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LIAFA/CNRS, France and RWTH Aachen, Germany
Submitted to Track B of ICALP’08

Abstract. Given a Rabin tree-language and natural numbers i, j, the
language is said i, j-feasible if it is accepted by a parity automaton using
priorities {i, i + 1, ..., j}. The i, j-feasibility induces a hierarchy over the
Rabin-tree languages called the Mostowski hierarchy.
In this paper we prove that the problem of deciding if a language is
i, j-feasible is reducible to the uniform universality problem for distance-
parity automata. Distance-parity automata form a new model of au-
tomata extending both the nested distance desert automata introduced
by Kirsten in his proof of decidability of the star-height problem, and
parity automata over infinite trees. Distance-parity automata, instead
of accepting a language, attach to each tree a cost in ω + 1. The uni-
form universality problem consists in determining if this cost function is
bounded by a finite value.

1 Introduction

Finite automata running on infinite trees, originally introduced by Rabin in his
seminal work [14] are now widely considered as one of the key paradigms for
understanding many logics relevant to verification. Those automata are known
to be effectively equivalent to monadic second-order logic, µ-calculus, and to
subsume all the standard temporal logics.

An important parameter in the definition of the automaton model is the
accepting condition. This accepting condition allows to determine, given a run
of the automaton, whether it should be considered as accepting or not. Different
(often equivalent) choices of accepting conditions are known from the literature
such as Büchi, Rabin, Muller, or Streett conditions (cf. [15]). Though all possess
their own interest, the notion of parity condition has emerged for many reasons
as the central condition in the theories of automata, logic and games.

When using a parity condition, each state of the automaton is labelled by a
natural number – called a priority – belonging to a fixed finite interval [i, j]. A
run is accepting if on every branch the highest priority seen infinitely often is
even. A language is said i, j-feasible if there exists a finite automaton using the
interval of priorities [i, j] accepting this language. Of course, the language does
not change if we shift all priorities by steps of 2 or −2. This is why we can restrict
ourselves to i = 0 or i = 1. It is also clear that the bigger is the interval [i, j], the
more tree languages are i, j-feasible. Mostowski first studied this parameter [9],



and the corresponding ladder-shaped hierarchy – depicted Figure 1 – is named
after him.
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Fig. 1. Hierarchy of Mostowski indices.

This Mostowski hierarchy exists in different variants according to the nature
of the transition relation used by the automaton. Over trees the hierarchy is strict
for all standard models of automata: deterministic [17] (even over words), non-
deterministic [11], and alternating [1] (in combination with [3, 8]). The hierarchy
collapses over words for non-deterministic automata to the Büchi level (1, 2),
and in the alternating case to the intersection of levels (0, 1) and (1, 2).

The next step in the study of this hierarchy is the question of decidability.
The problem is the following: given a regular language of infinite trees L (i.e.,
accepted by a non-deterministic or alternating automaton), and natural numbers
i ≤ j, is the language i, j-feasible? This question is parameterised both by the
nature of the language L, that we call the input language, and the nature of the
class of automata for which we test the i, j-feasibility, the output class.

In the case of any non-deterministic automaton as input, the 1, 1-feasibility
and the 0, 0-feasibility in the non-deterministic Mostowski hierarchy is decidable
for simple reasons: a language is at level (1, 1) iff it consists solely of finite trees,
and a language is at level (0, 0) iff it is closed for the standard topology over
infinite trees. Those two properties are easily shown to be decidable. Remark
also that the non-deterministic and the alternating hierarchy coincide over those
two levels.

More interestingly, the problem is known to be decidable in the Mostowski
hierarchy of languages accepted by deterministic automata. The problem is de-
cidable if both the input language and the output class are deterministic [12]
(see also [13] for more details). The problem is also known to be decidable if the
input language is deterministic, and the output class is non-deterministic [13]
(which is a refinement of the case of a path languages as input [12]). The special
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case of deciding if a deterministic language is accepted by a non-deterministic
Büchi automaton (i.e., 1, 2-feasible in the non-deterministic Mostowski hierar-
chy) was formerly settled in [16]. Let us finally remark that every deterministic
language is alternating co-Büchi, i.e., that every deterministic language falls in
the level (0, 1) of the alternating Mostowski hierarchy. And hence the case of a
deterministic language as input and an alternating one as output is also settled.

