
Size-Change Abstraction and Max-Plus
Automata

Thomas Colcombet, Laure Daviaud, and Florian Zuleger

Abstract. Max-plus automata (over N ∪ {−∞}) are finite devices that
map input words to non-negative integers or −∞. In this paper we
present (a) an algorithm allowing to compute the asymptotic behaviour
of max-plus automata, and (b) an application of this technique to the
evaluation of the computational time complexity of programs.

1 Introduction

The contributions of this paper are two-fold. First, we provide an algorithm that
given a function computed by a max-plus automaton over N ∪ {−∞} computes
the asymptotic minimal behaviour of the automaton as a function of the length of
the input. We then apply this result for characterizing the asymptotic complexity
bounds that can be obtained by the size-change abstraction, which is a widely
used technique in automated termination analysis. These two contributions are
of independent interest. Let us introduce them successively.

Weighted automata, and the main theorem

Max-plus automata belong to the wider family of weighted automata, as intro-
duced by Schützenberger [7]. The principle of weighted automata is to consider
non-deterministic automata that take values in a semiring (S,⊕,⊗, 0, 1) (i.e., a
ring in which the addition is not required to have an inverse). Weighted automata
interpret the non-determinism of the automaton as the sum in the semiring and
the sequence as the product. Standard non deterministic automata correspond to
the case of the Boolean semiring ({0, 1},∨,∧, 0, 1). Probabilistic automata cor-
respond to the case ([0, 1],+,×, 0, 1) (with a stochasticity restriction). Distance
automata (or min-plus automata) correspond to the case (N∪{∞},min,+, 0,∞}.

In this paper, we concentrate our attention to max-plus automata, which
correspond to the semiring (N ∪ {−∞},max,+, 0,−∞). Such automata have
transition with weights in N. Over a given input, they output the maximum
over all accepting runs of the sum of the weights of transitions (and −∞ if there
is no accepting run). Such automata are natural candidates for modelling worst
case behaviours of systems, as shown in the subsequent application. Remark that
max-plus automata share a lot of common points with min-plus automata, and
indeed, many results for max-plus automata can be converted into results for
min-plus automata and vice-versa1.
1 Indeed, if we allow negative weights, then negating all weights turns max-plus au-
tomata into min-plus automata and vice-versa, while preserving the semantics. How-

We seek to analyse the asymptotic behaviour of such automata. More pre-
cisely, fix a max-plus automaton computing a function f from the words in A∗
to N ∪ {−∞}. We study the asymptotic evolution of c(n) defined for n ∈ N as:

c(n) = inf{f(w) : w ∈ A∗, |w| ≥ n} .

We show that this quantity either is −∞ for all n, or it is in Θ(nβ) for a com-
putable rational β ∈ [0, 1]. Our main theorem, Theorem 2, expresses this prop-
erty in a dual, yet equivalent, way as the asymptotic behaviour of the longest
word that happen to have a value smaller than n.

From a logical perspective, it has to do with a quantifier alternation since
the quantity studied is computed as a minimum (inf) of a function which, itself,
is defined as a maximum (as a max-plus-automaton). In particular, in our case,
it is immediately PSPACE hard (using reduction of the universality problem for
non-deterministic automata). Such quantifier alternations are often even more
complex when weighted automata are considered. For instance, a natural ques-
tion involving such an alternation is to test whether f(u) < |u| for some u, and
it turns out to be undecidable [4]. On the other side, the boundedness question
for min-plus automata (determining if there exists n such that f(u) ≤ n for
all words u), which also has a similar quantifier alternation flavour, turns out
to be decidable [3]. The work of Simon [9] has the most similarities with our
contribution. It shows that, for a min-plus automaton computing a function g,
the dual quantity d(n) = sup{g(w) : |w| ≤ n} has a behaviour that is asymp-
totically between n1/(k+1) and n1/k for some non-negative integer k. Our result
differs in two ways. First, the results for min-plus automata and for max-plus
automata cannot be converted directly into results over the other form of au-
tomata. Second, our main result is significantly more precise since it provides
the exact asymptotic coefficient. The proof of this theorem is the subject of the
first part of this paper.

Program Analysis and Size Change Abstraction

The second contribution in this work consists in applying Theorem 2 for char-
acterizing the asymptotic complexity bounds that can be obtained by the size-
change abstraction, which is a popular program abstraction for automated ter-
mination analysis (e.g. [5, 6]). This question was the primary reason for this
investigation.

We start with definitions needed to precisely state our contribution. We fix
some finite set of size-change variables Var . We denote by Var ′ the set of primed
versions of the variables Var . A size-change predicate (SCP) is a formula x . y′
with x, y ∈ Var , where . is either > or ≥. A size-change transition (SCT) T is
a set of SCPs. A size-change system (SCS) S is a set of SCTs.

We define the semantics of size-change systems by valuations σ : Var →
[0..N] of the size-change variables to natural numbers in the interval [0..N], where

ever, such kind of reductions can get more complicated, if not impossible, when
negative values are forbidden, as it is in our case.

2

N is a (symbolic) natural number. We write σ, τ ′ |= x.y′ for two valuations σ, τ ,
if σ(x).τ(y) holds over the natural numbers. We write σ, τ ′ |= T , if σ, τ ′ |= x.y′

holds for all x.y′ ∈ T . A trace of an SCS S is a sequence σ1
T1−→ σ2

T2−→ · · · such
that Ti ∈ S and σi, σ′i+1 |= Ti for all i. The length of a trace is the number of
SCTs that the trace uses, counting multiple SCTs multiple times. An SCS S is
terminating, if S does not have a trace of infinite length.

We note that in earlier papers, e.g. [5], the definition of a size-change system
includes a control flow graph that restricts the set of possible traces. For the
ease of development we restrain from adding control structure. We discuss in
Appendix I that our result also holds when we add control structure. Moreover,
earlier papers, e.g. [5], consider SCSs semantics over the natural numbers, i.e.,
valuations σ : Var → N. In contrast, we restrict values to the interval [0, N] in
order to guarantee that the length of traces is bounded for terminating SCSs:
no valuation σ ∈ Var → [0..N] can appear twice in a trace (otherwise we would
have a cycle, which could be pumped to an infinite trace); thus the length of
traces is bounded by (N + 1)k for SCSs with k variables.

Problem Statement: Our goal is to determine a function hS : N→ N such
that the length of the longest trace of a terminating SCS S is of asymptotic
order Θ(hS(N)). This question has also been of interest in a recent report [1],
which claims that SCSs always have a polynomial bound, i.e., a bound Θ(Nk)
for some k ∈ N. However, this is not the case (see example below). We believe
that the development in [1] either contains a gap or that the results of [1] have
to be stated differently.

Example 1. The length of the longest trace of the SCS S = {T1, T2, T3} with
T1 = {x1 > x′1, x2 ≥ x′2, x3 > x′3, x4 ≥ x′4},
T2 = {x1 > x′1, x2 ≥ x′2, x2 ≥ x′3, x2 > x′4, x3 > x′4, x4 > x′4} and
T3 = {x2 > x′2, x2 > x′3, x2 > x′4, x3 > x′2, x3 > x′3, x3 > x′4, x4 > x′2, x4 >

x′3, x4 > x′4} is of asymptotic order Θ(N
3
2). For comparison, [1] considers SCSs

bounded in terms of the initial state; we can make S bounded in terms of the
initial state by adding a new variable xN to S, and adding the constraints {xN ≥
x′N , xN ≥ x′1, xN ≥ x′2, xN ≥ x′3, xN ≥ x′4} to each of T1, T2, T3.

