, v)) = T̃ (unfold(G, v)).

The proof consists in using one copy of the graph for each state of the transducer.
Then the MSO-formulas put correctly the edges. The Lemmas 2 and 3 combined
allow the implementation of lookahead rules.

4 From MSO-Transductions to Transducers

The goal of this section is to show that bisimilarity preserving MSO-transduc-
tions can be simulated by deterministic transducers on the unfoldings of graphs.
In a first step we use the fact that T is bisimilarity preserving to obtain some
kind of normal form for T .

Since rooted graphs are bisimilar to their unfoldings the following simple
remark allows us to consider MSO-transductions operating on trees instead
of graphs. Formally, this means that if T is a bisimilarity preserving MSO-
transduction, then unfold(T (G)) = unfold(T (unfold(G))) for every F-graph G.

To simulate an MSO-transduction by a deterministic transducer we would
like the MSO-transduction to ‘respect’ the type (main or auxiliary) of the vertices
since transducers only work on main vertices. Furthermore, transducers work in
a top-down fashion. Thus, we want to normalize the MSO-transduction in such
a way that the new edges go ‘downward’ if the transduction is applied to a
tree. Under this assumption a deterministic transducer can construct the edges
defined by the MSO-transduction by going down the term that is represented
by t and using its rational lookahead. The following definition formally captures
the properties we need to simulate an MSO-transduction by a deterministic
transducer.

Definition 1. An MSO-transduction T = (Σ,Σ ′, (φa,i,j(x, y))a,i,j , (ρi(x, y))i, n)
is in top-down normal form iff for all F-trees t

(a) rT (t) = (rt, 1),
(b) if t |= φg,i1,i2(v1, v2) and t |= φ`,i2,i3(v2, v3) for g ∈ F ′, ` ∈ {1, . . . , |F ′|max},

and i1, i2, i3 ∈ [1, n], then v1 v v3, and
(c) for every F-graph G, if G |= φg,i,j(u, v) for g ∈ F ′, then u ∈ V F

G and
v /∈ V F

G , and if G |= φ`,i,j(u, v) for ` ∈ {1, . . . , |F ′|max}, then u /∈ V F
G and

v ∈ V F
G .



The following lemma states that we can always ensure condition (a).

Lemma 4. For each MSO-transduction T there exists an MSO-transduction T ′

such that rT ′(G) = (rG, 1) and unfold(T (G)) = unfold(T ′(G)) for each rooted
graph G.

The most intricate thing is to establish condition (b) of Definition 1. First, we
construct for a given tree t a new graph t̂ on which the MSO-transduction must
satisfy condition (b).

Let t be an F-tree. We can assume that Vt ⊆ Σ∗ by identifying each element
v from Vt with the labeling of the unique path leading from rt to v. We define
the F-graph t̂ by

– Vbt = {〈u1, . . . , un〉 | n > 0, u1, . . . , un ∈ Vt, and ui−1 6v ui for all i ∈ [2, n]}.

– The edges in Ebt are those of the form 〈u1, . . . , un〉
a
−→ 〈u1, . . . , una〉 and

〈u1, . . . , un, va, v〉
a
−→ 〈u1, . . . , un, va〉.

Figure 1 shows a part of this construction for a term built from a single binary
symbol f . The underlined vertices correspond to the vertices of the original term.

〈f1, ε〉

f

〈f1, f, ε〉

f

〈ε〉

f

〈f, ε〉

f

〈f2, ε〉

f

〈f2, f, ε〉

f

· · ·
2

〈f1, f〉
2 1

〈f〉
1 2

〈f2, f〉
2 1

· · ·
1

〈f1, f2〉
f

〈f1〉
f

〈f2〉
f

〈f2, f1〉
f

· · · · · · · · · · · ·

Fig. 1. A part of btf

For û ∈ Vbt we denote by λ(û) the last element in the sequence û, i.e., if
û = 〈u1, . . . , um〉, then λ(û) = um. The following properties are easy to derive
from the definition of t̂.

Lemma 5. For each F-tree t and each vertex v̂ ∈ Vbt:

(i) t̂ is a (undirected) tree.
(ii) If λ(v̂) = ε, then there are no edges with target v̂ in t̂. Otherwise, v̂ is the

target of exactly two edges in t̂ that have the same label as the only edge
with target λ(v̂) in t.

(iii) v̂ is the source of an a-edge in t̂ iff λ(v̂) is the source of an a-edge in t.
(iv) unfold(t, v) = unfold(t̂, 〈v〉) for each F-tree t and vertex v of t.

An important property of t̂ is that two vertices û and û′ with λ(û) = λ(û′) are
indistinguishable, i.e., there is an automorphism of t̂ that maps λ(û) to λ(û′).
This enforces a certain behavior of deterministic MSO-transductions on t̂ that
corresponds to the second property of the top-down normal form.



