
Regular Languages of Words
Over Countable Linear Orderings

Olivier Carton1, Thomas Colcombet2, and Gabriele Puppis3

1 University Paris Diderot, LIAFA
olivier.carton@liafa.jussieu.fr

2 CNRS/LIAFA
thomas.colcombet@liafa.jussieu.fr

3 Oxford University Computing Laboratory
gabriele.puppis@comlab.ox.ac.uk

Abstract. We develop an algebraic model suitable for recognizing lan-
guages of words indexed by countable linear orderings. We prove that
this notion of recognizability is e↵ectively equivalent to definability in
monadic second-order (MSO) logic. This reproves in particular the de-
cidability of MSO logic over the rationals with order. Our proof also
implies the first known collapse result for MSO logic over countable lin-
ear orderings.

1 Introduction

This paper continues a long line of research aiming at understanding the notions
of regularity for languages of infinite objects, i.e., of infinite words and trees. This
research results both in decision procedures for themonadic second-order (MSO)
logic and in a fine comprehension of the mechanisms involved in di↵erent models
of recognition. More specifically, the paper answers the following interrogations:

What is a good notion of regularity for languages of words indexed by
countable linear orderings? Is it equivalent to definability in MSO? What
are the correct tools for studying this notion?

Several results, in particular in terms of decidability, partially answered the above
questions (see related work below). Our study however gives a deeper insight
in the phenomena, for instance, answering (positively) the following previously
open question:

Does there exist a collapse result for MSO logic over countable linear
orders, as Büchi’s result shows a collapse of MSO logic to its existential
fragment for words indexed by !?

The central objects in this paper are words indexed by countable linear orderings,
i.e., total orders over countable sets together with applications mapping elements
to letters in some finite alphabet. Languages are just sets of countable words and
MSO logic gives a formalism for describing such languages in terms of formulas
involving quantification over elements and sets of elements (a formula naturally
defines the language of all words that makes the formula true).

Related work. Büchi initiated the study of MSO logic using the tools of
language theory. In particular, he established that every language of !-words
(i.e., the particular case of words indexed by the ordinal !) definable in MSO
logic is e↵ectively accepted by a suitable form of automata [5]. A major advance
has been obtained by Rabin, who extended this result to infinite trees [8]. One
consequence of Rabin’s result is that MSO logic is decidable over the class of
all countable linear orderings. Indeed, every linear ordering can be seen as some
set of nodes of the infinite binary tree, the linear order corresponding to the
infix ordering on nodes. Another proof of the decidability of the MSO theory
of countable orders has been proposed by Shelah using the composition method
[12]. This method is an automaton-free approach to logic based on syntactic
operations on formulas and inspired from Feferman and Vaught [7]. The same
paper of Shelah is also of major importance for another result it contains: the
undecidability of the MSO theory of the real line (the reals with order).

However, for !-words as for infinite trees, the theory is much richer than
simply the decidability of MSO logic. In particular, MSO logic is known to be
equivalent to several formalisms, such as automata and, in the !-word case,
regular expressions and some forms of algebras, which admit minimization and
give a very deep insight in the structure of languages. The decidability proof for
MSO logic over countable words does not provide such an understanding.

A branch of research has been pursued to raise the equivalence between logic,
automata, and algebra to infinite words beyond !-words. In [4], Büchi introduced
!1-automata on transfinite words to prove the decidability of MSO logic for
ordinals less than !1. Besides the usual transitions, !1-automata are equipped
with limit transitions of the form P ! q, with P set of states, which are used in
a Muller-like way to process words indexed over ordinals. Büchi proved that his
automata have the same expressive power as MSO logic for ordinals less than
!1. The key ingredient is the closure under complementation of !1-automata.

In [2], !1-automata have been extended to ⇧-automata by introducing limit
transitions of the form q ! P to process words over linear orderings. In [10], ⇧-
automata are proven to be closed under complementation with respect to count-
able and scattered orderings. This last result implies that ⇧-automata have the
same expressive power as MSO logic over countable and scattered orderings [1].
However, it was already noticed in [1] that ⇧-automata are strictly weaker than
MSO logic over countable (possibly non-scattered) linear orderings: indeed, the
closure under complementation fails as there is an automaton that accepts all
words with non-scattered domains, whereas there is none for scattered words.

In this paper, we unify those branches of research. We provide an algebraic
framework and a notion of recognizability which happens to be equivalent to the
definability in MSO logic. Our approach both extends the decidability approach
of Rabin and Shelah, and provides new results concerning the expressive power
of MSO logic over countable linear orders. In preliminary versions of this work,
we devised an equivalent automaton model. This notion is less natural and it is
not presented in this short paper.

2

Structure of the paper. After some definitions in Section 2, we present
the algebraic models of �-algebras in Section 3 and describe the corresponding
tools and results. In Section 4 we translate MSO formulas to �-algebras and in
Section 5 we establish the converse.

2 Preliminaries

Linear orderings. A linear ordering ↵ = (X,<) is a non-empty set X equipped
with a total order <. Two linear orderings have same order type if there is
an order-preserving bijection between their domains. We denote by !, !⇤, ⇣, ⌘
the order types of (N, <), (�N, <), (Z, <), (Q, <), respectively. Unless strictly
necessary, we do not distinguish between a linear ordering and its order type.

A sub-ordering of ↵ is a subset I of ↵ equipped with the same ordering
relation (we denote it by ↵|

I

). Given two subsets I, J of ↵, we write I < J i↵
x < y for all x 2 I and all y 2 J . A subset I of ↵ is said to be convex if for all
x, y 2 I and all z 2 ↵, x < z < y implies z 2 I.

A linear ordering ↵ is dense if for all x < y 2 ↵, there is z 2 ↵ such that
x < z < y. It is scattered if none of its sub-orderings is both dense and non-
singleton.

The sum ↵1 + ↵2 of two linear orderings ↵1 = (X1, <1) and ↵2 = (X2, <2)
(up to renaming, assume that X1 and X2 are disjoint) is the linear ordering
(X1]X2, <), where< coincides with<1 onX1, with<2 onX2, and, furthermore,
it satisfies X1 < X2. More generally, given a linear ordering ↵ = (X,<) and, for
each i 2 X, a linear ordering �

i

= (Y
i

, <
i

) (assume that the sets Y
i

are pairwise
disjoint), we denote by

P

i2↵

�
i

the linear ordering (Y,<0), where Y =
S

i2X

Y
i

and, for every i, j 2 X, every x 2 Y
i

, and every y 2 Y
j

, x <0 y i↵ either i = j
and x <

i

y hold or i < j holds.
Additional material on linear orderings can be found in [11].

Condensations. A standard way to prove properties of linear orderings is
to decompose them into basic components (e.g., finite sequences, !-sequences,
!⇤-sequences, and ⌘-orderings). This can be done by exploiting the notion of
condensation. Precisely, a condensation of a linear ordering ↵ is an equivalence
relation ⇠ over it such that for all x < y < z in ↵, x ⇠ z implies x ⇠ y ⇠ z
(this is equivalent to enforcing the condition that every equivalence class of ⇠ is
a convex subset). The ordering relation of ↵ induces a corresponding total order
on the quotient ↵/⇠, which is called condensed order. Conversely, any partition
C of ↵ into convex subsets induces a condensation ⇠

C

such that x ⇠ y i↵ x and
y belong to the same convex subset I 2 C.

Words and languages. We use a generalized notion of word, which co-
incides with the notion of labeled linear ordering. Given a linear ordering ↵
and a finite alphabet A, a word over A of domain ↵ is a mapping of the form
w : ↵ ! A. Hereafter, we shall consider words up to isomorphism of the do-
main, unless a specific presentation of the domain is required. Moreover, we are
only interested in words of countable domains. The set of words over alphabet A

3

is denoted A�. Given a word w of domain ↵ and a non-empty subset I of ↵, we
denote by w|

I

the sub-word resulting from the restriction of the domain of w to
I. Furthermore, if I is convex, then w|

I

is said to be a factor of w.
Certain words will play a crucial role in the sequel. In particular, a word

w : ↵ ! A is said to be a perfect shu✏e of A if (i) the domain ↵ is isomorphic
to Q and (ii) for every symbol a 2 A, the set w�1(a) = {x 2 ↵ | w(x) = a}
is dense in ↵. Recall that Q is the unique, up to isomorphism, countable non-
singleton dense linear ordering with no end-points. Likewise, for every finite set
A, there is a unique, up to isomorphism, perfect shu✏e of A.

Given two words u : ↵ ! A and v : � ! A, we denote by uv the word
of domain ↵ + � where each position x 2 ↵ (resp., x 2 �) is labeled either by
u(x) (resp., v(x)). The concatenation of words is easily generalized to the infinite
concatenation

Q

i2↵

w
i

, where ↵ is a linear ordering and each w
i

has domain �
i

,
the result being a word of domain

P

i2↵

�
i

. We also define the shu✏e of a tuple
of words w1, ..., wk

as the word {w1, ..., wk

}⌘ =
Q

i2Q w
f(i), where f is the unique

perfect shu✏e of {1, ..., k} of domain Q.
A language is a set of words over a certain alphabet. For some technical rea-

sons, it is convenient to avoid the presence of the empty word " in a language.
Thus, unless otherwise specified, we use the term word to mean a labeled, count-
able, non-empty linear ordering. The operations of juxtaposition, !-iteration,
!⇤-iteration, shu✏e, etc. are extended to languages in the obvious way.

3 Semigroups and algebras for countable linear orderings

This section is devoted to the presentation of algebraic objects suitable for defin-
ing a notion of recognizable �-languages. As it is already the case for !-words, our
definitions come in two flavors, �-semigroups (corresponding to !-semigroups)
and �-algebras (corresponding to Wilke-algebras). We prove the equivalence of
the two notions when the underlying set is finite.

Countable products. The objective is to have a notion of products indexed
by countable linear orderings, and possessing several desirable properties (in
particular, generalized associativity and existence of finite presentations).