The asymptotic order Θ(N
3
2) of S can be established by Theorem 1 stated

below (a corresponding max-plus automaton is stated in Example 2 and its
asymptotic behavior is analyzed in Appendix J)). For illustration purposes,
we sketch here an elementary proof. For the lower bound we consider the se-

quence sN = ((T

√
N
2 −1

1 T2)
√
N
2 −1T3)

√
N
2 −1. For example, for N = 36 we have

sN = T1T1T2T1T1T2T3T1T1T2T1T1T2T3. Note that sN is of length lN =
√
N
2 ·√

N
2 · (

√
N
2 − 1) = Ω(N

3
2). We define valuations σi, with 0 ≤ i ≤ lN , that demon-

strate that sN belongs to a trace of S: given some index 0 ≤ i ≤ lN , let t3
denote the number of T3 before index i in the sequence sN , let t2 denote the
number of T2 before index i since the last T3, and let t1 denote the number of
T1 before index i since the last T2 (note that we have 0 ≤ t1, t2, t3 <

√
N
2 by the

shape of sN); we set σi(x1) = N − t2 ·
√
N
2 − t1, σi(x2) = N − t3 ·

√
N, σi(x3) =

3

N − t3 ·
√
N − t1, σi(x4) = N − t3 ·

√
N −

√
N
2 − t2. It is easy to verify that the

valuations σi satisfy all constraints of sN .
We move to the upper bound. Let S be a sequence of SCTs that belongs

to a trace of S. We decompose S = S1T3S2T3 · · · into subsequences Si that
do not contain any occurrence of T3. We define ai to be the maximal number
of consecutive T1 in Si, and bi to be the total number of T2 in Si. We set
ci = max{ai, bi}. We start with some observations: We have |Si| ≤ ci(ci+1)+ci =
ci(ci + 2) (i) by the definition of the ci. We have |Si| ≤ N (ii) because the
inequality x1 > x′1 is contained in T1 as well as in T2 and the value of x1 can only
decrease N times in Si. Combining (i) and (ii) we get |Si| ≤ min{ci(ci + 2), N}
(iii). We have

∑
i ci ≤ N (iv); this holds because there is a chain of inequalities

from the beginning to the end of S that for every i either uses all inequalities
x3 > x′3 of the consecutive T1 or all inequalities x4 > x′4 of the T2 in Si, and this
chain can only contain N strict inequalities. Finally, by the definition of the Si
we have |S| ≤

∑
i |Si| + 1. With (iii) we get |S| ≤

∑
imin{ci(ci + 2), N} + 1 ≤

5
∑
imin{c2i , N} (v). Using associativity and commutativity we rearrange the

sum
∑
i ci =

∑
i di +

∑
i ei + r, where the di are summands ci >

√
N and

the ei and r are the sum of summands ci ≤
√
N with

√
N
2 ≤ ei ≤

√
N and

r <
√
N
2 ; we denote ei =

∑
j cij for some cij . By (iv) there are at most

√
N of

the di and at most 2
√
N of the ei. Using these definitions in (v) we get |S| ≤

5(
∑
imin{d2i , N}+

∑
i,j min{c2ij , N}+min{r2, N}) ≤ 5(

√
N ·N+

∑
i,j c

2
ij+N) ≤

5(
√
N ·N +

∑
i e

2
i +N) ≤ 5(

√
N ·N + 2

√
N ·N +N) = O(N

3
2).

In this paper we establish the fundamental result that the computational time
complexity of terminating SCA instances is decidable:

Theorem 1. Let S be a terminating SCS. The length of the longest trace of S is
of order Θ(Nα), where α ≥ 1 is a rational number; moreover, α is computable.

We highlight that our result provides a complete characterization of the com-
plexity bounds arising from SCA and gives means for determining the exact
asymptotic bound of a given abstract program. Our investigation was motivated
by previous work [10], where we introduced a practical program analysis based
on SCA for computing resource bounds of imperative programs; in contrast to
this paper, [10] does not study the completeness of the proposed algorithms and
does not contain any result on the expressivity of SCA.

Organization of the Paper In Section 2, we give the automata definitions
and sketch the proof of Theorem 2. In Section 3 we provide a reduction from
size-change systems to max-plus automata that allows to prove Theorem 1 from
Theorem 2.

2 Max-Plus Automata

In this section, we first define max-plus automata (section 2.1), and then sketch
the proof of Theorem 2 (section 2.2).

4

2.1 Definition of max-plus automata

A semigroup (S, ·) is a set S equipped with an associative binary operation ‘·’.
If the product has furthermore a neutral element 1, (S, ·, 1) is called a monoid.
The monoid is said to be commutative if · is commutative. An idempotent in
a semigroup is an element e such that e ·e = e. Given a subset A of a semigroup,
〈A〉 denotes the closure of A under product, i.e., the least sub-semigroup that
contains A. Given X,Y ⊆ S, X · Y denotes {a · b : a ∈ X, b ∈ Y }.

A semiring (S,⊕,⊗, 0S , 1S) is a set S equipped with two binary operations
⊕ and ⊗ such that (S,⊕, 0S) is a commutative monoid, (S,⊗, 1S) is a monoid,
0S is absorbing for ⊗ (for all x ∈ S, x⊗0S = 0S⊗x = 0S) and ⊗ distributes over
⊕. We shall use the max-plus semiring ({−∞} ∪ N,max,+,−∞, 0), denoted
N, and its extension R+ = {−∞, 0} ∪ {x : x ∈ R, x ≥ 1}, that we name the
real semiring. This semiring will be used instead of N during the computations.
The operation over matrices induced by this semiring is denoted ⊗. Remark that
0N = −∞, and 1N = 0.

Let S be a semiring. The set of matrices with m rows and n columns over
S is denoted Mm,n(S), or simply Mn(S) if m = n. As usual, A ⊗ B for two
matrices A,B (provided the width of A and the height of B coincide) is defined
as:

(A⊗B)i,j =
⊕

0<k≤n

(Ai,k ⊗Bk,j)
(
= max

0<k≤n
(Ai,k +Bk,j) for S = N or R+

)
.

It is standard that (Mn(S),⊗, In) is a monoid, whose neutral element is the
diagonal matrix In with 1S (i.e., 0 for N) on the diagonal, and 0S (i.e., −∞ for
N) elsewhere. For a positive integer k, we set M0 = In, and Mk = Mk−1 ⊗M .
For λ ∈ R+, we denote by λA the matrix such that (λA)i,j = λAi,j for all i, j
(this matrix has non-negative real coefficients, which might not be over R+ if
λ ≤ 1). Finally, we write A ≤ B if for all i, j, Ai,j ≤ Bi,j .

A max-plus automaton over the alphabet A (with k states) is a map δ
from A toMk(N) together with initial and final vectors I, F ∈M1,k({0,−∞}).
The map δ is uniquely extended into a morphism from A∗ to Mk(N), that we
also denote δ. The function computed by the automaton maps each word
u ∈ A∗ to tI ⊗ δ(u)⊗ F ∈ N where tI denotes the transpose of I.

5

Example 2. We consider the following automaton, over the alphabet {a, b, c}, for
k = 6 and defined by (where −∞ is not written for readability):

δ(a) =

0 0 0 0 0 0
1 0
0 0
1 0
0 0
0

 , δ(b) =

0 0 0 0 0 0
1 0
0 0 1 0

1 0
1 0
0

 ,

δ(c) =

0 0 0 0 0 0

0
1 1 1 0
1 1 1 0
1 1 1 0

0

 , and I = F =

0
0
0
0
0
0

 .

It is sometimes convenient to see such matrices as a weighted automaton [7].
Such a presentation is provided in Figure 1. The states of the automaton are
q1, . . . , q6 and correspond respectively to the lines and the columns 1 to 6 of the
matrices. There is a transition from qi to qj corresponding to letter x = a, b, c
if the entry i, j of the matrix δ(x) is z 6= −∞. In this case, the transition is
weighted by z. The initial states are the states qi such that Ii = 0. The final
states are the states qj such that Fj = 0. A run over the word w is a path (a
sequence of compatible transitions) in the graph labelled by w. Its weight is the
sum of the weights of the transitions. Finally the weight of a given word w is the
maximum of the weights of the runs labelled by w and going from an initial state
to a final state. The weight of w, given by the graph representation is exactly
the value tI ⊗ δ(w)⊗ F , given by the matrix presentation.

2.2 Main theorem

Theorem 2. Given a max-plus automaton computing f : A∗ → N ∪ {−∞},
there exists an algorithm that computes the value α ∈ {+∞}∪{β ∈ Q : β ≥ 1}
such that

g(n) = Θ(nα)

where g(n) = sup{|w| : f(w) ≤ n}, with the convention that n+∞ = +∞.

Example 3. The algorithm applied on the automaton given in exemple 2 outputs
value 2/3. A sequence of words that witness this growth is (((anb)n)cn)n∈N.

The semigroup of weighted matrices Our goal is to analyse the relationship
between the output of the automaton and the length of the input. Thus we
use weighted matrices that are pairs of a matrix representing the behaviour of

6

q3

q2

q4

q5

q1

q6

a, b : 1

a, b : 0, c : 1

b : 0

c : 1

c : 1

b : 1

a, c : 1

c : 1

b : 1

a : 0, b, c : 1

a, b, c : 0

a, b, c : 0

where:
– there are edges from state
q1 to every state labelled by
every letter with weight 0,
– there are edges from every
state to state q6 labelled by
every letter with weight 0,
– every state is initial and
final.