Lemma 6. Let T be a deterministic MSO-transduction, t an F-tree, and û, v̂ ∈
Vbt. If t̂ |= φa,i,j(û, v̂), then λ(û) v λ(v̂).

As Lemma 6 shows, property (b) of Definition 1 holds on t̂ for MSO-transductions
preserving bisimulation equivalence. To transfer this property to t itself we will
make use of the concept of tree-like structures (cf. [24, 3]).

For a graph G the tree-like structure G∗ = (V ∗
G, son, clone, E∗

G) is the struc-
ture over the universe V ∗

G with the relations son, clone, and E∗
G defined by

son = {(w,wv) | w ∈ V ∗
G, v ∈ VG}, clone = {wvv | w ∈ V ∗

G, v ∈ VG}, and
E∗

G = {(wv, a, wu) | w ∈ V ∗
G, (v, a, u) ∈ EG}. The crucial point of the tree-like

structure is that monadic second-order properties can be expressed as monadic
second order properties of the original structure.

Theorem 2 (cf. [3]). For each MSO-sentence φ there exists an MSO-sentence
φ∗ such that G∗ |= φ ⇔ G |= φ∗ for all F-graphs G.

The two structures t̂ and t∗ are closely related, t̂ can be interpreted in t∗. This
can be used to show a modification of the above result for t̂.

Lemma 7. For each MSO-formula φ(x1, . . . , xm) there exists an MSO-formula
φ∗(x1, . . . , xm) such that for all F-trees t:

(i) If t̂ |= φ(û1, . . . , ûm), then t |= φ∗(λ(û1), . . . , λ(ûm)) for all û1, . . . , ûm ∈
Vbt.

(ii) If t |= φ∗(u1, . . . , um), for u1, . . . , um ∈ Vt, then there are û1, . . . , ûm ∈ Vbt

with λ(ûi) = ui (1 ≤ i ≤ m) and t̂ |= φ(û1, . . . , ûm).

Now we can establish property (b) of Definition 1.

Lemma 8. For each bisimilarity preserving MSO-transduction T there exists an
MSO-transduction T ′ satisfying (a) and (b) of Definition 1 with unfold(T (t)) =
unfold(T ′(t)) for all F-trees t.

As a last step in the normalization we have to ensure (c) of Definition 1. Since
the MSO-transduction might use copies of auxiliary vertices as targets of F-
edges and main vertices as targets of other F-edges we cannot simply redirect
the latter ones to main vertices within the same copy. For this reason we have
to introduce new copies of the original term and redirect edges with wrong type
of source vertex or target vertex to these new copies.

Lemma 9. For each bisimilarity preserving MSO-transduction T there exists an
MSO-transduction T ′ in top-down normal form with unfold(T (t)) = unfold(T ′(t))
for all F-trees t.

Having established the top-down normal form the next goal is to simulate
MSO-transductions in this normal form by deterministic transducers. We make
use of the well-known equivalence between MSO logic and Rabin automata on
infinite trees (cf. [23]). This allows us to pass from the formulas defining the
edges in the MS transduction to equivalent automata accepting infinite terms
with appropriate markings coding the assignment for the free first-order variables



in the formulas. We start by defining marked terms and automata running on
them. Due to the lack of space we do not give detailed definitions and assume
familiarity with the theory of automata on infinite trees (cf. [23]).

For a set Θ, a Θ-marked F-term (t, µ) consists of an F-term t and a marking
function µ : Θ → Vt. Let T (F , Θ) be the set of all Θ-marked F-terms. For a set
L ⊆ T (F , Θ) of marked terms we define L|F = {t | ∃µ.(t, µ) ∈ L}.

We fix an MSO-transduction T = (Σ,Σ ′, (φa,i,j(x, y))a,i,j , (ρi(x, y))i, n) in
top-down normal form that was obtained from a bisimilarity preserving MSO-
transduction as described in the previous subsection. For all g ∈ F ′, all i ∈ [1, n],
and all j ∈ [1, n]|g| define

ψg,i,j(x, x1, . . . , x|g|) = ∃y
∨

m∈[1,n]


φg,i,m(x, y) ∧

∧

`∈{1,...,|g|}

φ`,m,j`
(y, x`)


 ,

where j` denotes the `th component of j, i.e., j = (j1, . . . , jk). For g ∈ F ′ we
define Θg = {g, 1, . . . , |g|}. For (t, µ) ∈ T (F , Θg) we write by abuse of notation
(t, µ) |= ψg,i,j iff t |= ψg,i,j(µ(g), µ(1), . . . , µ(|g|)). Note that T being in top-
down normal form implies that µ(g), µ(1), . . . , µ(|g|) ∈ V F

t if (t, µ) |= ψg,i,j by
Definition 1 (c). This enables us to adapt the usual framework of automata
running on infinite trees (cf. [23]) to our representation of marked terms.