Definition 1. A (generalized) product over a set S is an application ⇡ from S�

to S such that, for every a 2 S, ⇡(a) = a and, for every word u and every
condensation ⇠ of its domain,

⇡(u) = ⇡
⇣

Y

I2↵/⇠
⇡(u|

I

)
⌘

(generalized associativity)

The pair hS,⇡i is called a �-semigroup.

As an example, the operation
Q

is a generalized product over A�. Hence,
hA�,

Q

i is a �-semigroup, called the free �-semigroup generated by A.
A morphism from a �-semigroup (S,⇡) to another �-semigroup (S0,⇡0) is a

mapping ' : S ! S0 such that, for every word w : ↵ ! S, '(⇡(w)) =
⇡0('̃(w)), where '̃ is the component-wise extension of ' to words. A �-language

4

L ✓ A� is said recognizable by �-semigroup if there exists a morphism ' from
hA�,

Q

i to some finite semigroup hS,⇡i (here finite means that S is finite) such
that L = '�1(F) for some F ✓ S (equivalently, '�1('(L)) = L).

Recognizability by �-semigroup has the expressive power we aim at, however,
the product ⇡ requires to be represented, a priori, by an infinite table. This is not
usable as it stands for decision procedures. That is why, given a finite �-semigroup
hS,⇡i, we define the following (finitely presentable) algebraic operators:

• · : S2 ! S, which maps a pair of elements a, b 2 S to the element ⇡(ab),

• ⌧ : S ! S, which maps an element a 2 S to the element ⇡(a!),

• ⌧⇤ : S ! S, which maps an element a 2 S to the element ⇡(a!
⇤
),

• : P(S) ! S, which maps a non-empty set {a1, ..., ak} to ⇡
�

{a1, ..., ak}⌘
�

.

One says that ·, ⌧, ⌧⇤ and are induced by ⇡. From now on, we shall use the
operator · with infix notation (e.g., a · b) and the operators ⌧ , ⌧⇤, and with
superscript notation (e.g., a⌧ , {a1, ..., ak}). The resulting algebraic structure
hS, ·, ⌧, ⌧⇤,i has the property of being a �-algebra, defined as follows:

Definition 2. A structure hS, ·, ⌧, ⌧⇤,i in which · : S2 ! S, ⌧, ⌧⇤ : S ! S
and : P(S) ! S, is called a �-algebra if:

(A1) (S, ·) is a semigroup, namely, for every a, b, c 2 S, a · (b · c) = (a · b) · c,
(A2) ⌧ is compatible to the right, namely, for every a, b 2 S and every n > 0,

(a · b)⌧ = a · (b · a)⌧ and (an)⌧ = a⌧ ,

(A3) ⌧⇤ is compatible to the left, namely, for every a, b 2 S and every n > 0,
(b · a)⌧⇤

= (a · b)⌧⇤ · a and (an)⌧
⇤
= a⌧

⇤
,

(A4) is compatible with shu✏es, namely, for every non-empty subset P of S,
every element c in P , every subset Q of P , and every non-empty subset
R of {P, a · P, P · b, a · P · b : a, b 2 P}, we have P = P · P =
P · c · P = (P)⌧ = (P · c)⌧ = (P)⌧

⇤
= (c · P)⌧

⇤
= (Q [R) .

The typical �-algebra is:

Lemma 1. For all A, hA�, ·,!,!⇤, ⌘i is a �-algebra4.

Proof. By a systematic analysis of Axioms A1-A4.

Furthermore, as we mentioned above, every �-semigroup induces a �-algebra.

Lemma 2. For all finite �-semigroup hS,⇡i, hS, ·, ⌧, ⌧⇤,i is a finite �-algebra,
where the operators ·, ⌧, ⌧⇤, and are those induced by ⇡.

Proof. The result is simply inherited from Lemma 1 by morphism. Let hS,⇡i be a
�-semigroup, which defines ·, ⌧, ⌧⇤,. The structure hS�,

Q

i is also a �-semigroup,
which defines concatenation, !, !⇤ and ⌘. Furthermore, the product ⇡ can also

4 This �-algebra is not the free �-algebra generated from A. The free �-algebra gener-
ated from a finite set is by definition countable, while A

� has the cardinality of the
continuum. This situation is similar to the one of Wilke-algebras.

5

be seen as a surjective morphism from hS�,
Q

i to hS,⇡i (just a morphism of
algebras, not of �-algebras). By definition of ·, ⌧, ⌧⇤,, this morphism maps con-
catenation to ·, ! to ⌧ , !⇤ to ⌧⇤, and ⌘ to . It follows that any equality involving
concatenation, !, !⇤ and ⌘ is also satisfied by hS, ·, ⌧, ⌧⇤,i with concatenation
replaced by ·, ! by ⌧ , !⇤ by ⌧⇤, and ⌘ by . In particular all axioms of �-algebras
which hold by Lemma 1 are directly transfered to hS, ·, ⌧, ⌧⇤,i. 2

Extension of �-algebras to countable products. Here, we aim at proving
a converse to Lemma 2, namely, that every finite �-algebra hS, ·, ⌧, ⌧⇤,ii can be
uniquely extended into a unique �-semigroup hS,⇡i (Theorem 1). We assume
that all words are over the alphabet S. Moreover, we denote by " the empty
word, with the convention that " 62 S and a · " = " · a = a for all a 2 S [{"}
(note that we distinguish the empty word " from the identity element of S, if
there is any). The objective of the construction is to attach to each word u over S
a ‘value’ in S. Furthermore, this value needs to be unique.

The central objects in this proof are evaluation trees, i.e., infinite trees de-
scribing how a word in S� can be evaluated into an element of S. We begin with
condensation trees which are convenient representations for nested condensa-
tions. The nodes of a condensation tree are convex subsets of the linear ordering
and the descendant relation is the inclusion. The set of children of each node de-
fines a condensation. Furthermore, in order to provide an induction parameter,
we require that the branches of a condensation tree are finite (but their length
may not be uniformly bounded).

Definition 3. A condensation tree over a linear ordering ↵ is a set T of non-
empty convex subsets of ↵ such that:

• ↵ 2 T ,

• for all I, J in T , either I ✓ J or J ✓ I or I \ J = ;,
• for all I 2 T , the union of all J 2 T such that J (I is either I or ;,
• every subset of T totally ordered by inclusion is finite.

Elements in T are called nodes. The node ↵ is called the root of the tree.
Nodes minimal for ✓ are called leaves. Given I, J 2 T such that I (J and there
exist no K 2 T such that I (K (J , then I is called a child of J and J the
parent of I. According to the the definition, if I is an internal node, i.e., is not
a leaf, then it has a set of children children

T

(I) which form a partition of I.
This partition consisting of convexes, it corresponds naturally to a condensation
of ↵|

I

. When the tree T is clear from the context, we will denote by children(I)
the set of all children of I in T and, by extension, the corresponding condensation
and the corresponding condensed linear ordering.

Since the branches of a condensation tree are finite, an ordinal rank can be
associated with such a tree. This is the smallest ordinal � that enables a labeling
of the nodes by ordinals less than or equal to � such that the label of each node
is strictly greater than the labels of its children. This rank allows us to make
proofs by induction (see also [?] for similar definitions).

6

We now introduce evaluation trees. Intuitively, these are condensation trees
whose nodes have an associated value in S and such that the value of a node
can be ‘easily’ computed from the value of its children. What we mean by being
‘easy to compute’ is precisely what has a value for the following mapping ⇡0:

Definition 4. Let ⇡0 be the partial mapping from S� to S such that:

• ⇡0(s1...sn) = s1 · ... · sn for all n � 1 and all s1, ..., sn 2 S,

• ⇡0(se!) = s · e⌧ for all s, e 2 S with e idempotent,

• ⇡0(e!
⇤
s) = e⌧

⇤ · s for all s, e 2 S with e idempotent,

• ⇡0(sP ⌘t) = s · P · t for all s, t 2 S [{"} and all non-empty sets P ✓ S,

• in any other case ⇡0 is undefined.

Definition 5. An evaluation tree over a linear ordering ↵ is a pair T = hT, �i
in which T is a condensation tree over ↵, and � is a mapping from T to S such
that for every internal node I 2 T , ⇡0(�(children(I)) = �(I) (in particular it
is defined), in which �(children(I)) denotes the word of domain children(I)
where each position J 2 children(I) is labeled by �(J)). The value of hT, �i is
�(↵), i.e., the value of the root.
An evaluation tree T = hT, �i over a word u is an evaluation tree over the
domain of u such that the leaves of T are singletons, and �({x}) = u(x) for
all x in the domain of u.

The next propositions are central in the study of evaluation trees.

Proposition 1. For every word u, there exists an evaluation tree over u.

The proof here resembles the construction used by Shelah in his proof of
decidability of the monadic second-order theory of orders from [12]. In particular,
it uses the theorem of Ramsey, as well as a lemma stating that every non-trivial
word indexed by a dense linear ordering has a perfect shu✏e as a factor. We
remark that the above proposition does not use any of the Axioms A1-A4.

Proposition 2. Two evaluation trees over the same word have same value.

The proof of this result is quite involved and it heavily relies on the use
of Axioms A1-A4 (each axiom can be seen as an instance of Proposition 2 in
some special cases of computation trees of height 2). The proof makes also use
of Proposition 1. Note that, as opposed to Proposition 1, Proposition 2 has no
counterpart in [12].

Using the above results, the proof of the following result is relatively easy:

Theorem 1. For every finite �-algebra hS, ·, ⌧, ⌧⇤,i, there exists a product ⇡
which defines hS, ·, ⌧, ⌧⇤,i.

Proof. Given a word w of domain ↵, one defines ⇡(w) to be the value of some
evaluation tree over w (the evaluation tree exists by Proposition 1 and the
value ⇡(w) is unique by Proposition 2).