Fig. 1. A weighted automaton over the semiring (N,max,+).

the automaton with a value standing for the length of the input. Formally, a
weighted matrix is an ordered pair (M,x) where M ∈ Mk(R+) and x ≥ 1
is a real number called the weight of the weighted matrix. They are usefull
to represent pairs (δ(w), |w|). The set of weighted matrices is denoted by Wk.
Weighted matrices have a semigroup structure (Wk,⊗), where (M,x) ⊗ (N, y)
stands for (M ⊗ N, x + y). By definition, the function w 7→ (δ(w), |w|) is a
morphism of semigroups. As in the general case, we use ⊗ over subsets of Wk.
Given A ⊆ Wk, 〈A〉 is the closure under ⊗ of A. Our goal is to study the set

{(δ(w), |w|) | w ∈ A∗} = 〈{(δ(a), 1) | a ∈ A}〉

and more precisely to give a finite representation of it up to some approximation.
The key to our algorithm is the ability to (a) finitely represent infinite sets
of weighted matrices and (b) define a notion of approximation between such
sets. Then our algorithm computes using such sets, and guarantees that, up
to the approximation, it is consistent with the behaviour of the automaton.
We present these notions below. From now we fix a max-plus automaton with
k states computing a function f and defined by the morphism δ. Let us first
introduce another semiring usefull for defining finite representation.

The R+
� and small semirings, and the semigroup of weighted matrices

We have seen the semirings N and R+. We use another semiring over the same
ground set R+ but with a different product, �. For all x, y ∈ R+ set x� y to be:

x� y =

{
−∞ if either x = −∞ or y = −∞,
max(x, y) otherwise.

7

Again, (R+,max,�,−∞, 0) is a semiring, denoted R+
�. As before, this induces

a product operation � for matrices. The product operation � is a good ap-
proximation of ⊗ as shown by the following key lemma that follows from the
similar property for real number and monotonicity of max and plus (proof in
Appendix A).
Lemma 1. Given matrices M1, . . . ,Mq, q ≥ 1 over R+, then

M1 � · · · �Mq ≤M1 ⊗ · · · ⊗Mq ≤ q(M1 � · · · �Mq) .

The last semiring we use is the small semiring (S,max,�,−∞, 0), simply
denoted S, which is the restriction of R+

� to {−∞, 0, 1}. There is a natural map
ϕ from R+ to S obtained by collapsing all elements above or equal to 1 to 1. It
happens that ϕ is at the same time a morphism of semirings from R+ to S and
from R+

� to S. Matrices over the small semiring are called small matrices.
The morphism ϕ is also extended to weighted matrices by ϕ((M,x)) = ϕ(M).

Our goal is, given a finite set of weighted matrices A, to compute a presentation
of 〈A〉 up to approximation (Lemma 7) — the notion of presentation of sets of
weighted matrices and the notion of approximation are the subject of the two
subsequent sections.

Presentable Sets of Weighted Matrices We introduce now the notion of
presentable sets of matrices, i.e., sets of matrices that we can manipulate via their
finite presentation. Our sets of weighted matrices are presented in ‘exponential
form’, i.e., given a weight x ≥ 1, an entry of the matrix will be of the form xα.
In fact, some special cases have to be treated, that results in the use of α = ⊥
or −∞.
Exponents and exponentiations The semiring of exponents (the choice of this
name will be explained when defining exponentiation in the next paragraph) is
(Exps,max,max�,⊥,−∞) where

Exps = {⊥,−∞} ∪ [0, 1] ,

where max is defined with respect to the order ⊥ < −∞ < x < y for all
x < y ∈ [0, 1], and where max�(α, β) for α, β ∈ Exps is defined by:

max�(α, β) =

{
⊥ if α = ⊥ or β = ⊥,
max(α, β) otherwise.

This semiring will be simply denoted Exps, and the induced operation over ma-
trices � (we will see that this notation is not ambiguous). We take the convention
to denote by α, β exponents, and by X,Y, Z vectors and matrices of exponents.

We define now the exponentiation operation. For x ≥ 1 and α ∈ Exps, set

xα =

−∞ if α = ⊥,
0 if α = −∞,
xα otherwise, i.e., if α ∈ [0, 1], for the usual exponent.

8

Lemma 2. For all x ≥ 1, α 7→ xα is a semiring morphism from Exps to R+
�.

Note that this morphism can be applied to vectors (or matrices). In this case,
given a matrix Y ⊆ Expsk×k, and some x ≥ 1, we denote by Y [x] ∈ R+

k×k
the

matrix such that (Y [x])i,j = xYi,j for all i, j = 1 . . . k. According to the previous
lemma, the map Y 7→ Y [x] is a morphism from matrices over Exps to matrices
over R+

�.
It is also sometimes convenient to send the small semiring to the exponent

semiring. It is done using the following straightforward lemma.

Lemma 3. The function γ that maps −∞ to ⊥, 0 to −∞, and 1 to 0 is a
semiring morphism from S to Exps such that xγ(a) = a for all a ∈ S and x ≥ 1.

Polytopes and presentable sets. Our goal it to describe finitely some infinite sets
of matrices over R+. We start from the notion of polytope. For this, we rely on
the definition of polytopes in Rk: a polytope (in Rk) is a convex hull of finitely
many points of Rk. We would like to use this definition for subsets of Expsk. For
that we send Exps to R by t(⊥) = −2, t(−∞) = −1 and t(s) = s if s is real.

A subset of Expsk is called a polytope if its image under t is a polytope in
Rk. In particular, we can use this definition for matrices of exponents, yielding
polytopes of matrices.

We can now define presentable sets of matrices over R+. Essentially, a set
of matrices over R+ is presentable if it is the image under exponentiation of a
finite union of polytopes of exponent matrices. Let us define precisely how this is
defined. A set of weighted matrices A ⊆ Wk is presentable if it is of the form:

A = {(M, 1) : M ∈ S} ∪ {(Y [x], x) : Y ∈ P, x ≥ 1} ,

where S is a set of small matrices of dimension k × k, and P is a finite union
of polytopes of Expsk×k. The pair (S, P) is called the presentation of A. A
presentation is said small if P = ∅. It is said asymptotic if S = ∅. Obviously,
any presentable set is the union of a set of small presentation with a set of
asymptotic presentation. Of course presentable sets are closed under union.

The approximation and simulation scheme We describe now the notion of
approximation that we use. Indeed, our goal is to compute the set of weighted
matrices {(δ(w), |w|)}. We cannot expect to do it in general, and, at any rate,
presentable sets of matrices cannot capture exactly the behaviour of the automa-
ton. That is why we reason about sets of matrices up to some approximation
relation that is sufficiently precise for our purpose, and at the same time is suf-
ficiently relaxed for allowing to approximate the behaviour of the automaton by
a presentable set of weighted matrices.

Given some a ≥ 1 and two weighted matrices (M,x) and (N, y), we write

(M,x) 4a (N, y) if M ≤ aN, y ≤ ax and ϕ(M) = ϕ(N) .

This definition extends to sets of weighted matrices as follows. Given two such
sets A,B, A 4a B if for all (N, y) ∈ B, there exists (M,x) ∈ A such that

9

(M,x) 4a (N, y). We write A ≈a B if A 4a B and B 4a A and say that A is
a-equivalent to B. We drop the a parameter when not necessary, and simply
write A ≈ B if A ≈a B for some a.

A first consequence of this definition is that every weighted matrix (M,x) is
a-equivalent to the weighted matrix (ϕ(M), 1) where a is the maximum of the
entries of M and x. This justifies that, in the definition of a presentable set, the
weighted matrices of the finite part are of this form.

Let us give some intuition why this approximation may help. For instance
consider some exponent matrix M , and let us show:

{(M [x], x) : x ≥ 1} ≈2 {(M [y], y) : y ∈ N, y ≥ 1} .

Indeed, one inclusion is obvious, yielding 41. For the other direction, consider
some x ≥ 1, and take y = bxc, then 2y ≥ x and M [y] ≤M [x], thus (M [y], y) 42

(M [x], x). More generally imagine the y’s would be further constrained to be
multiples of some value, say 2, then the same arguments would work. Hence this
equivalence relation allows to absorb a certain number of phenomena that can
occur in an automaton and are irrelevant for our specific problem. In particular,
if the least growing rate is achieved for words of length n for n even only, then
this ‘computing modulo 2’ can be ‘hidden’ thanks to the ≈-approximation.

The following lemma establishes some essential properties of the 4a relations
(as a consequence, the same properties hold for ≈a). (Proofs in Appendix B).

Lemma 4. Given A,A′, B,B′, C sets of weighted matrices and a, b ≥ 1,

1. if A 4a B and b ≥ a , then A 4b B,
2. if A 4a A′ and B 4a B′, then A ∪B 4a A′ ∪B′,
3. if A 4a B and B 4b C then A 4ab C,
4. if A 4a A′ and B 4a B′ then A⊗B 4a A′ ⊗B′,
5. if A 4a B then 〈A〉 4a 〈B〉.

The main induction: the forest factorization theorem of Simon The
forest factorization theorem of Simon [8] is a powerful combinatorial tool for
understanding the structure of finite semigroups. In this short abstract, we will
not describe the original statement of this theorem, in terms of trees of factor-
izations, but rather a direct consequence of it which is central in our proof (the
presentation of the theorem was used in a similar way in [2]).