This paper is the first part in an attempt to show the decidability of the
following problem.

Problem 1. Given a regular tree language L and natural numbers i ≤ j, answer
whether L is i, j-feasible in the non-deterministic Mostowski hierarchy or not.

The scheme of the proof is inspired from the proof of decidability of the
(restricted) star-height problem due to Kirsten [6] (the problem was originally
solved by Hashiguchi [5]). The star-height problem is the following: given a
regular language of finite words and a natural number k, is it possible to describe
the language by a regular expression using at most k nesting of Kleene stars?

For showing the decidability of the star-height problem, Kirsten introduces
a new class of automata: nested distance desert automata. Those are non-
deterministic finite automata running on finite words and equipped with some
counting features. The semantic of such automata is either to reject a word, or
to associate to it a natural number, that we can see as the price to pay for ac-
cepting it. Hence a nested distance desert automaton defines a partial mapping
from words to natural numbers. The proof then goes in two steps.

– Reduce the star-height problem to the limitedness problem for nested dis-
tance desert automata (the limitedness is the problem of determining if the
partial mapping defined by the automaton bounded).

– Solve the limitedness problem for nested distance desert automata.

We want to follow exactly the same scheme to solve Problem 1. We intro-
duce the family of distance-parity automata running over infinite trees. Those
automata combine the features of nested distance desert automata and of par-
ity automata. If we restrict a distance-parity automaton to run on finite words,
we fall back to the class of automata defined by Kirsten. If we restrict those
automata to infinite words, we get a family of automata equivalent to the hier-
archical ωB-automata in [2]. The limitedness problem still makes sense for the
distance-parity automata, but we prefer to it the uniform universality problem1:
a distance-parity automaton is uniformly universal if the function it defines is
both total and bounded. This problem is decidable for finite words from [6], and
can be derived decidable over infinite words using [2].

Our proof scheme then goes as follows in two steps:

– Reduce the i, j-feasibility problem to the uniform universality problem for
distance-parity automata (Theorem 2).

1 In fact Kirsten’s proof can be slightly simplified by using the uniform universality
problem instead of the limitedness one. It avoids the value ∞ used in matrices.
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– Show the decidability of the uniform universality problem for distance-parity
automata (open).

This paper is concerned with the first item. This reduction part is very different
from the one in the proof of Kirsten. Indeed, there is an intrinsic difficulty in
the study of regular languages of infinite trees: there is no known notion of a
canonical object describing a language. When dealing with finite words, one can
use the minimal deterministic automaton or the syntactic monoid. When dealing
with infinite words, one can use the syntactic ω-semigroup. When dealing with
finite trees, there exist a minimal bottom-up deterministic automaton, and a
corresponding algebraic presentation. Most methods for characterising classes of
languages begin by taking such a canonical presentation. But for infinite trees
no canonical type of acceptor is known. This problem is very deep as it can be
witnessed by the following fact: some languages are inherently ambiguous, i.e.,
it is impossible to provide an automaton that would possess a single accepting
run over every accepted input (the proof of this result is given in [10] but has
not been published; see also [4]). One contribution of this paper is the notion of
a guidable automaton, i.e., an automaton that is able to ‘mimic’ the behaviour of
every automaton accepting the same language. This guidable automaton plays
the role of the canonical presentation in our reduction. We show that every
regular tree language is accepted by a guidable automaton (Theorem 1).

The second part of our reduction is an ’on the fly’ optimisation of the guid-
able automaton. This optimisation process makes use of the distance features of
distance-parity automata. It is shown both correct, and optimal.