7

We prove that ⇡ is associative. Let ⇠ be a condensation of the domain ↵. For
all I 2 ↵/⇠, let T

I

be some evaluation tree over w|
I

. Let also T 0 be some evalua-
tion tree over the word w0 =

Q

I2↵/⇠ ⇡(w|
I

). One constructs an evaluation tree T
over w by substituting5 each leaf of T 0 corresponding to some class I 2 ↵/⇠
with the subtree T

I

. This is possible (i.e., respects the definition of evaluation
tree) since the value of each evaluation tree T

I

is ⇡(w|
I

), which coincides with the
value w0(I) at the leaf I of T 0. By Proposition 2, the resulting evaluation tree T
has the same value as T 0 and this witnesses that ⇡(w) = ⇡

⇣

Q

I2↵/⇠ ⇡(w|
I

)
⌘

.

What remains to be done is to prove that indeed the above choice of ⇡ defines
·, ⌧, ⌧⇤,. This requires a case by case analysis. 2

Let us conclude with a decidability result.

Theorem 2. Emptiness of �-languages recognizable by �-algebras is decidable.

Proof (principle of the algorithm). The algorithm takes the image of letters in
the �-algebra, and saturates it by ·, ⌧, ⌧⇤, and . It answers yes if the resulting
set intersects the accepting subset of the algebra, and no otherwise. 2

4 From monadic second-order logic to �-algebras

Let us recall that monadic second-order (MSO) logic is the extension of first-
order logic with set quantifiers. We assume the reader to have some familiarity
with this logic as well as with the Büchi approach for translating MSO formulas
into automata. A good survey can be found in [13]. We refer to the 8-fragment
as the set of formulas that start with a block of universal set quantifiers, followed
by a first-order formula. The 98-fragment consists of formulas starting with a
block of existential set quantifiers followed by a formula of the 8-fragment.

Here, we mimic Büchi’s technique and show a relatively direct consequence
of the above results, namely that MSO formulas can be translated to �-algebras:

Proposition 3. The MSO definable languages are e↵ectively �-recognizable.

Let us remark that we could have equally well used the composition method of
Shelah for establishing Proposition 3. Indeed, given an MSO definable language,
a �-algebra recognizing it can be directly extracted from [12].

Our chosen proof for Proposition 3 follows Büchi’s approach, namely, we
establish su�ciently many closure properties of �-recognizable language. Then,
each construction of the logic can be translated into an operation on languages.
To disjunction corresponds union, to conjunction corresponds intersection, to
negation corresponds complement, etc. We assume the reader to be familiar
with this approach (in particular the coding of the valuations of free variables).

The closure under intersection, union, and complement are, as usual, easy to
obtain. The languages corresponding to atomic predicates are also very easily

5 The proof is not correct as this. An exact proof requires also to raise T 0 from the
linear ordering ↵/⇠ to ↵. This is done by replacing each node J in T 0 by

S
J .

8

shown to be �-recognizable. What remains to be proved is the closure under
projection. Given a language of �-words L over some alphabet A, and a map-
ping h from A to another alphabet B, the projection of L by h is simply h(L) (h
being extended component-wise to �-words, and �-languages). It is classical that
this projection operation is what is necessary for obtaining the closure under
existential quantification at the logical level. Hence, we just need to prove:

Lemma 3. The �-recognizable languages are e↵ectively closed under projections.

Proof (sketch). We first describe the construction for a �-semigroup hS,⇡i. The
projection is obtained, as it is usual, by a powerset construction, i.e., we aim at
providing a �-product over P(S). Given two words u and U over S and P(S)
respectively, we write u 2 U when Dom(u) = Dom(U) and u(x) 2 U(x) for
all x 2 Dom(U). We define the mapping ⇡̃ from (P(S))� to P(S) by

⇡̃(U) =def {⇡(u) : u 2 U} for all U 2 (P(S))�.

Let us show that ⇡̃ is associative. Consider a word U over P(S) and a conden-
sation ⇠ of its domain. Then,

⇡̃(U) =
n

⇡(u) : u 2 U
o

=
n

⇡
⇣

Y

I2↵/⇠
⇡(u|

I

)
⌘

: u 2 U
o

=
n

⇡
⇣

Y

I2↵/⇠
a
I

⌘

: a
I

2 ⇡̃(U |
I

) for all I 2 ↵/⇠
o

= ⇡̃
⇣

Y

I2↵/⇠
⇡̃(U |

I

)
⌘

,

where the second equality is derived from the associativity of ⇡. Hence (P(S), ⇡̃)
is a �-semigroup. It is just a matter a writing to show that hP(S), ⇡̃i recognizes
any projection of a language recognized by hS,⇡i.

Of course, thanks to Lemma 2 and Theorem 1, this construction can be
performed at the level of �-algebras. The problem is that this may, a priori, be
non-e↵ective. However, using a more careful analysis, it is possible to prove the
e↵ectiveness of the construction. 2

5 From �-algebras to monadic second-order logic

We have seen in the previous section that every MSO formula defines a �-
recognizable language. In this section, we sketch the proof of the converse.

Theorem 3. Every �-recognizable �-language is e↵ectively MSO definable. Fur-
thermore, every such language is definable in the 98-fragment of MSO logic.

We fix for the remaining of the section a morphism h from hA�,
Q

i to a
�-semigroup hS,⇡i, with S finite. Let F be some subset of S. Let also ·, ⌧, ⌧⇤,
be defined from ⇡. Our goal is to show that L = h�1(F) is MSO definable. It is
su�cient for this to show that for every s 2 S, the language

⇡�1(s) = {w 2 S� : ⇡(w) = s} ,

is defined by some MSO formula '
s

. This establishes that L =
S

s2F

h�1(s) is
defined by the disjunction

W

s2F

'0
s

, where '0
s

is obtained from '
s

by replacing
every occurrence of an atom t(x), with t 2 S, by

W

a2h

�1(t)\A

a(x).

9

A good approach for defining ⇡�1(s) is to use a formula that, given w 2
S�, would guess some object ‘witnessing’ ⇡(w) = s. The only objects that we
have seen so far and that are able to ‘witness’ ⇡(w) = s are evaluation trees.
Unfortunately, there is no way an MSO formula can guess an evaluation tree,
since their height cannot be uniformly bounded. That is why we use another kind
of objects for witnessing ⇡(w) = a: the Ramsey splits, introduced just below.

Ramsey splits. Ramsey splits are not directly applied to words, but to
additive labellings. An additive labeling � from a linear order ↵ to a semigroup
hS, ·i (in particular, this will be a �-semigroup in our case) is a function that
maps any pair of elements x < y from ↵ to an element �(x, y) 2 S in such a way
that �(x, y) · �(y, z) = �(x, z) for all x < y < z in ↵.

Given two positions x, y in a word w, denote by [x, y) the interval {z : x
z < y}. Given a word w and two positions x < y in it, we define �

w

(x, y) 2 S
to be ⇡(w|[x,y)). We just mention � whenever w is clear from the context. Quite
naturally, �

w

is additive since for all x < y < z, we have �(x, y) · �(y, z) =
⇡
�

w|[x,y)
�

· ⇡
�

w|[y,z)
�

= ⇡
�

w|[x,y)w|[y,z)
�

= ⇡
�

w|[x,z)
�

= �(x, z).

Definition 6. A split of a linear ordering ↵ of height n is a function g : ↵ !
[1, n]. Two elements x < y in ↵ are called (k-)neighbors i↵ g(x) = g(y) = k and
g(z) k for all z 2 [x, y] (note that neighborhood is an equivalence relation).
The split g is called Ramsey for some additive labeling � i↵ for all equivalence
classes X ✓ ↵ for the neighborhood relation, there is an idempotent e 2 S such
that �(x, y) = e for all x < y in X.

Theorem 4 (Colcombet [6]). For every finite semigroup hS, ·i, every linear
ordering ↵, and every additive labeling � from ↵ to hS, ·i, there is a split of ↵
which is Ramsey for � and which has height at most 2|S|.

From �-recognizable to MSO definable. The principle is to construct a
formula which, given a word w, guesses a split of height at most 2|S|, and use it
for representing the application which to every convex set I associates ⇡(w|

I

).
For the explanations, we assume that some word w is fixed, that its domain is ↵,
and that � is the additive labeling over ↵ derived from w. We remark, however,
that all constructions are uniform and do not depend on w.

We aim at constructing a formula evaluate
s

, for each s 2 S, which holds
over a word w i↵ ⇡(w) = s. The starting point is to guess the two following
pieces of information:

• a split g of ↵ of height at most 2|S|,
• an application e mapping each position x 2 ↵ to an idempotent of S.

The intention is that a good choice of g, e by the formula is when the split g
is Ramsey for � and the application e maps each x to the idempotent e(x) that
arises when the neighborhood class of x is considered in the definition of Ram-
seyness. In such a case, we say that (g, e) is Ramsey. This is an advance toward
computing the value of a word, since Ramsey splits can be used as ‘accelerating
structures’ in the sense that every computation of some ⇡(w|

I

) for a convex sub-
set I becomes significantly easier when a Ramsey split is known. In particular,
computing ⇡(w|

I

), for any convex subset I, becomes first-order definable!

10

Observe that neither g nor e can be represented by a single monadic variable.
However, since both g and e are mappings from ↵ to sets of bounded size (2|S|
for g, and |S| for e), one can guess them using a fixed number of monadic
variables. This kind of coding is standard, and from now on we shall use explicitly
the mappings g and e in MSO formulas, rather than their codings.

Lemma 4. For all s 2 S, there is a first-order formula value
s

(g, e,X), such
that for every convex subset I:

• if (g, e) is Ramsey, then value
s

(g, e, I) holds i↵ ⇡(w|
I

) = s,

• if both value
s

(g, e, I) and value
t

(g, e, I) hold, then s = t.

One sees those formulas as defining a partial function value mapping g, e, I
to some element s 2 S (the second item enforces that there is no ambiguity
about the value, namely, that this is a function and not a relation). From now
we simply use the notation value(g, e, I) as if it was a function.