Theorem 3 (equivalent to the forest factorization theorem [8]). Given
a semigroup morphism ϕ from (S,⊗) (possibly infinite) to a finite semigroup
(T,�), and some A ⊆ S, set B0 = A and for all n ≥ 0,

Bn+1 = Bn ∪Bn ⊗Bn ∪
⋃
e∈T

is idempotent

〈Bn ∩ ϕ−1(e)〉 ,

then 〈A〉 = BN for N = 3|T | − 1.

10

This theorem teaches us that, for computing the closure under product in the
semigroup S, it is sufficient to be able to know how to compute (a) the union of
sets, (b) the product of sets, and (c) the restriction of a set to the inverse image
of an idempotent by ϕ, and (d) the closure under product of sets of elements
that all have the same idempotent image under ϕ. Of course, this proposition is
only interesting when the semigroup T is cleverly chosen.

In our case, we are going to use the above proposition with (S,⊗) = (Wk,⊗),
and (T,�) = (Mk(S),�), and ϕ the morphism which maps each weighted matrix
(M,x) to ϕ(M). Our algorithm will compute, given a presentation of a set of
weighted matrices A, an approximation of 〈A〉 using the inductive principle of
the factorization forest theorem. This is justified by the two following lemmas.

Lemma 5. For all presentable sets of weighted matrices A,A′, there exists ef-
fectively a presentable set of weighted matrices product(A,A′) such that

A⊗A′ ≈ product(A,A′) .

Lemma 6. For all presentable sets A such that ϕ(A) = {E} for E an idempo-
tent, there is effectively a presentable set idempotent(A) such that

〈A〉 ≈ idempotent(A) .

Assuming that Lemmas 5 and 6 hold, it is easy to provide an algorithm which,
given a presentable set A computes a presentable set closure(A) as follows:

– Set A0 = A and for all n = 0 . . . N − 1 (N taken from Theorem 3), set

An+1 = An ∪product(An, An)∪
⋃

E ∈ Mk(S)
idempotent

idempotent(An ∩ϕ−1(E)) .

– Output closure(A) = AN .

The correctness of this algorithm is given by the following lemma. It derives
from the good properties of ≈ given in Lemma 4. (See Appendix C.)

Lemma 7. For all presentable sets of weighted matrices closure(A) ≈ 〈A〉 .

This allows us to conclude the proof of Theorem 2 (see Appendix D for
details). The algorithm takes an automaton δ, I, F as input, then it computes
thanks to the above Lemma 7 a presentable set B that is ≈-equivalent to 〈A〉
where A is the set of weighted matrices corresponding to basic letters (i.e.,
{(δ(a), 1) : a letter}). Set (S, P) a presentation of B. Then the algorithm out-
puts inf{tI � X � F | X ∈ P} that is computable since P is a finite union
of polytopes. This cofficient is the answer of the algorithm: the minimal expo-
nent such that the presentable set witnesses the existence of a behaviour of the
automaton that has this growth-rate.

11

3 From Size-Change Systems to Max-Plus Automata

For proving Theorem 1, we define a translation of SCSs to max-plus automata.
Let S be an SCS with k variables, which we assume to be numbered x1, . . . , xk.
We define an max-plus automaton φ(S) with k+2 states as follows: The alphabet
AS of φ(S) contains a letter aT for every SCT T ∈ S. We define the mapping δ
of AS toMk+2(N) as follows:

δ(aT)i,j =

0, i = 1 or j = k + 2
1, xi−1 > x′j−1 ∈ T
0, xi−1 ≥ x′j−1 ∈ T
−∞, otherwise

Further, φ(S) has the initial and final vector I = F = 0 ∈ M1,k+2(N). For
example, the SCS from Example 1 is translated to the max-plus-automaton in
Example 2.

The following lemmata relate SCSs and their translations; they allow us to
derive Theorem 1 from Theorem 2 (all proofs are rather straight-forward and
can be found in the appendix).

Lemma 8. Let u be a word of φ(S) with tI⊗δ(u)⊗F = N . Then S has a trace
with valuations over [0, N] of length |u|.

Lemma 9. Assume S has a trace with valuations over [0, N] of length l. Then
there is a word u of φ(S) with tI ⊗ δ(u)⊗ F ≤ N and |u| = l.

References

1. Amir M. Ben-Amram and Michael Vainer. Bounded termination of monotonicity-
constraint transition systems. CoRR, abs/1202.4281, 2012.

2. Thomas Colcombet and Laure Daviaud. Approximate comparison of distance au-
tomata. In STACS, pages 574–585, 2013.

3. Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance func-
tions. J. Comput. Syst. Sci., 24(2):233–244, 1982.

4. Daniel Krob. The equality problem for rational series with multiplicities in the
tropical semiring is undecidable. Internat. J. Algebra Comput., 4(3):405–425, 1994.

5. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In POPL, pages 81–92, 2001.

6. Panagiotis Manolios and Daron Vroon. Termination analysis with calling context
graphs. In CAV, pages 401–414, 2006.

7. M. P. Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

8. Imre Simon. Factorization forests of finite height. Theoretical Computer Science,
72:65–94, 1990.

9. Imre Simon. The nondeterministic complexity of a finite automaton. In Mots,
Lang. Raison. Calc., pages 384–400. Hermès, Paris, 1990.

10. Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis
of imperative programs with the size-change abstraction. In SAS, pages 280–297,
2011.

12

Appendix

A Proof of Lemma 1

Proof (of lemma 1). Let x1, . . . , xq ∈ R+. If one of x1, . . . , xq is −∞, then
x1�· · ·�xq = −∞ = x1+ · · ·+xq. Otherwise, x1�· · ·�xq = max(x1, . . . , xq) ≤
x1 + · · ·+ xq ≤ qmax(x1, . . . , xq) = q(x1 � · · · � xq). Since furthermore both +
and � are non-decreasing with respect to their arguments, this relation between
+ and � over R+ can be raised to matrices. ut

B Proof of Lemma 4

Proof (of Lemma 4). (1) Direct from the definition.
(2) Direct from the definition of 4 over sets.
(3) Assume (L, x) 4a (M,y) 4b (N, z), then ax ≥ y and by ≥ z, thus abx ≥ z.
Furthermore ϕ(L) = ϕ(M) = ϕ(N). Finally L ≤ aM and M ≤ bN , thus
L ≤ abN . Overall (L, x) 4ab (N, z). This easily extends to sets.
(4) Assume (M,x) 4a (M ′, x′) and (N, y) 4a (N ′, y′). Then, ax ≥ x′ and
ay ≥ y′ implies a(x+y) ≥ x′+y′. Furthermore, since ϕ(M) = ϕ(M ′) and ϕ(N) =
ϕ(N ′), we have ϕ(M ⊗ N) = ϕ(M) � ϕ(N) = ϕ(M ′) � ϕ(N ′) = ϕ(M ′ ⊗ N ′).
Finally, since M ≤ aM ′ and N ≤ aN ′, M ⊗ N ≤ aM ′ ⊗ aN ′ = a(M ′ ⊗ N ′).
Once more, this is easily extended to sets of weighted matrices.
(5) By induction, applying the second and fourth items. ut

C Proof of Lemma 7

Proof (Lemma 7). We use Theorem 3 and prove by induction on n:

Bn ≈ An

where Bn is as in Theorem 3. This is true if n = 0 (B0 = A = A0). Let n ≥ 0,
by lemmas 5 and 6, product(An, An) ≈ An ×An and idempotent(An) ≈ 〈An〉.
Then by lemma 4:

An+1 = An ∪ product(An, An)

∪
⋃

E∈Mn(S) idempotent

idempotent(An ∩ ϕ−1(E))

≈ Bn ∪Bn ×Bn
∪

⋃
E∈Mn(S) idempotent

〈Bn ∩ ϕ−1(E)〉

≈ Bn+1

Then closure(A) = AN ≈ BN = 〈A〉 . ut

13

D Proof of the main theorem, Theorem 2

Proof (Theorem 2). Given a max-plus automaton (δ, I, F), set A = {(δ(a), 1) |
a ∈ A} the set of small weighted matrices corresponding to letters. By lemma
7, one can compute closure(A) that approximates 〈A〉 = {(δ(u), |u|) | u ∈ A∗}.
Since closure(A) is presentable, let us note closure(A) = {(M, 1) : M ∈
S} ∪ {(K[x], x) : K ∈ P, x ≥ 1}. Then, by presentability, one can compute β
that is the minimum of the values Ki,j for all K matrices of exponents in P , i
initial and j final. Then set α = +∞ if β = ⊥, −∞ or 0 and α = 1

β otherwise.
For α 6= +∞, let us prove the two following statements:

– There is an infinite sequence of words (un)n and an integer a such that for all
n, |un| ≥ af(un)α. Hence, denote byK the witness matrix such thatKi,j = β
for some i initial and j final. Since {(δ(u), |u|) | u ∈ A∗} 4 closure(A),
then there is an integer b such that for all positive integer n there is a word
un such that (δ(un), |un|) 4b (K[n], n). Thus the sequence (un)n∈N−{0} is
infinite (since n ≤ b|un|), and

(b|un|)β ≥ nβ

≥t I ⊗K[n]⊗ F
≥ b(tI ⊗ δ(un)⊗ F)
≥ bf(un)

Set a = bα−1.
– There is an integer a such that for all words u of length greater than a, |u| ≤
af(u)α. Hence, let b be the integer such that closure(A) 4b {(δ(u), |u|) | u ∈
A∗}, there is (M,y) in closure(A) such that (M,y) 4b (δ(u), |u|). Moreover,
since |u| > b, then y > 1 and thus (M,y) belongs to the asymptotic part of
closure(A). Then

|u|β ≤ (by)β

≤ bβ(tI ⊗M ⊗ F)
≤ bβbf(u)

Set a = b1+α.