Every MSO-formula can be translated into a nondeterministic Rabin tree
automaton accepting precisely the models of the formula [21]. Hence, for all g ∈
F ′, all i ∈ [1, n], and all j ∈ [1, n]|g| there exists a nondeterministic Rabin tree
automaton Ag,i,j = (Qg,i,j ,F × 2Θg , Qin

g,i,j , ∆g,i,j , Ωg,i,j) that accepts exactly
the Θg-marked F-terms (t, µ) with (t, µ) |= ψg,i,j . We assume that the state sets
of these automata are pairwise disjoint. We denote the union of the automata
Ag,i,j by the automaton A = (Q,

⋃
g∈F ′(F × 2Θg), Qin, ∆,Ω), where Q, Qin, ∆,

and Ω are obtained by taking the union of the respective components of the
automata Ag,i,j .

The automaton A is the main ingredient in the construction of the trans-
ducer. The idea is to keep track of the states of A that could have been reached
on the input term and to use the rational lookahead to decide which automaton
Ag,i,j to use to construct the next edge. We illustrate the work of the transducer
with a simple example.

Consider the part of a marked term (t, µ) depicted in the upper left box
of Figure 2. The labels g, 1, and 2 on the vertices are the marks. The states
qg , q, q1, q2 are part of an accepting run of the automaton Ag,i,j1 ,j2 for some
i, j1, j2. In steps (1) to (5) the work of the transducer is illustrated.

In (1) the transducer is in state 〈i, C〉. The i indicates in which copy intro-
duced by the MSO-transduction the transducer currently is. The set of states
that could have been reached by A at this point are stored in C. We assume
that qg ∈ C and using its rational lookahead the transducer can check that the
term with the marking depicted in the upper left box is accepted from Ag,i,j1,j2

with qg as initial state.
In step (2) the transducer applies a production rule creating the g-edge,

the 1-edge, and the 2-edge. Now it has to consume the part of the term until



Part of a
marked term
(t, µ) accepted
by Ag,i,j1,j2 :

{g}
f

qg

1 2

c f

q

1 2

{1}
f1

q1 {2}
f2

q2

(1) 〈i,C〉

f

1 2

c f

1 2

f1 f2

(2)
g

1 2

〈j1,C,qg ,1〉
f

〈j2,C,qg ,2〉
f

1 2 1 2

c f c f

1 2 1 2

f1 f2 f1 f2

(3)
g

1 2

〈j1,C′

1
,q,1〉
f

〈j2,C′

2
,q,2〉
f

1 2 1 2

f1 f2 f1 f2

(4)
g

1 2

〈j1,C′′

1
,q1,1〉
f1

〈j2,C′′

2
,q2,2〉
f2

(5)
g

1 2

〈j1,C′′

1 〉
f1

〈j2,C′′

2 〉
f2

Fig. 2. Illustration of the transducer constructing an edge

reaching the vertex marked with 1 in the left hand side copy and likewise in the
right hand side copy for the vertex marked with 2. To that aim it goes to the
states (j1, C, qg , 1) and (j2, C, qg , 2) in the two corresponding copies of t. The
last component of the states indicates for which mark the transducer is waiting.

In step (2) the transducer has reached the two corresponding vertices. Note
that in step (3) two independent rewritings of the transducer have been applied
in parallel and similarly in step (4). In all these steps the transducer implicitly
uses its lookahead to decide in which direction to proceed in the term. In each
consumption step the sets storing the reachable states of A are updated. Having
reached the desired vertices the transducer switches back to the mode where it
checks which edge to construct next. The formal realization of this idea is rather
technical and is omitted here.

Lemma 10. There exists a deterministic transducer T̃ such that unfold(T (t)) =

T̃ (t) for each term t.

Now we can prove the main result of this section.

Theorem 3. For each bisimilarity preserving MSO-transduction T there exists
a deterministic transducer T̃ such that unfold(T (G)) = T̃ (unfold(G)) for each
F-graph G.

Proof. Let T be a bisimilarity preserving MSO-transduction. By Lemma 9 there
is an MSO-transduction T ′ in top-down normal form such that unfold(T (t)) =
unfold(T ′(t)) for all F-trees t. According to Lemma 10 there is a deterministic

transducer T̃ such that unfold(T ′(t)) = T̃ (t) for each F-tree t. Let G be an
F-graph and let tG = unfold(G). Then we get unfold(T (G)) = unfold(T (tG)) =

unfold(T ′(tG)) = T̃ (tG). ut
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