One needs now to enforce that value(g, e, I) coincides with ⇡(w|
I

), even
without assuming that (g, e) is Ramsey. For this, one uses condensations. A
priori, a condensation is not representable by monadic variables, since it is a
binary relation. However, any set X ✓ ↵ naturally defines the relation ⇡

X

such
that x ⇡

X

y i↵ either [x, y] ✓ X, or [x, y] \X = ;. It is easy to check that this
relation is a condensation. A form of converse result also holds:

Lemma 5. For all condensations ⇠, there is X such that ⇠ and ⇡
X

coincide.

Lemma 5 tells us that it is possible to work with condensations as if those were
monadic variables. In particular, we use condensation variables in the sequel,
which in fact are implemented by the set obtained from Lemma 5.

Given a convex subset I of ↵ and some condensation ⇠ of ↵|
I

, we denote by
w[I,⇠] the word of domain � = (↵|

I

)/⇠ in which every ⇠-equivalence class J
is labeled by value(g, e, J). One can construct a formula validity(g, e) that
checks that for all convex subsets I and all condensations ⇠ of ↵|

I

(thanks to
Lemma 5), the following conditions hold:

(C1) if I is a singleton {x}, then value(g, e, I) = w(x),

(C2) if w[I,⇠] = st for some s, t 2 S, then value(g, e, I) = s · t,
(C3) if w[I,⇠] = s! for some s 2 S, then value(g, e, I) = s⌧ ,

(C4) if w[I,⇠] = s!
⇤
for some s 2 S, then value(g, e, I) = s⌧

⇤
,

(C5) if w[I,⇠] = P ⌘ for some P ✓ S, then value(g, e, I) = P.

For some fixed I and ⇠, the above tests require access to the elements w[I,⇠](J)
(= value(g, e, J)), where J is a ⇠-equivalence class of ↵|

I

. Since ⇠-equivalence
of two positions x, y 2 ↵|

I

is first-order definable (using I and ⇠ as unary pred-
icates), we know that for every position x 2 ↵|

I

, the element value(g, e, [x]⇠) is
first-order definable in terms of x. This shows that the above properties can be
expressed by first-order formulas and hence validity(g, e) is in the 8-fragment.

The last key ingredient is to propagate those ‘local validity’ constraints to a
‘global validity’ property. This is done by the following lemma.

11

Lemma 6. If validity(g, e) holds, then value(g, e, I) = ⇡(w|
I

) for all convex
subsets I of ↵.

This lemma implies Theorem 3. We claim indeed that, given s 2 S, the
language ⇡�1(s) is defined by the following formula in the 98-fragment of MSO:

evaluate
s

=def 9g.9e. validity(g, e) ^ value(g, e,↵) = s .

Suppose that ⇡(w) = s. One can find a Ramsey pair (g, e) using Theorem 4.
Lemma 4 then implies ⇡(w|

I

) = value(g, e, I) for all convex subsets I. Then,
since ⇡ is a product, the constraints C1–C5 are satisfied and hence validity(g, e)
holds. This proves that evaluate

s

holds. Conversely, if evaluate
s

holds, this
means that validity(g, e) holds for some (g, e). In particular, Lemma 6 im-
plies ⇡(w) = ⇡(w|

↵

) = value(g, e,↵) = s. 2

6 Conclusion

We have introduced an algebraic notion of recognizability for languages of count-
able words and we have shown the correspondence with the family of languages
definable in MSO logic. As a byproduct of this result, we have that MSO logic
interpreted over countable words collapses to its 98-fragment (hence, since it is
closed under complementation, it also collapses to its 89-fragment). This col-
lapse result is optimal, in the sense that there exist definable languages that are
not definable in the 9-fragment, nor in the 8-fragment. An example of such a
language is the set of all scattered words over {a} and all non-scattered words
over {b}: checking that a word is scattered requires a universal quantification
over the sub-orderings of its domain and, conversely, checking that a word is not
scattered requires an existential quantification.

References

[1] Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words
indexed by linear orderings. Theoretical Computer Science 46(4), 737–760 (2010)

[2] Bruyère, V., Carton, O.: Automata on linear orderings. Journal of Computer and
System Sciences 73(1), 1–24 (2007)

[3] Bruyère, V., Carton, O.: Automata on linear orderings. In: Proceedings of the
26th International Symposium on Mathematical Foundations of Computer Science
(MFCS). LNCS, vol. 2136, pp. 236–247. Springer (2001)

[4] Büchi, J.R.: Transfinite automata recursions and weak second order theory of
ordinals. In: Proc. Int. Congress Logic, Methodology, and Philosophy of Science,
Jerusalem 1964. pp. 2–23. North Holland (1964)

[5] Büchi, J.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress for Logic, Methodology and Philosophy of
Science. pp. 1–11. Stanford University Press (1962)

[6] Colcombet, T.: Factorisation forests for infinite words and applications to count-
able scattered linear orderings. Theoretical Computer Science 411, 751–764 (2010)

[7] Feferman, S., Vaught, R.: The first-order properties of products of algebraic sys-
tems. Fundamenta Mathematicae 47, 57–103 (1959)

12

[8] Rabin, M.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

[9] Ramsey, F.: On a problem of formal logic. In: Proceedings of the London Mathe-
matical Society. vol. 30, pp. 264–286 (1929)

[10] Rispal, C., Carton, O.: Complementation of rational sets on countable scattered
linear orderings. International Journal of Foundations of Computer Science 16(4),
767–786 (2005)

[11] Rosenstein, J.: Linear Orderings. Academic Press (1982)
[12] Shelah, S.: The monadic theory of order. Annals of Mathematics 102, 379–419

(1975)
[13] Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,

vol. 3, pp. 389–455. Springer (1997)

13

A Proofs for Section 3
(Semigroups and algebras for countable linear
orderings)

To prove results about evaluation trees, it is convenient to first disclose a number
of useful properties related to Ramsey decompositions and condensation trees.

The first two lemmas consists of (i) a well-known application of Ramsey’s
Theorem [9] to additive labellings and (ii) a variant of the previous result for
dense orderings given by Shelah in [12]. Recall that hS, ·, ⌧, ⌧⇤,i is a finite �-
algebra and, in particular, hS, ·i is a finite semigroup. An additive labeling is
a function f that maps any pair of points x < y in a linear ordering ↵ to an
element of the semigroup hS, ·i in such a way that, for every x < y < z 2 ↵,

f(x, y) · f(y, z) = f(x, z).

Lemma 7 (Ramsey [9]). Given a countable linear ordering ↵ with a minimum
element ? and no maximum element, and given an additive labeling f : ↵2 !
hS, ·i, there exist an !-sequence ? < x1 < x2 < ... of points in ↵ and two
elements a, e 2 S such that

i) for all y 2 ↵, there is x
i

> y,

ii) f(?, x
i

) = a for all i > 0,

iii) f(x
i

, x
j

) = e for all j > i > 0.

Note that the above conditions imply that (a, e) is a right-linked pair, namely,
a = a · e and e = e · e. Moreover, it is easy to see that di↵erent right-linked pairs
may result from di↵erent choices of the points ? < x1 < x2 < ... in ↵ and that
all such pairs are conjugated, namely, there exist x, y 2 S such that a = b · y,
e = x · y, b = a · x, and f = y · x.

In the same spirit of Ramsey’s Theorem, the following lemma shows that
every countable dense word contains at least one perfect shu✏e. Even though
this result appears already in [12], we give a proof in the appendix for the sake
of self-containment.

Lemma 8 (Shelah [12]). Every word indexed by a non-singleton countable
dense linear ordering contains a perfect shu✏e.

Proof. Let ↵ be a non-singleton countable dense linear ordering, A = {a1, ..., an}
a generic alphabet, and w a word over A of domain ↵. For the sake of brevity,
given a symbol a, we denote by w�1(a) the set of all points x 2 ↵ such that
w(x) = a. We then define w0 = w and A0 = ; and we recursively apply the
following construction for each index 1 i n:

A
i

=

(

A
i�1 [{a

i

} if w�1(a
i

) is dense in ↵,

A
i�1 otherwise,

w
i

=

8

>

<

>

:

w
i�1 if w�1(a

i

) is dense in ↵,

w
i�1|I

if there is an open non-empty non-singleton

convex subset I of ↵ such that w�1(a
i

) \ I = ;.

14

Clearly, the sub-word w
n

is a perfect shu✏e of the set A
n

. 2

We now turn to the properties of condensation trees. The following lemma,
whose proof is trivial and thus omitted, shows how it is possible to restrict a
condensation tree to any convex subset.

Lemma 9. Given a condensation tree T over a linear ordering ↵ and a convex
subset I of ↵, define the subtree of T rooted at I as follows:

T |
I

= {I \ J : J 2 T, I \ J 6= ;}.

Then T |
I

is a condensation tree over ↵\I. Furthermore, for all convex subsets J
such that I ✓ J ✓ ↵, we have (T |

I

)|
J

= T |
I\J

.

We will often perform inductions on trees, where the parameter, called rank,
is introduced in the next lemma. At the same time, we show how the notion of
restriction of a condensation tree is compatible with that of rank.

Lemma 10. It is possible to associate with each condensation tree T an ordi-
nal rank(T) such that, for all condensation trees T over a linear ordering ↵ and
all convex subsets I of ↵, rank(T |

I

) rank(T). Furthermore, if I is included in
some node J 2 T that is not the root of T , then rank(T |

I

) < rank(T).

Proof. Let T be a condensation tree over a linear ordering ↵. We associate with
each node I of T a suitable countable ordinal �

I

as follows. For every leaf I
of T , we simply let �

I

= 1. Then, given an internal node I of T , we assume
that �

J

is defined for every child J of I in T and we define �
I

as the ordinal
{� : 9 J 2 children(I). � �

J

} (note that this is either a successor ordinal
or a limit ordinal, depending on whether the set {�

J

: J 2 children(I)} has a
maximum element or not). Since T has no infinite branch, it follows that �

I

is
defined for every node of T . We thus let rank(T) = �

I

, where I is the root of T .
It is easy to check that the function rank that maps any condensation tree T to
its rank rank(T) satisfies the properties stated in the lemma. 2

Each time we perform an ‘induction’ on a condensation tree, this means
that the proof is in fact by induction on its rank. Note that the validity of the
induction is justified by Lemma 10 (we will not recall this in the proofs).