It is similar to prove that α = +∞ if and only if there is a sequence of words
that is bounded. ut

E Proofs of Lemma 5 and 6

E.1 Product of presentable sets

In this section, we establish Lemma 5. We need to compute the product of two
presentable sets of weighted matrices A,B. We do this in several step. We first
treat the case of the product of a set of asymptotic matrices with a set of small
matrices.

14

Lemma 10. Let A be a presentable set of weighted matrices, and S be a set of
small matrices, then the set {(M � N, x) : (M,x) ∈ A, N ∈ S} is effectively
presentable. This set is denoted A� S.

Proof. The results obviously holds if A has a small presentation. Thus, we just
have to show it for the case when A has an asymptotic presentation (∅, P)
(the general case being obtained by union). Let S′ be γ(S), i.e., obtained by
application of the morphism from Lemma 3. Let us consider the set Q = P�S′ =
{Y �Z : Y ∈ P, Z ∈ S′}. Since P and S′ as well as max and max� (as subsets
of Exps3) are polytopes, and that by definition

Q =

X ∈ Expsk×k : ∃Y ∈ P∃Z ∈ S′
∧

i,j∈[k]

Xi,j = max
`

(max�(Yi,`, Z`,j))

 ,

it follows that Q is effectively polytope.
Let us show now that C = {(M � N, x) : (M,x) ∈ A, N ∈ S} equals

Q[∗] = {(X[n], n) | n ≥ 1, X ∈ Q}. Consider a weighted matrix (K,x). We have
(K,x) ∈ C if and only if K = M � N for (M,x) ∈ A and N ∈ S, if and only
if M = Y [x] for some Y in P and N = Z[x] for some Z ∈ S′, if and only if
K = (Y � Z)[x] for some Y ∈ P and Z ∈ S′, if and only if (K,x) ∈ Q[∗]. ut

Using the product with a set of small matrices as defined above, we can
approximate the general product (which means, prove Lemma 5).

Lemma 11. For all presentable sets of weighted matrices A,B, let product(A,B) =
A� ϕ(B) ∪ ϕ(A)�B, then

A⊗B ≈2 product(A,B) .

Proof. First, A�ϕ(B) ≈2 ∪N∈ϕ(B)A⊗{(N, 1)}, that is included in A⊗B. The
case ϕ(A)�B is symmetric. Hence A⊗B 42 product(A,B).

Conversely, consider (M,x) ∈ A and (N, y) ∈ B. Suppose first that x ≥ y,
then, since ϕ(N) ≤ N and 2x ≥ (x+ y) we have:

(M,x)⊗ (N, y) = (M ⊗N, x+ y)

<2 (M ⊗ ϕ(N), x) ∈ A� ϕ(B) .

If x ≤ y, we similarly get (M,x)⊗ (N, y) <2 (ϕ(M)⊗N, y) ∈ ϕ(A)�B. Hence
we have product(A,B) 42 A⊗B.

E.2 Iteration of Idempotents: Uniformization

Our goal from now is to establish Lemma 6, which means to compute, given a
presentable set of weighted matrices A that is sent by ϕ to a single idempotent
E, a set idempotent(A) such that

idempotent(A) ≈ 〈A〉 .

15

We show in this first section that we can reduce this problem to sets of weighted
matrices that have the further property of being uniform. We introduce here the
notion of uniform matrices and show this reduction. From now a small idempo-
tent matrix E is fixed, i.e., such that E �E = E. All matrices that we consider
from now are mapped by ϕ to E.

Given a matrix M such that ϕ(M) = E, its uniformization uniform(M)
is the matrix

uniform(M) = E �M � E .

Amatrix such that uniform(M) =M is said uniform. This notation is extended
to weighted matrices by uniform(M,x) = (uniform(M), x). It is also extended
to sets of weighted matrices as usual with:

uniform(A) = {uniform(M,x) : (M,x) ∈ A}.

Lemma 12. If M,N are uniform then M ≤M ⊗N and N ≤M ⊗N .

Proof. Indeed, since E ≤ N and using Lemma 1,M =M�E ≤M�N ≤M⊗N .
The other case is symmetric.

A consequence is that we can ‘eliminate’ any term in a product of uniform
matrices.
Corollary 1. If M1, . . . ,Mq are uniform, and 1 ≤ i1 < i2 < . . . in ≤ q with
n ≥ 1, then Mi1 ⊗ · · · ⊗Min ≤M1 ⊗ · · · ⊗Mq.

To formalize this, we say that two indices i, j are connected, written i→ j
if Ei,j 6= −∞, i.e., Ei,j ∈ {0, 1}. Remark that the usual notion of connectedness
would refer to paths rather than a direct connection from i to j. In fact in our
case, because E is idempotent, this is equivalent. Indeed, we have that whenever
i → j and j → k then i → k. If i → j and j → i then we simply write i ↔ j.
A matrix M (such that ϕ(M) = E) is uniform if whenever i↔ i′ and j ↔ j′,
then Mi,j =Mi′,j′ . A weighted matrix (M,x) is uniform if M is uniform.

Let us immediately explain why we chose this terminology:
Lemma 13. For a matrix M such that ϕ(M) = E, uniform(M) is uniform.
Furthermore uniform(uniform(M)) = uniform(M).

Proof. Let us first show that E is uniform. This comes from the fact that E
is an idempotent. Let i ↔ i′ and j be indices. Then Ei,j = max`Ei,` � E`,j.
So, in particular, Ei,j ≥ Ei′,j. By symmetry, we get that Ei′,j ≥ Ei,j and thus
Ei,j = Ei′,j. Again by symmetry (this time by transposing the matrix E), we
get that if j ↔ j′ then Ei′,j = Ei′,j′ . Hence, if both i ↔ i′ and j ↔ j′ we have
Ei,j = Ei′,j′ .

Let us now consider the indices i↔ i′ and j ↔ j′ in the matrix E �M �E.
Since E is uniform, Ei,h = Ei′,h for all h and E`,j = E`,j′ for all `. Hence,

uniform(M)i,j = max
h,`

(Ei,h �Mh,` � E`,j)

= max
h,`

(Ei′,h �Mh,` � E`,j′)

= uniform(M)i′,j′ ,

16

which means that uniform(M) is uniform.

Lemma 14. For all presentable sets of weighted matrices A, uniform(A) is
effectively presentable.

Proof. Direct from Lemma 10.

We shall now conclude this section by proving that for computing 〈A〉 it is
sufficient to be able to compute 〈uniform(A)〉.

Lemma 15. Given a set of weighted matrices A mapped to E by ϕ such that
(E, 1) ∈ A then

〈A〉 ≈9 A ∪ (A⊗A) ∪ (A⊗ 〈uniform(A)〉 ⊗A) .

We shall use the rest of this section for establishing Lemma 15.
For the first direction, remark that if (M,x) ∈ A, then since (E, 1) ∈ A, this

means that uniform(M,x) = (E �M �E, x) ≈3 (E, 1)⊗ (M,x)⊗ (E, 1) ∈ 〈A〉.
Hence, 〈A〉 43 A ∪ (A⊗A) ∪ (A⊗ 〈uniform(A)〉 ⊗A) .

The converse direction is slightly more involved. Consider a weighted matrix
(M,x) in 〈A〉. It can be decomposed as a product

(M,x) = (M1, x1)⊗ · · · ⊗ (Mq, xq)

for some q ≥ 1, and (Mr, xr) in A for r = 1 . . . q. Of course, if q = 1 or q = 2,
this means (M,x) ∈ A ∪ (A ⊗ A). Thus, from now we assume that q ≥ 3. Two
positions r, s in [1, q] are said neighbors if either r = s+ 1 or s = r + 1.