The remainder of the paper is organised as follows. Section 2 is devoted to
definitions, in particular automata and the accepting conditions we use. Section 4
presents the notion of guidable automaton and we prove that such an automaton
exists for each regular language of trees. In Section 4 we establish Theorem 2
reducing the i, j-feasibility problem to the uniform universality problem.

2 Definitions

Words are finite sequences of letters. The set of words over alphabet A is denoted
by A∗. The empty word is ε, and uv is the concatenation of u and v. We denote
by ⊑ the prefix relation over words and by ⊏ its strict variant. The length of a
word u is |u|, and |u|a for a ∈ A is the number of occurrences of letter a in u. An
ω-word is an infinite sequence of letters and by Aω we denote the set of infinite
words over alphabet A. The ordered set of natural numbers is written as ω, and
ω + 1 is ω augmented with the maximal value ω.

For the sake of simplicity, we assume that trees are binary and complete (i.e.,
with no leaves)2. A tree labelled by a finite alphabet A (we also say an A-tree) is

2 We can code leaves in an infinite binary tree by marking all nodes below by a special
dummy symbol. It is easy to show that if the interval [i, j] contains an even priority,
then the original language is i, j-feasible iff the one after coding is i, j-feasible. This
means that we cannot treat the case of 1, 1-feasibility. However we have seen that
1, 1-feasibility is easy for other arguments.
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a mapping from {0, 1}∗ to A. The elements of {0, 1}∗ are called nodes. A branch
is a maximal totally ordered set of nodes. A branch naturally induces a ω-word
in Aω. It is sometime convenient to identify branches with this ω-word.

An automaton is a tuple A = (Q,A, I, δ, col) in which:

– Q is a finite set of states, I ⊆ Q is the set of initial states,
– A is the alphabet,
– δ ⊆ Q × A × Q × Q is the transition relation,
– col : Q → Cols is a colour mapping to some finite set Cols of colours.

A run ρ of an automaton over an A-tree t is a mapping from {0, 1}∗ to Q such
that ρ(ε) ∈ I and for all v ∈ {0, 1}∗, (ρ(v), t(v), ρ(v0), ρ(v1)) ∈ δ. Given a run ρ,
col(ρ) is the Cols-tree (col ◦ ρ).

Each automaton – depending on its nature – comes with a mapping val
from Colsω to ω + 1. The value val(ρ) of a run ρ is the supremum of val over
all infinite branches of col(ρ). The value A(t) of an A-tree t is the minimum of
val(ρ) for ρ ranging over all runs over t (by default ω if there is no such run).

We are now ready to introduce the different value mappings used throughout
the paper. The parity condition correspond to a an interval [i, j] of natural
numbers – called priorities – as set of colours. Given an infinite sequence of
priorities u ∈ [i, j]ω, val(u) is 0 if the maximal priority appearing infinitely often
is even, else ω. A parity automaton is an automaton using a parity condition.
A tree t is accepted by such an automaton iff val(t) = 0. The parity index (or
Mostowski index) of a parity automaton is the pair (i, j) of maximal and minimal
priorities used in the automaton. We designate by L(A) the set of trees that are
accepted by the parity automaton A. A language is regular if it is equal to L(A)
for some parity automaton A, and is i, j-feasible if furthermore A has parity
index (i, j).

A distance condition (usually called nested distance desert) is defined for a
totally ordered set of colours D of the following structure:

d1 < r1 < · · · < dk < rk .

The colours d1, . . . , dk are called distance colours, while the colours r1, . . . , rk

are reset colours. Given an infinite sequence u ∈ Dω, its value val(u) is the
supremum of |v|dk

for v ranging over finite factors of u of maximal colour dk.
One can see this as having k counters numbered from 1 to k. When seeing dk

the corresponding counter is incremented and all the counters below are reset.
When seeing rk, all the counters up to k are reset. The value of a sequence is
the supremum of all values of counters seen during this process (starting with
all counters set to 0).