We now focus on evaluation trees. The following lemma shows that if the
partial mapping ⇡0 is defined over a word, then it is also defined over its factors.
We further allow some change of values at the extremities of words and make
some case distinctions for dealing with the empty word. This makes the state-
ment a bit more technical (the proof by case distinction is straightforward and
thus omitted):

Lemma 11. Given two (possibly empty) words u and v and an element c 2
S, if ⇡0(ucv) is defined, then ⇡0(ua) and ⇡0(bv) are also defined for all ele-
ments a, b, c 2 S[{"} for which a = b = " implies c = ". Furthermore, if c = a·b,
then ⇡0(ucv) = ⇡0(ua) · ⇡0(bv).

15

Next, we prove that given an evaluation tree over some word, there exist
evaluation trees over all its factors:

Lemma 12. For every evaluation tree T = hT, �i over a word u of domain ↵
and every convex subset I of ↵, there is an evaluation tree T |

I

= hT |
I

, �
I

i such
that �

I

and � coincide over (T |
I

) \ T = {J 2 T : J ✓ I}.

Proof. Let us first assume that I is an initial segment of ↵, namely, for every y 2
I and every x y, x 2 I. The proof is by induction on T , namely, on the rank
of the underlying condensation tree T . Let C be the top-level condensation
children(↵). We distinguish between two sub-cases.

If the condensation {I,↵ \ I} is coarser than C, then for all K 2 T |
I

with K 6= I, we have K 2 T . Hence it makes sense to define �
I

(K) = �(K).
We complete the definition by letting �

I

(↵) = ⇡0(�(C|
I

)), where �(C|
I

) is the
word of domain C|

I

= {K \ I : K 2 C} where each position J is labeled
by the value �(J) (note that, by Lemma 11, the function ⇡0 is defined on the
word �(C|

I

)). It is easy to check that hT |
I

, �
I

i thus defined is an evaluation tree
over u|

I

and that �
I

and � coincide over (T |
I

) \ T = {K 2 T : K ✓ I}.
Otherwise, there exist three convex subsets J1 < J2 < J3 of ↵ such that

(i) {J1, J2, J3} forms a partition coarser than C, (ii) J1 ✓ I, (iii) J3 \ I = ;,
and (iv) J2 2 C with J2 \ I 6= ; and J2 \ I 6= ;. We now apply the induction
hypothesis to construct the evaluation tree T |

J2\I

= hT |
J2\I

, �
J2\I

i. Note that
for every K 2 T |

J1 with K 6= J1, we have K 2 T . Hence it makes sense to
define �

I

(K) = �(K). For every K 2 T |
J2 , we define �I(K) = �

J2\I

(K). Finally,
we define �

I

(↵) = ⇡0

�

�
I

(C|
J1) �J2\I

(J2\I)
�

(again this is well-defined according
to Lemma 11). It is easy to check that hT |

I

, �
I

i thus defined is an evaluation
tree over u|

I

and that �
I

and � coincide over (T |
I

) \ T = {K 2 T : K ✓ I}.
Finally, we consider the case where I is not an initial segment of ↵. In this

case it is possible to write I as I1 \ I2, where I1 is an initial segment and I2 is a
final segment of ↵. Since T |

I

= (T |
I1)|I2 , it is su�cient to apply twice the cases

for the initial/final segment discussed above. 2

The consequence of the above lemma is that an evaluation tree does not only
provide a value for a word, but also, by restriction, for all its factors. This is
concretized in the following notation: given an evaluation tree T = hT, �i over
a word u of domain ↵ and given a convex subset I of ↵, we denote by �(I)
the value associated with I in the evaluation tree T |

I

(note that the notation is
consistent with the value associated with I in the evaluation tree T , when I 2 T).
Intuitively, this means that the mapping � of T can be prolonged to all convex
subsets of ↵.

We now turn to the proofs of Proposition 1 and Proposition 2.

Proposition 1. For every word u, there exists an evaluation tree over u.

Proof. Let u be a word of domain ↵. We say that a convex subset I of ↵ is
definable if there is an evaluation tree over the factor u|

I

. Observe that, in

16

virtue of Lemma 12, if I is definable, then all its convex subsets J are definable
as well.

We first establish the following claim: for every ascending chain I1 ✓ I2 ✓ ...
of definable convex subsets of ↵, the limit I =

S

i2!

I
i

is definable. Of course,
if the sequence of the I

i

’s is ultimately constant, then the claim holds trivially.
Otherwise, let us consider first the case when all the I

i

’s coincide on the left.
Clearly, we can partition I into a sequence of non-empty convex subsets J0 <
J1 < ..., forming a condensation of I, such that I

i

= J1 [... [J
i

for all i 2 !.
For every i < j in !, we define J

i,j

= J
i

[...[J
j�1. We recall that every set I

j

,
and hence every convex subset J

i,j

of it, is definable. We can thus associate with
each convex subset J

i,j

an evaluation tree T
i,j

over u|
Ji,j . We denote by c

i,j

the value associated with J
i,j

in the evaluation tree T
i,j

. Using Lemma 7 (i.e.,
Ramsey’s Theorem), one can extract a sequence 0 < i1 < i2 < ... in ! such that
c
i1,i2 = c

i2,i3 = ... is an idempotent. We can then construct an evaluation tree
over u|

J

that has root I and the convex subsets J0,i1 , Ji1,i2 , ... for children, with
the associated evaluation subtrees T0,i1 , Ti1,i2 , This proves that I is definable.
The case where the convex the sets I

i

coincide on the right is symmetric. Finally,
in the general case, we can partition each set I

i

into two subsets I 0
i

and I 00
i

such
that (i) I 0

i

< I 00
i

, (ii) the sequence of the I 0
i

’s coincide on the right, and (iii) the
sequence of the I 00

i

’s coincide on the left. Let I 0 =
S

i2!

I 0
i

and I 00 =
S

i2!

I 00
i

. One
knows by the cases above that both sets I 0 and I 00 are definable. At this point,
one easily provides an evaluation tree for u|

I

= u|
I

0[I

00 out of the evaluation
trees for I 0 and I 00. Hence I is definable. This concludes the proof of the claim.

Let us now consider the set C of all condensations C of ↵ such that every
class is definable. Condensations in C are naturally ordered by the ‘coarser than’
relation. Let us consider a chain (C

i

)
i2�

of condensations in C ordered by the
coarser than relation. Since ↵ is countable, one can assume that � is countable,
or even better that � = !. Let us consider the limit condensation C. Each
class I 2 C is limit of a sequence of convex subsets I

i

, with I
i

2 C
i

for all i 2 !.
From the assumption that each condensation C

i

belongs to C, we get that I
i

is
definable and from the claim above, we conclude that I is definable as well. This
shows that the condensation C belongs to C and hence every chain of C has a
least upper bound in C.

It follows that we can apply Zorn’s Lemma and deduce that C contains a
maximal element, say C. If C has a single equivalence class, this means that there
exists an evaluation tree over u and the proposition is established. Otherwise,
we shall head toward a contradiction. Consider the condensed linear ordering
induced by C (by a slight abuse of notation, we denote it also by C). Two cases
can happen: either C contains two consecutive classes or C is a linear order
dense in itself. In the former case, we fix two consecutive classes I, I 0 2 C, with
I < I 0, and we denote by T and T 0 some evaluation trees over u|

I

and u|
I

0 ,
respectively (note that such evaluation trees exist because each class of C is a
limit of definable convex subsets and hence, by the previous claim, it is definable
as well). It is easy to construct an evaluation tree over u|

I[I

0 , where the root I[I 0
has T |

I

and T |
I

0 as direct subtrees. This would imply that the convex subset

17

I [I 0 is definable, which is against the hypothesis. In the second case, the linear
ordering C is dense in itself. We associate with each class I 2 C an evaluation
tree T

I

over u|
I

and we denote by c
I

the value associated with I in it. Let us now
consider the word v = ⇧

I2C

c
I

. We know from Lemma 8 that that v contains a
perfect shu✏e v0 of domain C 0 ✓ C. Let J =

S

I2C

0 I. We can easily construct
an evaluation tree T over u|

J

, whose root is J and whose direct subtrees are the
evaluation trees T

I

associated with each class I 2 C 0. This would imply that the
convex subset J is definable, which is against the hypothesis. 2

Proposition 2. Two evaluation trees over the same word have same value.

The proof of this result is more technical. Our first step is a key lemma which
explains why the axioms for the �-algebras have been introduced. This is a form
of associativity rule for ⇡0, but such that the equality is required to hold solely
when every expression is defined.

Lemma 13. For every word u of the form ⇧
i2↵

u
i

, where ↵ is a countable linear
ordering and each u

i

is a word in S�, if both ⇡0(u) and ⇡0

�

⇧
i2↵

⇡0(ui

)
�

are
defined, then the two values are equal.

Proof. We prove the claim by case analysis. For the sake of brevity, we define v =
⇧

i2↵

⇡0(ui

). If u = a1...an, then v has to be of the form b1...bm. Since · is
associative (see Axiom A1), we obtain ⇡0(u) = a1 · ... · a

n

= b1 · ... · b
m

=
⇡0(v). If u = ae!, then v can be either of the form b1...bm or of the form bf!.
If v = b1...bm, say with m � 2 (the case n = 1 is obvious), then we necessarily
have b1 2 {a, a · e}, b

i

= e for all 1 < i < m, and b
m

= e⌧ . Moreover, Axioms A1
and A2 together imply e · e⌧ = e · (e · e)⌧ = (e · e)⌧ = e⌧ . We thus have ⇡0(u) =
a·e⌧ = b1·...·bm = ⇡0(v). If v = bf!, then, as above, we get b 2 {a, a·e} and f = e.
Using Axioms A1 and A2 one can easily prove ⇡0(u) = a · e⌧ = b · f⌧ = ⇡0(v).
The case u = e!