Lemma 16. There exists a subset I ⊆ {1, . . . , q} that does not contain neighbor
positions, and such that 3

∑
s∈I xs ≥ x.

Proof. I is constructed inductively as follows. Start with I0 = ∅. Then at each
step n, pick the position s such that (a) s is not in In and not a neighbour of
a position in In, and (b) is such that xs is maximal among the positions that
satisfy (a). Then construct In+1 = In ∪ {s}. At some point the processes stops
because no more position satisfy (a). We define I to be this set.

Of course, no two neighbours can be in I since this is forbidden by (a). Now,
from the construction process, for all positions s, then either s is in I, and we set
g(s) = s, or s has a neighbour t in I such that xt ≥ xs (indeed, by contraposition,
if all the neighbours u of s are such that xu < xs, then s would have been chosen
in the construction process before its neightbours, and thus would be in I), and
we set g(s) = t. Hence, we have xs ≤ xg(s) for all s = 1 . . . q. Furthermore, g(s) is
eigher s or a neighbor of s. As a consequence no more than three s can have the
same value under g. It follows that x =

∑
s=1...q xs ≤

∑
s=1...q xg(s) ≤ 3

∑
s∈I xs.

Consider now I = {1}∪I ′∪{q} with I ′ the subset constructed in the previous
lemma. Let us write I = {1 = i1 < · · · < i` = q}. Remark that E ⊗ E 42 E 41

17

Ms for all s = 1 . . . q. Thus, we can substitute each Ms that does not belong to
I with either (E, 1) or (E, 1)⊗ (E, 1) and get:

(M1, x1)⊗ uniform(Mi2 , xi2)⊗ . . .
· · · ⊗ uniform(Mi`−1

, xi`−1
)⊗ (Mq, xq)

43 (M1, x1)⊗ ((E, 1)⊗ (Mi2 , xi2)⊗ (E, 1))⊗ . . .
· · · ⊗ ((E, 1)⊗ (Mi`−1

, xi`−1
)⊗ (E, 1))⊗ (Mq, xq)

43 (M,x) .

The last approximation is a combination od the previous lemma and of corollary
1. In particular, the weight of the left matrix is at least equal to

∑
s∈I xs and

3(
∑
s∈I xs) ≥ x. Thus, A⊗ 〈uniform(A)〉 ⊗A 49 (M,x).

E.3 Iteration of Idempotents: Iteration of Uniform Matrices

In the previous section we have seen that it is sufficient to be able to compute
〈A〉 for A a presentable set of uniform matrices. In this section, we reduce this
problem to iterate a single matrix at a time. From now, we fix A a presentable
set of uniform matrices. As before, ϕ maps A to a single idempotent element E.

We first start by describing a property of iteration of uniform weighted matri-
ces, namely that removing terms from the iteration (but not too many of them)
can only decrease the result of the product (up to approximation). This result
is elementary, but will prove useful.

Lemma 17. Let (M,x) = (M1, x1)⊗· · ·⊗ (Mq, xq) for (M1, x1), . . . , (Mq, xq) ∈
A, and let 1 ≤ i1 < . . . < ij ≤ q be integers such that a(xi1 + . . . + xij) ≥
x1 + . . .+ xq for some a ≥ 2. Then

(Mi1 , xi1)⊗ · · · ⊗ (Mij , xij) 4a (M,x) .

Proof. From 1, Mi1 ⊗ · · · ⊗Mij ≤ M . Since furthermore a(xi1 + . . . + xij) ≥
x1 + . . .+ xq, the result follows.

The following lemma shows how that in a product of uniform weighted ma-
trices, it is possible to take one of the weighted matrices, and iterate only this
one. The following remark is useful beforehand for understanding:

Lemma 18. Let M = M1 ⊗ · · · ⊗Mq be a product of uniform matrices with
ϕ(Ms) = E for all s, then for all indices i, Mi,i =

∑q
s=1(Ms)i,i.

Furthermore, for all indices i, j,

Mi,j ≤ kmax(max
s=2...q−1

(M1 ⊗Ms ⊗Mq)i,j , max
i→`,`→j

∑
s=2...q−1

(Ms)`,`) .

Proof. For the first statement, let h, j be indices such that i → h → j → i,
then since the matrices are uniform, for all s, (Ms)h,j = (Ms)i,i. That is why
Mi,i =

∑q
s=1(Ms)i,i.

18

For the second statement, let ` such that i → ` → j. Then Mi,` and M`,j

are different from −∞. So Mi,j ≥ (M1)i,` +
∑
p=2...q−1(Ms)`,` + (Mq)`,j ≥∑

s=2...q−1(Ms)`,`. Moreover, for all s, (M1 ⊗ Ms ⊗ Mq)i,j ≤ Mi,j by Corol-
lary 1. Conversely, consider the maximal sum involved in the computation of
Mi,j . Suppose that you use for some s, a coefficient (Ms)h,` greater than all
the diagonal coefficients in Ms. Then E`,h = −∞ (otherwise by uniformity,
(Mp)h,` = (Ms)h,h = (Ms)`,` = (Ms)`,h, that contradicts the hypothesis). Thus
the index h will be no longer be used in the sum. So at most k coefficients greater
than the diagonal coefficients can be used. Moreover, by using the first part of
the lemma, (Mp ⊗ · · · ⊗Mt)`,` =

∑t
s=p(Ms)`,`. Therefore

Mi,j ≤ k max
i→ h
`→ j

1 ≤ s ≤ q

(Ms)h,` + k max
i→ `
`→ j

∑
s=1...q−1

(Ms)`,`.

Lemma 19. There exist a ≥ 1 such that for all products (M,x) = (M1, x1) ⊗
. . .⊗ (Mq, xq), q ≥ 3 of uniform weighted matrices, then for some p = 2 . . . q− 1
and some positive integer n,

(M1, x1)⊗ (Mp, xp)
n ⊗ (Mq, xq) 4a (M,x) .

Proof. Let (N, y) = (M2, x2) ⊗ · · · ⊗ (Mq−1, xq−1). For an index i such that
Ei,i = 1, and some p = 2 . . . q − 1, we say that p is i-bad if (Mp)i,i >

kxp
y Ni,i.

If there is some i such that p is i-bad, then p is simply said bad. Otherwise p is
good.

We claim that there exists a good p. The argument proceeds by counting the
weight of bad p’s. For all i such that Ei,i = 1, set zi =

∑
p i-bad xp. We have

Ni,i ≥
∑

p i-bad

(Mp)i,i >
∑

p i-bad

kxp
y
Ni,i >

kzi
y
Ni,i .

Thus, zi < y
k (since Ni,i ≥ Ei,i = 1). Hence we get

∑
p bad xp ≤

∑
i zi < y. This

means that there exists a good p.
Let now n = d yxp e. Let (R, z) = (M1, x1) ⊗ (Mp, xp)

n ⊗ (Mq, xq). Let us
remark first that z = x1 + nxp + xq ≥ x by definition of n. Let now i, j be
indices such that Ei,j ≥ 1. Remark that M1 ⊗Mp ⊗Mq ≤ M by Lemma 1.
Furthermore, consider ` such that E`,` = 1. Then (since p is good, xp ≥ 1 and
y ≥ xp) (Mn

p)`,` = n(Mp)`,` ≤ d yxp e
kxp
y N`,` ≤ 2kN`,`. In combination with

Lemma 18, we get that

(M1, x1)⊗ (Mp, xp)
n ⊗ (Mq, xq) 42kb (M,x) ,

where b is the constant from Lemma 18.

19

E.4 Iteration of Idempotents: the Single Matrix Case

We shall now prove that we can compute the effect of iterating a single matrix
taken from a presentable set. Since presentable sets of weighted matrices contain
a finite part and an asymptotic part, we successively treat the two situations.
Again, E is a fixed small idempotent matrix. Furthermore A is a presentable
set of uniform weighted matrices that are all mapped to E by ϕ. We aim at
computing a presentable set B ≈ {(M,x)m : m ∈ N+, (M,x) ∈ A} . From this
we will be able to conclude.

The case of small matrices. Let (M, 1) be a small matrix from A (in fact,
there is exactly one such matrix, namely (E, 1)). Let us describe a presentable
set and show that it is equivalent to 〈(M, 1)〉 = {(Mn, n) : n ∈ N+}.

Let K be the exponent matrix defined by:

Ki,j =

⊥ if Ei,j = −∞
−∞ if Ei,j = 0

1 if E`,` = 1 for some ` such that i→ `→ j,
0 otherwise.

Let us prove that there exists a such that (Mn, n) ≈a (K[n], n) for all positive
integers n. We do it by case distinction depending on Ki,j .

Subcase 0. If Ki,j = ⊥ then Ki,j [n] = −∞ = Mn
i,j . If Ki,j = −∞ then

Ki,j [n] = 0 =Mn
i,j .