We can derive from the two previous mappings a last one, the distance-parity
mapping, which can be seen as a conjunction of a distance and a parity condition.
It is described for a set of colours of the form Cols = D × [i, j] where D is the
ordered set of colours of a distance condition and [i, j] is a finite interval of
natural numbers. For a sequence u ∈ Colsω one derives the two corresponding
sequences u1 ∈ Dω and u2 ∈ [i, j]ω obtained by projection to the first and second
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components of the elements in u, respectively. The value val(u) is the maximum
of val(u1) (as a distance condition) and val(u2) (as a parity condition).

Given a distance-parity automaton A, we define for each N < ω the language
L(N)(A) := {t : A(t) ≤ N}. In this way A defines a non-decreasing ω-sequence
of languages, i.e., an ω-chain of languages. It is easy to observe that for each
N , L(N)(A) is a regular language: For a fixed N the counters for the distance
colours can be coded in the states of the automaton. This construction gives a
parity automaton of index (i, j) for L(N)(A), hence we define the parity index
of a distance-parity automaton to be the parity index of the underlying parity
condition. From the above explanation we easily conclude the following.

Fact 1 Given a distance-parity automaton A of parity index (i, j) and a natural
number N , the language L(N)(A) is i, j-feasible.

The limitedness problem is the following: given a distance-parity automa-
ton A, determine if L(N)(A) is ultimately constant (in this case, the automaton
is said limited). In this paper we prefer the uniform universality problem: given
an automaton A, determine if L(N)(A) is equal to the set of all trees for some
natural number N (in this case the automaton is said uniformly universal).

3 Guidable automata

As mentioned in our introduction, the first step of the proof is to construct an
automaton accepting the language L that has a special property, called guidable.
The underlying idea is that we want to be able to relate accepting runs of an
automaton for L that has a minimal number of priorities to accepting runs of
our guidable automaton.

Definition 1. A parity automaton A = (QA, A, {q0}, δA, colA) is guidable if
for every parity automaton B = (QB, A, IB, δB, colB) such that L(B) ⊆ L(A)
there exist a mapping g : QA × δB → δA with the following properties:

– g(p, (q, a, q′, q′′)) = (p, a, p′, p′′) for some p′, p′′ ∈ QA.
– For every accepting run ρ of B over a tree t, g(ρ) is an accepting run of A

over t, where g(ρ) = ρ′ is the unique run such that ρ′(ε) = q0, and for
all u ∈ {0, 1}∗:

(ρ′(u), t(u), ρ′(u0), ρ′(u1)) = g(ρ′(u), (ρ(u), t(u), ρ(u0), ρ(u1))) .

In this case we say that (B, g) guides A.

One way to see this definition is that g is a deterministic transducer with state
set QA that takes as input a run ρ of B and outputs a run ρ′ of A such that if ρ

is accepting (for B), then ρ′ is accepting (for A).
Let us provide some intuition on guidable automata in the context of finite

words, even if those explanations are not necessary in the proofs of the paper.
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The definition of guidable automaton can easily be translated by the reader to
the case of finite words.

An example of an automaton that is not guidable is the automaton that
accepts all {a, b}-words by guessing in the first step of the run if the last letter
is a or b, and then proceeds to two subautomata, one accepting words ending
with a, the other accepting words ending with b. It is quite clear that it is not
possible to guide such an automaton, though this automaton is unambiguous3 if
we choose the two subautomata to be deterministic. In fact, this example carries
the important intuition that an automaton is guidable if it is never forced to
make an unnecessary guess concerning the remaining of the input.

It is easy to see that every deterministic automaton is guidable (even over
infinite trees). The example above shows that unambiguous automata may not
be guidable. It is also easy to construct an ambiguous automaton that is guidable
(for instance an automaton of two states accepting all inputs and containing all
possible transitions). This shows that the concept of guidable automata is of a
different nature than the one of unambiguous automata.