⇤
a is symmetric and it uses Axiom A3 instead of Axiom A2.

Finally, the most interesting case is when u = a·P ⌘ ·a0 for some a, a0 2 S[{"}
and some non-empty set P ✓ S. We further distinguish some cases depending
on the form of v.

• If v = b1...bm, then the proof goes by induction on m. The interesting case
is m = 2. where five sub-cases can occur. If u1 has no last letter and u2 has
no first letter, then we have b1 = ⇡0(u1) = a · P and b2 = ⇡0(u2) = P · a0.
Using Axiom A4, we get ⇡0(u) = a·P ·a0 = (a·P)·(P ·a0) = b1 ·b2 = ⇡0(v).
If u1 consists of a single letter, then this letter must be a 6= " and u2 has
no first letter. Hence, as above, we have ⇡0(u2) = P · a0. We thus get
⇡0(u) = a · P · a0 = b1 · b2 = ⇡0(v). If u1 has a last letter c and at least
two letters, then c must belong to P and u2 has no first letter. We thus have
⇡0(u) = a · P · a0 = (a · P · c) · (P · a0) = ⇡0(v). The cases where u2 has
length 1 and where u2 has a first letter and at least two letters are symmetric.
Finally, the induction for m > 2 is straightforward.

• If v = bf!, then, by distinguishing some sub-cases as above, one verifies
that b = ⇡0(u1) coincides with either a or a · P · c, for some c 2 P [{"},
and that f = ⇡0(u2) = ⇡0(u3) = ... coincides with either P · d or d · P,

18

for some d 2 P [{"}, depending on whether u1 has a first letter or not.
Putting all together and using Axiom A4, we have either ⇡0(u) = a · P =
a · (P · d)⌧ = ⇡0(v), or ⇡0(u) = a · P = (a · P · c) · (P · d)⌧ = ⇡0(v), or
⇡0(u) = a · P = (a · P) · (d · P) = ⇡0(v).

• If v = f!

⇤
b, then the claim holds by symmetry with the previous case.

• If v = bR⌘b0 for some b, b0 2 S [{"} and some non-empty set R ✓ S,
then we prove that R is included in P [(P [{"}) · P · (P [{"}). Let
us treat first the case b = b0 = ". Since v has no first nor final letter, this
implies a = a0 = ". Let us consider a value c 2 R and a corresponding
factor u

i

of u, with i 2 ↵, such that ⇡0(ui

) = u
i

. If u
i

consists of the single
letter c, then we clearly have c 2 P . Otherwise u

i

has more than one letter
and we get the four possibilities c = P, c = d·P, c = P·d0 and c = d·P·d0,
for suitable d, d0 2 P , depending on the existence of a first/last letter in u

i

.
This proves that R is included in P [(P [{"}) · P · (P [{"}). Using
Axiom A4 we immediately obtain ⇡0(u) = P = R = ⇡0(v). The general
case where b, b0 2 S [{"}, can be dealt with by using similar arguments plus
Axiom A1. 2

Corollary 1. Let u be a word of domain ↵ such that ⇡0(u) is defined and let T =
hT, �i be an evaluation tree over u. Then ⇡0(u) = �(↵).

Proof. We prove the claim by induction on T . If T consists of a single leaf,
then the claim is obvious. Otherwise, let C = children(↵). By Lemma 11, we
know that for every I 2 C, ⇡0(u|I) is defined. We can then use the induction
hypothesis on the evaluation tree T |

I

and obtain ⇡0(u|I) = �(I). Finally, using
Lemma 13, we get ⇡0(u) = ⇡0(�(C)) = �(↵). 2

The next step is to prove the equality between the value at the root of
an evaluation tree and the values induced by ⇡0 under di↵erent condensations
of the root. We first consider finite condensations, then !-condensations (and,
by symmetry, !⇤-condensations), and finally ⌘-condensations. For a technical
reason, we have to deal with the cases where additional symbols appear at the
beginning and at the end of a word. The gathering of those results naturally
entail that two evaluation trees over the same word have the same value (see
Corollary 3).

Lemma 14. Given a word u of domain ↵, an evaluation tree T = hT, �i over u,
and a finite condensation I1 < ... < I

n

of ↵, we have �(↵) = �(I1) · ... · �(In).

Proof. The proof is by induction on T . If T consists of a single node, then
this node must be a leaf and ↵ must be a singleton. Therefore, we have n = 1
and the claim follows trivially. Let us now consider the case where T has more
than one node. We only prove the claim for n = 2 (for n = 1 it is obvious
and for n > 2 it follows from a simple induction). Let C be the condensation
children(↵) and let J be the unique convex subset in C that intersects both I1
and I2 (if C does not contain such an element, then we let J = ;). For the sake
of brevity, we define, for both i = 1 and i = 2, C

i

= {K 2 C : K ✓ I
i

},

19

u
i

=
Q

K2Ci
�(K), and a

i

= �(J \ I
i

) (with the convention that �(J \ I
i

) = "
if J = ;). Note that C = C1 [{J} [C2 and hence �(↵) = ⇡0(u1�(J)u2).
Moreover, if J is not empty, then, by applying the induction hypothesis to the
evaluation tree T |

J

and the condensation {J\I1, J\I2} of ↵|J , we obtain �(J) =
�(J\I1) ·�(J\I2) = a1 ·a2 and hence �(↵) = ⇡0(u1 (a1 ·a2) u2). Lemma 11 then
implies ⇡0(u1 (a1 · a2) u2) = ⇡0(u1a1) · ⇡0(u2a2). Similarly, Lemma 13 implies
⇡0(u1a1) = �(I1) and ⇡0(u2a2) = �(I2). Overall, we get ⇡0(↵) = �(I1) · �(I2). 2

Lemma 15. Given a word u of domain ↵, an evaluation tree T = hT, �i over u,
and an !-condensation I0 < I1 < I2 < ... of ↵ such that �(I1) = �(I2) = ... is
an idempotent, we have �(↵) = �(I0) · �(I1)⌧ .

Proof. The proof is by induction on T . Note that the case of T consisting of a
single leaf cannot happen. Let C be the condensation children

t

(↵). We distin-
guish two cases depending on whether C has a maximal element or not.

If C has a maximal element, say J
max

, then we can find a condensation K1 <
K2 of ↵ that is coarser than I0 < I1 < I2 < ... and such that K2 ✓ J

max

. By
Lemma 14, we have �(↵) = �(K1) · �(K2). Moreover, since K1 is the union of a
finite sequence of convex subsets I0, I1, ..., Ik, by repeatedly applying Lemma 13,
we obtain �(K1) = �(I0) · �(I1) · ... · �(Ik) = �(I0) · �(I1) (the last equality
follows from the fact that �(I1) = �(I2) = ... is an idempotent). Finally, from
the induction hypothesis, we get �(K2) = �(I1)⌧ . We thus conclude that �(↵) =
�

�(I0) · �(I1)
�

·
�

�(I1)⌧
�

= �(I0) · �(I1)⌧ .
If C has no maximal element, then, using standard extraction techniques

and Ramsey’s Theorem (though it is not really necessary), one can construct an
!-condensation J0 < K1 < J1 < K2 < J2 < ... of ↵ such that:

• {J0 [K1, J1 [K2, ...} is coarser than {I0, I1, I2, ...},
• {J0,K1 [J1,K2 [J2, ...} is coarser than C,

• �(K1 [J1) = �(K2 [J2) = ... is an idempotent.

Let �(C) be the word of domain C where each position H 2 C is labeled by
the value �(H). By construction, we have �(↵) = ⇡0(�(C)). Moreover, since the
condensation {J0,K1[J1,K2[J2, ...} is coarser than C, by repeatedly applying
Lemma 13, we obtain ⇡0(�(C)) = ⇡0

�

�(J0) �(K1[J1) �(K2[J2) . . .
�

= �(J0) ·
�(K1 [J1)⌧ . Similarly, since {J0 [K1, J1 [K2, ...} is coarser than {I0, I1, I2, ...}
and �(I1) = �(I2) = ... is an idempotent, we have �(J0 [K1) = �(I0) · �(I1) and
�(J1 [K2) = �(J2 [K3) = ... = �(I1). Thus, by Axioms A1 and A2, we obtain
�(J0) · �(K1 [J1)⌧ = �(I0) · �(I1)⌧ . 2

We can gather all the results seen so far and prove the following corollary.

Corollary 2. Given a word u of domain ↵, an evaluation tree T = hT, �i over u,
a scattered condensation C of ↵, and an evaluation tree T 0 = hT 0, �0i over the
word �(C) =

Q

I2C

�(I) of domain C, we have �(↵) = �0(C).

Proof. As a preliminary remark, note that since the condensation C is scattered,
we have that, for every node I 0 in the evaluation tree T 0 = hT 0, �0i, the conden-
sation of I 0 induced by T 0 is scattered as well. The proof is by induction on T 0.

20

If T 0 consists of a single node, then �(C) is a singleton word of value �(↵) and
hence the statement boils down to �(↵) = �(↵). Otherwise, let C 0 be the set of
children of the root C in T 0. From the induction hypothesis, we know that for
every I 0 2 C 0, �0(I 0) = �

�

S

I 0
�

, where
S

I 0 denotes the union of all convex sub-
sets of I 0 (recall that I 0 ✓ C). Moreover, if we denote by

S

C 0 the condensation
of ↵ obtained from the substitution of each element I 0 2 C 0 by

S

I 0, we have

�0(C) = ⇡0

Y

I

02C

0

�0(I 0)

!

= ⇡0

Y

I

02C

0

�
�

[

I 0
�

!

= ⇡0

⇣

�
�

[

C 0�
⌘

.