Subcase 1. If Ki,j = 0, K[n]i,j = n0 = 1 ≤ Ei,j ≤ Mn
i,j . For the sake of

contradiction, assume now that Mn
i,j ≥ k + 2 for some n. This would mean that

there are indices i = i0, i1, i2, . . . , i` = j such that Mi,i1 +Mi1,i2 +Mi2,i3 + . . .+
Mi`−1,j ≥ k + 2. By pigeon hole principle, there are 0 < s < q < ` such that
is = iq and Mis,is+1

+ · · · +Miq−1,iq ≥ 1. Using the fact that E is idempotent,
this means that i → is, Eis,is = 1, and is → j. This proves that Ki,j = 1 by
definition. A contradiction. Hence Mn

i,j ≤ k + 1 4k+1 K[n].
Subcase 2. If Ki,j = 1, clearly K[n]i,j = n ≥Mn

i,j . Conversely, by definition
of Ki,j , there exists p such that i → p, p → j and Ep,p = 1. If n = 1 or n = 2,
since E is idempotent, Ei,j = E2

i,j = Ep,p = 1, then 2(Mn
i,j) ≥ 2 ≥ K[n].

Otherwise, the path i, p, . . . , p, j witnesses that Mk
i,j ≥ n − 2. It follows that

3Mn ≥ K[n].
If we combine all the above cases, we get that:

〈(M, 1)〉 ≈k+2 {K[`] : ` ∈ N+} ≈2 {K[x] : x ≥ 1} .

Case of asymptotic presentations. In this case, we have a set of weighted
uniform matrices

A = {K[x] : x ≥ 1, A ∈ P},

where P is a polytope of exponents matrices, and our goal is to compute an
approximation of the set:

B = {(K[x], x)m : x ≥ 1, m ∈ N+, K ∈ P} .

20

Let K be in P . The new weighted matrix (K[x], x)m depends on two pa-
rameters, namely x and m. We shall now introduce another parameter λ ∈ [0, 1]
that informally describes the balance between the two parameters x and m. The
case λ = 0 corresponds to x small (i.e., ‘bounded’), and m large, while λ = 1
corresponds to x large, and m small (i.e., ‘bounded’).

Set λ ∈ [0, 1], and let K(λ) be the matrix of exponents defined for all indices
i, j by

K
(λ)
i,j =

⊥ if Ei,j = −∞
−∞ if Ei,j = 0

α
(λ)
i,j otherwise,

where

α
(λ)
i,j = max

(
max

i→`→j,E`,`=1

(
1− λ+ λK`,`

)
, max
i→h,`→j,Eh,`=1

λKh,`

)
.

Define now

A(∗) = {K(λ)[x] : x ≥ 1, K ∈ P, λ ∈ [0, 1]} .

Let us first treat the effectivity question.

Lemma 20. The set of weighted matrices A(∗) is presentable.

Proof. We have A(∗) =
{
K[x] : x ≥ 1, K ∈ {L(λ) : L ∈ P, λ ∈ [0, 1]}

}
. So we

just have to show that the set of exponents matrices {L(λ) : L ∈ P, λ ∈ [0, 1]}
is presentable. This is obvious since it is obtained from P by affine interpolations
according to λ, and by maxima, which maintain polytopes. ut

What remains to be done is to prove that A(∗) ≈a B for a suitable a ≥ 1.
We start by a matrix of the form (K[x], x)m ∈ B. If m = 1, (K[x], x) =

(K(0)[x], x), and if m = 2, (K[x], x)2 ≈2 (K(0)[2x], 2x). Let us assume x ≥ 1
and m ≥ 3. Let γ ≥ 0 be such that x = mγ (this is possible since m > 1),
and set λ = γ

1+γ ∈ [0, 1). First let us prove that K(λ)[mγ+1]i,j ≤ 3K[x]mi,j . Since
ϕ(K[x]m) = E = ϕ(K(λ)[mγ+1]), we just have to compare the entries for i, j
such that Ei,j ≥ 1.

We have to compare the entry (K[x]m)i,j with the term witnessing the max-
imum in the definition α(λ)

i,j . The first subcase is when this term corresponds to `
such that i→ `→ j, and the term is 1−λ+λK`,`. Then, unfolding the definition
of K[x]m, we get

3(K[x]m)i,j ≥ 3(K[x]i,` + (m− 2)K[x]`,` +K[x]`,j)

≥ mxK`,` (since m ≥ 3)

≥ (mγ+1)1−λ+λK`,` .

21

The second subcase is when the maximum involved in the computation of α(λ)
i,j is

witnessed by indices h and ` such that i→ h and `→ j, and the corresponding
term is λKh,`. In this case,

K[x]mi,j ≥ K[x]h,` ≥ xKh,` ≥ (mγ+1)λKh,` .

Summarizing, we have 3K[x]mi,j ≥ K(λ)[mγ+1]i,j , and hence

A(∗) 3 (K(λ)[mγ+1],mγ+1) 43 (K[x]m,mx) .

Then A(∗) 4 B.
Conversely, let us consider some weighted matrix of the form (K(λ)[y], y) in

A(∗), i.e., for some λ ∈ [0, 1] and y ≥ 1. Set m = by1−λc, m is a positive integer,
and x = y

m ≥ 1.
Let us prove that (K[x]m,mx) 4k+2 (K(λ)[y], y). Firstmx = y and ϕ(K[x]m) =

E = ϕ(K(λ)[y]). Then, if m = 1 and thus y = x and 1 ≤ y1−λ < 2, we have
xKi,j ≤ (x1−λ)Ki,jxλKi,j ≤ 2yK

(λ)
i,j . Otherwise if m ≥ 2, then

K[x]mi,j ≤ kx
maxi→k,`→j,Ek,` 6=−∞Kk,` +mxmaxi→`,`→j,E`,` 6=−∞K`,`

Besides,

mxmaxi→`,`→j,E`,` 6=−∞K`,` ≤

y(1−λ)(1−maxi→`,`→j,E`,` 6=−∞K`,`)ymaxi→`,`→j,E`,` 6=−∞K`,`

Thus,
K[x]mi,j ≤ (k + 2)yK

(λ)
i,j .

Then B 4 A(∗).
If we put all the previous reasoning together, we obtain:

Lemma 21. There exists a ≥ 1 such that for all presentable sets of uniform
weighted matrices A,

A(∗) ≈a {(M,x)m : m ∈ N+, (M,x) ∈ A} .

F Proof of Lemma 8

Let u = aT1
· · · aTl be a word of φ(S) with tI ⊗ δ(u)⊗F = N . We define vectors

Ai = tI ⊗ δ(aT1
· · · aTi) for all 0 ≤ i ≤ l. We show 0 ≤ (Ai)j ≤ N for all

0 ≤ i ≤ l and 1 ≤ j ≤ k + 2 (*): The inequality 0 ≤ (Ai)j holds because the
first row in the matrix δ(aT1 · · · aTi) consists of entries greater equal to zero and
I is the k + 2 dimensional zero-vector. The inequality (Ai)j ≤ N follows from
tI ⊗ δ(u) ⊗ F = tAi ⊗ δ(aTi+1

· · · aTl) ⊗ F = N because the column k + 2
in δ(aTi+1

· · · aTl) consists of entries greater equal to zero and F is the k + 2
dimensional zero-vector.

22

We define valuations σi over [0, N] as follows: We set σi(xj) = N − (Ai)j+1

for all 0 ≤ i ≤ l and 1 ≤ j ≤ k. By (*) these valuations are well-defined.
We show σi−1, σ

′
i |= Ti for any 1 ≤ i ≤ l: We fix some size-change predicate

xs . x
′
r ∈ Ti. Then (aTi)s,t is 0 or 1 depending on whether . is ≥ or >. Thus, we

have σi−1(xs) = N−(Ai−1)s+1.N−(Ai−1⊗δ(aTi))r+1 = N−(Ai)r+1 = σi(xr).
We have proved that σ0

T1−→ σ1 · · ·
Tl−→ σl is a trace of S.

G Proof of Lemma 9

Let σ0
T1−→ σ1 · · ·

Tl−→ σl be a trace of S with valuations over [0, N]. Let u =
aT1 · · · aTl be the corresponding word of φ(S). In the following we show that
tI ⊗ δ(u) ⊗ F ≤ N : We set A0 = tI. We inductively define vectors Ai =
Ai−1 ⊗ δ(aTi) for all 1 ≤ i ≤ l. It is easy to see that (Ai)1 = 0 for all i by
definition of I and the matrices δ(aT) (i). Moreover, it is easy to prove that
Ai consists only of entries greater equal than zero using the fact that every
matrix δ(aT) consists of zeros in its first row and that I is the k+2 dimensional
zero-vector (ii).