In our context of infinite trees, the only way we use the property of guidable
automata is by the following simultaneous pumping argument.

Lemma 2. Consider automata A, B and accepting runs ρ, ρ′ as in Definition 1.
Let u ⊏ v be nodes such that ρ(u) = ρ(v) and ρ′(u) = ρ′(v). If the maximal
priority in ρ between u and v is even, then the maximal priority in ρ′ between u

and v is also even.

Proof. Consider the run τ obtained from ρ by repeating infinitely often the piece
of run between u and v (i.e., positions x such that u ⊑ x and v 6⊑ x), and τ ′ be
obtained from ρ′ in the same way. If the maximal priority between u and v in ρ is
even, then the run τ is also accepting. But it is not difficult to see that g(τ) = τ ′

and hence by definition of guidable automata, τ ′ is also accepting. Thus, the
maximal priority n appearing infinitely often on the infinite branch obtained by
pumping is even. Since this branch is obtained by pumping ρ′ between u and v,
the priority n appears as the maximal one between u and v in ρ′. ⊓⊔

The main result of this section is that for each regular tree language we can
construct a guidable automaton.

Theorem 1. For each regular tree language L there exists effectively a guidable
parity automaton A accepting L.

Proof. What show that a standard complementation procedure, as it can be
found in [15], yields a guidable automaton A. We start by describing the au-
tomaton resulting from this complementation procedure and then show why it
is guidable. Roughly, the idea is that a strategy in a game witnessing that an
automaton B has empty intersection with the complement of A can be used to
construct the mapping g to guide A.

3 Unambiguous automata have a unique accepting run for each word in the language.
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Formally, let C = (QC , A, IC , δC , colC) be a parity automaton accepting the
complement of L. By G we denote the set of all mappings f : δC → {0, 1}.
Each path in an A × G labelled tree corresponds to an infinite sequence over
(A × G × {0, 1}), where the {0, 1}-component indicates the direction the path
takes in each step. We say that such a sequence

(a0, f0, i0)(a1, f1, i1) · · · ∈ (A × G × {0, 1})ω

is C-accepting if there is a transition sequence τ0τ1 · · · ∈ δω
C

such that

– for each j the transition τj is of the form (qj , aj , q
(0)
j , q

(1)
j ) with fj(τj) = ij

and q
(ij)
j = qj+1,

– q0 is an initial state of C, and
– the acceptance condition of C is satisfied by q0q1 · · · .

It is easy to see that the set of all C-accepting sequences over (A×G×{0, 1}) is a
regular language of infinite words (a non-deterministic automaton can guess the
transition sequence of C and verify the local properties). Hence, the set of all se-
quences that are not C-accepting is also a regular language, and from a determin-
istic parity word automaton for this language one constructs a deterministic par-
ity tree automaton (with a single initial state) A′ = (QA, A×G, {qAI }, δA′ , colA)
accepting all (A × G)-trees in which all paths correspond to C-accepting se-
quences. By projecting away the G-component one obtains the automaton A =
(QA, A,

{

qAI
}

, δA, colA) for the language L. Note that A′ and A only differ on
the inputs in the transitions.

We show that A is indeed a guidable automaton. Let B = (QB, A, IB, δB, colB)
be a tree automaton with L(B) ⊆ L(A). The mapping g is constructed from a
strategy in the emptiness game for the language L(B) ∩ L(C). In this game,
Adam wants to verify that L(B)∩L(C) 6= ∅ and Eve wants to show the contrary.
In other words, Adam plays for constructing both a run of B and a run of C
corresponding to the same tree, while Eve wants to show the failure of this
construction by witnessing an invalid branch (losing for B or for C). The rules
of the game are as follows:

1. Adam starts by choosing a starting position (pI , qI) ∈ IB × IC .
2. From a position (p, q) ∈ QB×QC , Adam picks two transitions (p, a, p(0), p(1)) ∈

δB and (q, a, q(0), q(1)) ∈ δC from these states, both using the same input let-
ter. The game is now in position ((p, a, p(0), p(1)), (q, a, q(0), q(1))).