Note that the condensation
S

C 0 of ↵ as the same order-type of the conden-
sation C 0 of C, namely, it is either a finite condensation, an !-condensation,
or an !⇤-condensation. Therefore, using either Lemma 14 or Lemma 15 (or its
symmetric variant), we obtain ⇡0(�(

S

C 0)) = �(↵). 2

Lemma 16. Given a word u of domain ↵, an evaluation tree T = hT, �i over u,
and a dense condensation C of ↵ such that �(C) =

Q

I2C

�(I) is isomorphic
to aP ⌘b, for some elements a, b 2 S [{"} and some non-empty set P ✓ S, we
have �(↵) = a · P · b.

Proof. We remark here that the proof works for any condensation C, indepen-
dently of the form of the word �(C); however, the use of the following technical
arguments does only make sense when C is a dense condensation. We prove the
lemma by induction on T . As in the proof of Lemma 15, the case of T consisting
of a single node cannot happen. Let D be the condensation children(↵) and
let E be the finest condensation that is coarser than or equal to both C and D
(note that E exists since condensations form a lattice structure with respect to
the ‘coarser-than’ relation). Moreover, let ⇠ be the condensation over C such
that, for every I, I 0 2 C, I ⇠ I 0 holds i↵ either I = I 0 or there is J 2 D with
I ✓ J and I 0 ✓ J . This can naturally be seen as a condensation C 0 over ↵
which is at least as coarse as C: precisely, the classes of C 0 are either the single
classes of C that are not contained in any class of D, or the unions of the classes
of C that are contained in the same class of D. Furthermore, it is easy to see
that E is at least as coarse as C 0. We start by disclosing some properties of the
condensations C, D, E, and C 0.

Let us first consider a class I 2 C 0. Two cases can happen: either I is included
in some J 2 D, and in this case �(I) = ⇡0(�(C|

I

)) holds by induction hypothesis,
or I belongs to C, and hence �(I) = ⇡0(�(C|

I

)) follows immediately. We have
just proved that

8 I 2 C 0. �(I) = ⇡0(�(C|
I

)). (1)

Now, let I, I 0 be two distinct classes in C 0. We claim that there exist x 2 I
and x0 2 I 0 that are not equivalent for D, namely,

9 x 2 I. 9 x0 2 I 0. 8 J 2 D. x 62 J _ x0 62 J. (2)

The proof of this property is by case distinction. If I is contained in some J 2 D
and I 0 is contained in some J 0 2 D, then we necessarily have J 6= J 0 (otherwise,

21

we would have I = I 0 by definition of C 0) and hence Property (2) holds. Oth-
erwise, either I is not contained in any class J 2 D, or I 0 is not contained in
any class J 2 D. Without loss of generality, we assume that I is not contained
in any class J 2 D. This means that there exists J 2 D such that I \ J 6= ;
and I \J 6= ;. Let us pick some x0 2 I 0. Clearly, x0 belongs to some J 0 2 D. Then
either J \ J 0 = ; or J = J 0. In the first case, one chooses x 2 I \ J , while in the
second case one chooses x 2 I \ J . This completes the proof of Property (2).

From the above property, we can deduce the following:

If I, I 0 2 C 0, I < I 0, and I, I 0 ✓ K for some K 2 E, then
there are only finitely many classes I 00 2 C 0 between I and I 0.

(3)

Indeed, suppose that the above property does not hold, namely, that there are
infinitely many classes I 00 2 C 0 between I and I 0. In particular, we can find an
!-sequence of classes I1, I2, ... such that I = I1 < I2 < ... < I 0 or I < ... <
I2 < I1 = I 0. We only consider the first case (the second case is symmetric). By
applying Property (2) to the classes I1, I2, ..., we can find some points x1 2 I1,
x0
1 2 I2, x2 2 I3, x0

2 2 I4, ... such that, for all i 2 !, x
i

and x0
i

are not equivalent
for D (i.e., for all J 2 D, x

i

62 J or x0
i

62 J). Let X be the set of all points
x 2 ↵, with x < I

i

for some i 2 !, and let X 0 be the set of all points x0 2 ↵,
with x0 > I

j

for all j 2 !. Since D is a condensation, we have that for all x 2 X
and all x0 2 X 0, x and x0 are not equivalent for D. Moreover, by construction,
all such points x and x0 are not equivalent for C 0, and hence for C either (recall
that C is finer than C 0). Since E is the defined as the finest condensation that
is coarser than or equal to both C and D and since X [X 0 = ↵, it follows
that there is no class K 2 E that intersects both X and X 0. In particular, since
I ✓ X and I 0 ✓ X 0, it follows that there is no class K 2 E such that I ✓ K and
I 0 ✓ K, which is a contradiction. This completes the proof of Property (3).

We prove the following last property:

8 K 2 E. �(K) = ⇡0(�(C|
K

)). (4)

Let K 2 E and let T 0 = hT 0, �0i be an evaluation tree over the word �(C 0|
K

)
(such a tree exists according to Proposition 1). From Property (3) we know
that the condensation of C 0|

K

induced by the evaluation tree T 0 is scattered.
We can thus apply Corollary 2 and obtain �(K) = �0(C 0|

K

). Moreover, the
value ⇡0(�(C 0|

K

)) is defined and hence, by Corollary 1, �0(C 0|
K

) = ⇡0(�(C 0|
K

)).
By Property (1), we obtain �(C 0|

K

) =
Q

I2C

0|K �(I) =
Q

I2C

0|K ⇡0(�(C|
I

)).
Finally, from the properties of condensation trees, we derive ⇡0(�(C 0|

K

)) =
⇡0

�

Q

I2C

0|K ⇡0(�(C|
I

))
�

= �(C|
K

). This completes the proof of Property (4).

Towards a conclusion, we consider an evaluation tree T 00 = hT 00, �00i over the
word �(E) (such a tree exists according to Proposition 1). From Property (4) we
know that �(E) =

Q

K2E

�(K) =
Q

K2E

⇡0(�(C|
K

)). Moreover, By Corollary 1,
we know that ⇡0(�(C|

K

)) = �00(K) and hence
Q

K2E

⇡0(�(C|
K

)) = �00(E). Sim-
ilarly, since E is at least as coarse as D, Corollary 1 implies �00(E) = ⇡0(�(D)) =
�(↵). This completes the proof of the lemma. 2

22

Corollary 3. Given a word u of domain ↵, an evaluation tree T = hT, �i over u,
a condensation C of ↵, and an evaluation tree T 0 = hT 0, �0i over the word �(C) =
Q

I2C

�(I) of domain C, we have �(↵) = �0(C).

Proof. The proof is exactly the same as for Corollary 2, with the only di↵erence
that we do not use the assumption that the condensation C is scattered and
we use Lemma 16 for treating the nodes I 0 of T 0 for which the condensation
children(I 0) is dense. 2

Finally, the claim of Proposition 2 follows easily from the previous corollary.

Proof (of Proposition 2). Let T = hT, �i and T 0 = hT 0, �0i be two evaluation
trees over the same word u of domain ↵ and let C be the minimal condensation
of ↵, whose classes are the singleton sets. Clearly, the evaluation tree T 0 is
isomorphic to an evaluation tree T 00 = hT 00, �00i over the word �(C) =

Q

I2C

�(I)
of domain C. Using Corollary 3 we immediately obtain that �(↵) = �00(C) =
�0(↵).

We conclude this part with an example of a �-semigroup induced by a finite
�-algebra.

Example 1. Consider a �-algebra hS, ·, ⌧, ⌧⇤,i that consists of exactly five ele-
ments, a, b, c, d, and ?, and whose operators satisfy, besides Axioms A1-A4, the
following rules:

·a ·b ·c ·d ·? ⌧ ⌧⇤

a a a c c ? a a a
b b b d d ? b a a
c a a c c ? a c a
d b b d d ? b c ?
? ? ? ? ? ? ? ? ?

Note that, in this specific case, the value P, for any non-empty subset P ✓ S,
is uniquely determined by the above rules (for instance, by Axiom 4, {b, c} = s
implies {b · s · c} = s, whence s = ?, whence {b, c} = ?). This basically
means that the above table uniquely determines a �-algebra hS, ·, ⌧, ⌧⇤,i. Now,
by Theorem 1, such an algebra induces a corresponding �-semigroup hS,⇡i such
that, for every word w over S:

• ⇡(w) = a i↵ (i) the first symbol of w (if any) is a, (ii) the last symbol of w (if
any) is a, and (iii) w does not contain any sub-word u such that ⇡(u) = ?;

• ⇡(w) = b i↵ (i) w begins with either b or d, (ii) the last symbol of w (if
any) is either a or b, and (iii) w does not contain any sub-word u such that
⇡(u) = ?;

• ⇡(w) = c i↵ (i) the first symbol of w (if any) is either a or c, (ii) w ends
with either c or d, and (iii) w does not contain any sub-word u such that
⇡(u) = ?;

23

• ⇡(w) = d i↵ (i) w begins with either b or d, (ii) w ends with either c or d,
and (iii) w does not contain any sub-word u such that ⇡(u) = ?;

• ⇡(w) = ? i↵ w contains at least one occurrence of the symbol ? or it can be
written as a product of the form

Q

i2↵

u
i

such that the word v =
Q

i2↵

⇡(u
i

)
contains a perfect shu✏e of some set P ◆ {d} or P ◆ {b, c}.

24

B Proofs for Section 5
(From �-algebras to monadic second-order logic)

In this section, when we say that a monadic variable I is first-order definable
from other variables X, this means that there exists a first order formula �(x,X)
which holds i↵ x 2 I. In practice, this means that it is never necessary to
quantify over I for defining properties concerning I. It is su�cient to replace
each predicate x 2 I by the corresponding formula �(x,X). This remark is
necessary for understanding why the construction we provide yields a formula
in the 98-fragment of MSO.