We show by induction on i that (Ai)j+1 ≤ N −σi(xj) holds for all 1 ≤ j ≤ k
and 0 ≤ i ≤ l (iii). Clearly, this holds for i = 0. We consider some 1 ≤ i ≤ l.
We fix some j with 1 ≤ j ≤ k. We have (Ai)j+1 = maxh∈[1,k+2]((Ai−1)h +
δ(aTi)h,j+1). Let h ∈ [1, k+2] be an index that gives the maximum. We proceed
by a case distinction on h.

h = 1: then we have (Ai−1)1 = 0 from (i) and further δ(aTi)h,j+1 = 0 by
definition; thus (Ai)j+1 = (Ai−1)1 + δ(aTi)h,j+1 = 0 and (iii) holds trivially.

h = k+2: by definition we have δ(aTi)h,j+1 = −∞; this is impossible, because
(Ai)j+1 = (Ai−1)h + δ(aTi)h,j+1 = −∞ contradicts (ii).

h ∈ [2, k + 1]: δ(aTi)h,j+1 6= −∞ is not possible (see previous case). Thus
by the definition of δ(aTi) there is a size-change predicate xh−1 . x′j ∈ Ti. By
the definition of a trace we have σi−1, σ′i |= Ti. Thus σi−1(xh−1) . σi(xj). By
induction assumption we have (Ai−1)h ≤ N − σi−1(xh−1). Thus (Ai)j+1 =
(Ai−1)h+ δ(aTi)j+1,h ≤ N −σi−1(xh−1)+ δ(aTi)j+1,h ≤ N −σi(xj). This proves
(iii).

Next, we prove (Ai)k+2 ≤ N for all 0 ≤ i ≤ l by induction on i (iv).
Clearly, this holds for i = 0. We consider some 1 ≤ i ≤ l. We get (Ai)k+2 =
maxh∈[1,k+2]((Ai−1)h + δ(aTi)h,k+2) ≤ N from the following facts: We have
(Ai−1)1 = 0 by (i). By (iii) we have (Ai−1)j+1 ≤ N − σi−1(xj) ≤ N for all
1 ≤ j ≤ k. By induction assumption we have (Ai−1)k+2 ≤ N . By definition we
have δ(aTi−1)h,k+2 = 0 for all h ∈ [1, k + 2].

By (i),(iii) and (iv) we have (Al)j ≤ N for all 1 ≤ j ≤ k + 2. Thus we have
tI ⊗ δ(u)⊗ F = Al ⊗ F ≤ N .

H Proof of Theorem 1

Let S be a terminating SCS. Let f be the function computed by φ(S), i.e., the
function that takes a word u over AS and returns the natural number tI⊗δ(u)⊗

23

F . By Theorem 2, there effectively is a number α ∈ {+∞} ∪ {α ∈ Q : α ≥ 1}
such that g(n) = Θ(nα) (*), where g(n) = sup{|w| | w ∈ A∗S , f(w) ≤ n}.

First, we establish the lower bound. From (*) we have that there is a c ∈ Q+

and there are infinitely many words uN with |uN | ≥ c ·Nα. From Lemma 8 we
get that for each uN there is a trace with valuations over [0, N] with length |uN |.
Thus the longest trace of S with valuations over [0, N] is of order Ω(Nα).

Next, we establish the upper bound. From (*) we have that there is a c ∈ Q+

and there is a N ∈ N such that g(n) ≤ c · nα for all n ≥ N (**). Consider now
the longest trace with valuations over [0, N]. Let us assume that this trace is of
length l. By Lemma 9 there is a word uN of φ(S) with f(uN) ≤ N and |uN | = l.
From (**) we get l = |uN | ≤ g(N) ≤ c · Nα. Thus the longest trace of S with
valuations over [0, N] is of order O(Nα).

Finally, we show that α 6= +∞. We will assume that α = +∞ and show that
S has an infinite trace. This contradicts the assumption that S is terminating.
Assume α = +∞. Then by Theorem 2 there is an infinite set of words U such
that {f(u) | u ∈ U} is bounded. Let N = max{f(s) | u ∈ U}. Let w = aT1

aT2
· · ·

be some infinite word with limi ui = w for some words ui ∈ U . We define vectors
Ai =

tI ⊗ δ(aT1
· · · aTi) for all i ≥ 0. We define valuations σn as follows: We set

σi(xj) = N − (Ai)j+1 for all 0 ≤ i and 1 ≤ j ≤ k.
We fix some i ≥ 0. Then aT1 · · · aTiaTi+1 is a prefix of some um (because

of limi ui = w). Using this word um one can show 0 ≤ (Ai)j ≤ N for all
1 ≤ j ≤ k + 2 (as in the proof of Lemma 8; recall that f(um) ≤ N). Thus σi is
a valuation over [0, N]. Further, as in the proof of Lemma 8 one can show that
σi, σ

′
i+1 |= Ti+1.

Thus σ0
T1−→ σ1

T2−→ · · · is an infinite trace of S over [0, N].

I Adding Control Structure to Size-change Systems

In the following, we discuss how to add control structure to our analysis. Let L
be a regular languages of SCTs. We restrict the traces of an SCS S as follows:
For every trace σ1

T1−→ σ2
T2−→ · · · of S we require the word T1T2 · · · to be an

element of L. Such a regular language L, for example, allows to model control
flow graphs with initial and final states.

It remains to show that Theorem 2 holds true, when words are restricted to
some regular language. However, the following lemma shows that this question
can be reduced to the asymptotic behaviour of another max-plus-automaton,
where words are not restricted:

Lemma 22. Given a max-plus automaton computing a function f over A∗ and
a regular language L ⊆ A∗, there exists effectively a max-plus automaton com-
puting the function g such that for all words w,

g(w) =

{
f(w) if w ∈ L,
max(|w|, f(w)) otherwise.

24

Proof. Consider a non-deterministic automaton for A∗−L, it can be transformed
into a max-plus automaton computing a function h that maps a word w to |w|
if w /∈ L, and −∞ otherwise. For this it is sufficient to give weight 1 to all the
transitions of the automaton. The function g of the conclusion of the lemma
is then simply the max of f and h, which is naturally obtained by taking the
disjoint union of the two automata.

J Example

Consider the automaton given in example 2. We will apply the algorithm to this
example.

First, let us give the matrices over the words ((apb)qc)r and ((anb)nc)n).

δ(((apb)qc)r) =

0 (p+ 1)q s− 1 s− 1 s− 1 max((p+ 1)q,
s− 2)

(p+ 1)q
s− 1 s− 1 s− 1 s− 2
s s s s− 1

s− p s− p s− p s− p− 1
0

where s = r(p+ q + 1).

(δ(((anb)nc)n), n3) ≈ (

0 n2 n2 n2 n2 n2

n2

n2 n2 n2 n2

n2 n2 n2 n2

n2 n2 n2 n2

0

 , n3)

Now, let us apply the algorithm (a simplified version for this example, in
fact).

uniform(δ(a)) =

0 1 0 1 0 1
1
0 0
1 1
0 0
0

uniform(δ(a))∗ =

0 x 0 x 0 x
x
0 0
x x
0 0
0

25

uniform(δ(a))∗b =

0 x 0 0 x x
x x
0 0 1 0

x x
1 0
0

uniform(uniform(δ(a))∗b) =

0 x 0 0 x x
x x
0 0 x x

x x
1 1
0

From now on, 0 ≤ λ ≤ 1, and we note M = max(λ, 1− λ).

uniform(uniform(δ(a))∗b)∗ =

0 x 0 0 xM xM

x x
0 0 xM xM

xM xM

x1−λ x1−λ

0

uniform(uniform(δ(a))∗b)∗c =

0 x 0 0 xM xM

x
xM xM xM xM

xM xM xM xM

x1−λ x1−λ x1−λ x1−λ

0

uniform(uniform(uniform(δ(a))∗b)∗c) =

0 x xM xM xM xM

x
xM xM xM xM

xM xM xM xM

xM xM xM xM

0

From now on, 0 ≤ µ ≤ 1 and we note L = µM + (1− µ).

uniform(uniform(uniform(δ(a))∗b)∗c)∗ =

0 xµ xL xL xL xmax(µ,L)

xµ

xL xL xL xL

xL xL xL xL

xL xL xL xL

0

26

Let us show that:

min
0≤λ,µ≤1

max(L, µ) = min
0≤λ,µ≤1

max(µ, 1− µλ, 1− µ+ µλ) =
2

3

First for µ = 2
3 and λ = 1

2 , max(µ, 1 − µλ, 1 − µ + µλ) = 2
3 . Besides for all

0 ≤ λ, µ ≤ 1, µ + 1 − µλ + 1 − µ + µλ = 2 so at least one of the elements is
greater than 2

3 so

min
0≤λ,µ≤1

max(µ, 1− µλ, 1− µ+ µλ) ≥ 2

3
.

27