3. Eve chooses a direction i ∈ {0, 1} and the game moves to (p(i), q(i)).

The result of the game (the part that is interesting for the winning condition) is
an infinite sequence (p0, q0)(p1, q1) · · · ∈ (QB ×QC)ω. Eve wins if either p0p1 · · ·
does not satisfy the parity condition of B or q0q1 · · · does not satisfy the parity
condition of C.

This is the standard game for verifying emptiness of tree automata (see [15])
and Eve has a winning strategy iff L(B)∩L(C) = ∅. Because L(B) ⊆ L, we know
that Eve indeed has a winning strategy (C accepts the complement of L).
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The winning condition for Eve is the disjunction of two parity conditions
and hence can be written as a Rabin condition. Therefore Eve has a positional
winning strategy (see [7, 18]). Such a positional winning strategy is a mapping
σE : δB × δC → {0, 1} assigning to each pair of transitions a direction (for the
transition pairs that do not correspond to valid game positions an arbitrary value
can be chosen). It can be equivalently written as a mapping σE : δB → (δC →
{0, 1}) assigning to each B-transition a mapping from the set of C-transitions
to {0, 1}. From this we first define g′ : QA × δB → δA′ by g(p, (q, a, q′, q′′)) =
(p, (a, f), p′, p′′) for the unique p′, p′′ ∈ QA such that (p, (a, f), p′, p′′) ∈ δA′ with
f = σE(q, a, q′, q′′). The mapping g is then obtained by projecting away the
G-component.

We need now to show that g translates accepting B-runs into accepting A-
runs. Let ρ be an accepting run of B on some tree t. Assume that g(ρ) is rejecting.
Then also the run g′(ρ) is rejecting, where g′(ρ) is a run over the input tree t′ that
is obtained from t by adding the G-components of the transitions used in g′(ρ)
to the node labels of t. This means that there is an infinite branch i0i1 · · · with
labels (a0, f0)(a1, f1) · · · in t′ such that the sequence (a0, f0, i0)(a1, f1, i1) · · · is
C-accepting. Let τ0τ1 · · · ∈ δω

C
be the transition sequence from the definition of

C-acceptance.
Let τ ′

0τ
′
1 · · · ∈ δω

B
be the transition sequence of B along the path i0i1 · · ·

in the run ρ. Now assume that in the emptiness game described above Eve
plays according to σE . One can verify that Adam can play the transition pairs
(τ ′

0, τ0), (τ
′
1, τ1), . . . against σE (because σE(τ ′

j , τj) = fj(τj) = ij) and thus wins
against σE . This contradicts the choice of σE as a winning strategy for Eve. ⊓⊔

4 Reduction from parity rank to uniform universality

In this section we describe how to reduce the problem of deciding whether a
regular tree language is i, j-feasible to the problem of deciding the uniform
universality of a distance-parity automaton. We fix a regular language L and
an interval [i, j] of natural numbers. We also fix a guidable parity automa-
ton A = (Q,A, q0, δ, col) with L(A) = L using priorities in some interval P .
In the following, we often identify runs ρ of A with their colouring col(ρ), i.e.,
with P -trees.

The idea is to construct a distance-parity automaton Ti,j of parity index (i, j)
reading P -trees such that:

(Correctness) For all P -trees t, if Ti,j(t) < ω then t is accepting (Lemma 4).
(Completeness) For every i, j-feasible language K ⊆ L, there exists M ∈ ω

such that for all trees t ∈ K, there exists an accepting run ρ of A over t

with Ti,j(col(ρ)) ≤ M (Lemma 5).