Lemma 4. For all s 2 S, there is a first-order formula value
s

(g, e,X), such
that for every convex subset I:

• if (g, e) is Ramsey, then value
s

(g, e, I) holds i↵ ⇡(w|
I

) = s,

• if both value
s

(g, e, I) and value
t

(g, e, I) hold, then s = t.

Proof. As already mentioned, we encode both functions g and e by tuples of
monadic predicates. This allows us to use shorthands such as g(x) = k, where
x is a first-order variable and 1 k 2|S|, for claiming that the point x of the
underlying word w is mapped via g to the number k. Similarly, we encode the
convex subset I of ↵ by a monadic predicate and we write x 2 I as a shorthand
for a formula that states that the point x belongs to I.

We assume from now that (g, e) is Ramsey. Under this assumption, it will
be clear that the constructed formulas will satisfy the desired properties. We
remark, however, that the following definitions make sense also in the case
when (g, e) is not Ramsey.

Given a convex subset I, we denote by level(g, I) the maximal value of g(x)
for x ranging over I. Of course, the properties level(g, I) = k and level(g, I)
k are definable in first-order logic.

We will construct by induction on k 2 {0, 1, . . . , 2|S|} a function func-
tion valuek(g, e, I) 2 S [{"}, and prove that it has the following properties:

• valuek(g, e, I) = s is first-order definable for all s 2 S [{"}, say by the
formula valuek

s

(g, e, I), and;

• valuek(g, e, I) is defined i↵ level(g, I) k, and in this case equals ⇡(w|I)
(with the convention that ⇡(w|I) = " i↵ I = ;).
The base case is when k = 0, i.e., when I is empty. In this case, we set

valuek(g, e, I) to be defined i↵ I = ; and to have value ". Of course, this is
first-order definable and satisfies the expected induction hypothesis.

Let now k � 1. We aim at constructing valuek(g, e, I). First, if level(g, I) <
k, then one outputs valuek�1(g, e, I). Otherwise, the convex subset I can be
uniquely divided into X < J < Y such that X [J [Y = I, and J is the minimal
convex subset containing I \ g�1(k). Remark that X, J , and Y are first-order
definable in terms of I, g, and k. Furthermore, let f be e(x) for some x 2 I \
g�1(k). From the assumption that I has level k for g, we know that all elements in
I\g�1(k) are neighbors. This means in particular, using the Ramsey hypothesis,

25

that �(x, y) = f for all x < y chosen in I \ g�1(k). The mapping valuek(g, e, I)
is then defined as follows:

1. if J = {x} then

valuek(g, e, I) = valuek�1(g, e,X) · w(x) · valuek�1(g, e, Y) ,

2. otherwise if J has a minimal and a maximal element y, then6

valuek(g, e, I) = valuek�1(g, e,X) · f · w(y) · valuek�1(g, e, Y) ,

3. if J has a minimal element but no a maximal element, then

valuek(g, e, I) = valuek�1(g, e,X) · f⌧ · valuek�1(g, e, Y) ,

4. if J has no minimal element but a maximal element y, then

valuek(g, e, I) = valuek�1(g, e,X) · f⌧

⇤
· w(y) · valuek�1(g, e, Y) ,

5. if J has no minimal element and no maximal element, then

valuek(g, e, I) = valuek�1(g, e,X) · f⌧

⇤
· f⌧ · valuek�1(g, e, Y) .

One easily checks that this function is first-order definable. It is also easy to
prove that if (g, e) is Ramsey and level(g, I) k, then valuek(g, e, I) coincides
with ⇡(w|I).

At this step, the first conclusion of the lemma is already satisfied by the

formulas value
2|S|
s

(g, e, I). The second point, however, is false in general. In-
deed, we did not pay attention so far on what the formulas compute in the
case where (g, e) is not Ramsey. In particular, it can happen that both formu-

las value
2|S|
s

(g, e, I) and value
2|S|
t

(g, e, I) hold for distinct elements s, t 2 S.
However, this can be easily avoided using the following formula:

value
s

(g, e, I) =def value2|S|
s

(g, e, I) ^
^

t 6=s

¬value2|S|
t

(g, e, I) .

This formula ensures the second property of the lemma by construction, and
behaves like value

s

whenever (g, e) is Ramsey. 2

Lemma 5. For all condensations ⇠, there is X such that ⇠ and ⇡
X

coincide.

Proof. It is standard that, given a linear ordering �, there exists a subset Y of �
such that for all x < y in �, [x, y] intersects both Y and its complement � \ Y
(indeed, one can first prove it for scattered linear orderings and for dense linear
orderings, and then combine those sub-results using the fact that every linear
ordering is a dense product of non-empty scattered linear orderings [11]).

The result is then straightforward: consider Y obtained from the claim above
applied to the linear ordering � = ↵/ ⇠. We construct the desired set X in such

6 Remark that this definition, as well as the next item, is not left/right symmetric.
This simply reflects the asymmetry occurring in the definition of �w, by �(x, y) =
⇡(w|[x, y)) for all x < y.

26

a way that it contains the elements of the equivalence classes of ⇠ that belong
to Y , i.e., X = {x : {y ⇠ x} 2 Y }. It is clear that x ⇠ y i↵ x ⇡

X

y. 2

Lemma 6. If validity(g, e) holds, then value(g, e, I) = ⇡(w|
I

) for all convex
subsets I of ↵.

Proof. Recall that, given a convex subset I of ↵ and a condensation ⇠ of ↵|
I

,
w[I,⇠] of domain � = (↵|

I

)/⇠ in which every ⇠-equivalence class J is labeled
by value(g, e, J). Suppose that validity(g, e) holds, namely, that for all con-
vex subsets I of ↵ and all condensations ⇠ of ↵|

I

, the following conditions are
satisfied:

(C1) if I is a singleton {x}, then value(g, e, I) = w(x),

(C2) if w[I,⇠] = st for some s, t 2 S, then value(g, e, I) = s · t,
(C3) if w[I,⇠] = s! for some s 2 S, then value(g, e, I) = s⌧ ,

(C4) if w[I,⇠] = s!
⇤
for some s 2 S, then value(g, e, I) = s⌧

⇤
,

(C5) if w[I,⇠] = P ⌘ for some P ✓ S, then value(g, e, I) = P.

To show that value(g, e, I) = ⇡(w|
I

) for all convex subsets I, we use evaluation
trees. Precisely, we fix a convex subset I of ↵ and an evaluation tree T = hT, �i
over the word w|

I

(the evaluation tree exists thanks to Proposition 1), and we
prove, by exploiting an induction on T , that

value(g, e, I) = �(I) .

Since �(I) = ⇡(w|
I

) (by Proposition 2), it follows that value(g, e, I) = ⇡(w|
I

).
If T consists of a single leaf, then I is a singleton of the form {x}. Condi-

tion C1 then implies value(g, e, I) = w(x) = �(I).
If the root of T is not a leaf, then we let ⇠ be the condensation of ↵|

I

induced
by the children of the root of T , � = (↵|

I

)/⇠ be the corresponding condensed
order (formally, � = children(I)), and, for each class J 2 �, we let T

J

be the
corresponding subtree of T (formally, T

J

= T |
J

). Using the induction hypothesis
on each evaluation tree T

J

, we claim that value(g, e, J) = �(J) for all J 2 �.
Moreover, we know from the definition of w[I,⇠] that w[I,⇠](J) = value(g, e, J)
for all J 2 �, and hence w[I,⇠] is isomorphic to the word

Q

J2�

�(J). We know
from the definition of T that the image under ⇡0 of the word

Q

J2�

�(J) is
defined. From this we derive that

Q

J2�

�(J) is isomorphic to one of the following
words:

1. a finite word s1...sn, with n � 1 and s1, ..., sn 2 S,

2. an !-word se!, with s, e 2 S and e idempotent,

3. an !⇤-word e!
⇤
s, with s, e 2 S and e idempotent,

4. a dense word sP ⌘t, with s, t 2 S [{"} and P ✓ S.

We only analyze the first two cases (the arguments for the remaining cases are
similar).

If
Q

J2�

�(J) is a finite word of the form s1...sn, then we let J1 < ... < J
n

be the positions in it (recall that these are ⇠-equivalence classes for ↵|
I

) and

27

we observe that value(g, e, J
i

) = w[I,⇠](J
i

) = �(J
i

) = s
i

for all 1 i n. We
first prove, by exploiting an induction on i, that for every 1 i n,

value(g, e, J1 [... [J
i

) = s1 · ... · si

The base case i = 1 is trivial since we already know from previous argu-
ments that value(g, e, J1) = �(J1). As for the induction step, we assume that
value(g, e, J1[...[J

i

) = s1 · ... ·si and we prove the analogous equality for i+1.
For this, we consider the condensation ⇡

i

that partitions ↵|
J1[...[Ji+1 into the

two consecutive classes J1 [...[J
i

and J
i+1. We have that w[I,⇡

i

] = st, where
s = s1 · ... · si and t = s

i+1. Using Condition C2, we then derive

value(g, e, I) = s · t = (s1 · ... · si) · si+1 = s1 · ... · si+1.

Finally, for i = n, the above property implies

value(g, e, I) = value(g, e, J1 [...[J
n

) = s1 · ... · sn = ⇡
⇣

Y

J2�

�(J)
⌘

= �(I).

Let us now consider the case where
Q

J2�

�(J) is an !-word of the form se!.
We denote by J1 < J2 < ... the positions in

Q

J2�

�(J) (recall that these are
⇠-equivalence classes for ↵|

I

). We observe that
Q

i�2 �(Ji) = e! and hence, by
Condition C3, we derive

value(g, e, J2 [J3 [...) = e⌧ .

We also know that value(g, e, J1) = s. Let us now consider the condensation ⇡
that partitions ↵|

I

into the two consecutive classes J1 and (J2[J3[...). We have
that w[I,⇡] is a word of the form st, where t = e⌧ , and hence, by Condition 2,
we derive

value(g, e, I) = s · t = s · e⌧ = ⇡
⇣

Y

J2�

�(J)
⌘

= �(I).

2

28