Then we can cascade the automata Ti,j and A into a single one noted Ai,j us-
ing the same distance-parity condition as Ti,j : this automaton non-deterministically
chooses a run of A and applies the Ti,j automaton on the colouring of this run.
This resulting distance-parity automaton is such that L(N)(Ai,j) ⊆ L for all N

9



(correctness), and such that for all i, j-feasible K ⊆ L, K ⊆ L(M)(Ai,j) for
some M (completeness). Let us now construct the distance-parity automaton
U which at the beginning non-deterministically decides either to execute the
automaton Ai,j or an automaton C accepting the complement of L.

Lemma 3. The automaton U is uniformly universal iff L is i, j-feasible.

Proof. Assume L(N)(U) accepts all trees for some N . This means that L(N)(Ai,j)∪
L(C) contains all trees, and thus L ⊆ L(N)(Ai,j). Since furthermore L(N)(Ai,j) ⊆
L (correctness), we have L = L(N)(Ai,j). And by Fact 1, L is i, j-feasible. Con-
versely, assume L is i, j-feasible. Then by completeness, there exists M such
that L ⊆ L(M)(Ai,j). Hence L∪L(C) ⊆ L(M)(U) contains all trees. The automa-
ton U is uniformly universal. ⊓⊔

From this we directly get our main theorem:

Theorem 2. The problem of deciding the i, j-feasibility of a regular tree lan-
guage is reducible to the uniform universality of distance-parity automata.

We now describe the automaton Ti,j in detail. Intuitively, Ti,j associates to
each priority in P a priority in [i, j]. When reading a priority k ∈ P it “outputs”
the priority associated to k. To implement this idea, the main objects used
by Ti,j are partial mappings from P to [i, j] (for technical reasons we allow
some priorities to be undefined). To ensure correctness of Ti,j (in the sense
mentioned above), these mappings have to respect some conditions. First of all,
odd priorities of P should be mapped to odd priorities of [i, j]. Furthermore,
the ordering of the priorities should be respected. However, we relax this second
condition by only requiring that the image of every odd priority dominates the
image of all even priorities below it.

Formally, let S be the set of partial mappings s : P → [i, j] such that for all
k for which s(k) is defined:

1. If k is odd, then s(k) is odd.
2. If k is even, then for all odd l > k such that s(l) is defined, s(l) ≥ s(k).

The transitions of Ti,j allow to change the mapping s in a safe way. It is not very
difficult to observe that on reading priority k ∈ P , Ti,j can safely change the
values for P -priorities strictly below P . Additionally, we also allow a bounded
number of arbitrary changes of the values. This bound is not fixed a priori and
is controlled by the additional distance condition.

We now proceed to the formal definition of the distance-parity automaton
Ti,j = (S × P × S, P, SI , δ, col).

– The set of initial states is SI = {(s⊥, k, s) | s ∈ S, k ∈ P}, where s⊥ is the
mapping that is undefined everywhere.

– For all s′, s, s0, s1 ∈ S, k, k0, k1 ∈ P we allow the transition

( (s′, k, s), k, (0, (s, k0, s0)), (1, (s, k1, s1)) ) .
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In fact, every transition is allowed, provided the first component is equal to
the last one used at the parent node, and the second component remembers
the label of the P -tree at the current node. As a consequence, a run of Ti,j

on a given input tree is completely determined by the tree and the last
components of its states.

– Distance colours are D = {dk, rk−1 : k ∈ P}, and the priorities lie in [i, j].
– For all q ∈ S × P × S we set col(q) = (dst(q), pri(q)) with:

dst(s′, k, s) =











rk−1 if s(k) is defined and s′(l) = s(l) for all l ≥ k

dk if s(k) is undefined and s′(l) = s(l) for all l ≥ k

dl for the maximal l with s′(l) 6= s(l) otherwise.

and pri(s′, k, s) =

{

s(k) if s(k) is defined,

i if s(k) is undefined.

We now establish that Ti,j satisfies the correctness condition mentioned at
the beginning of this section.

Lemma 4 (correctness). For all P -trees t, if Ti,j(t) < ω then t satisfies the
parity condition of P on each branch.

Proof. Let t be a P -tree and let ρ be a run of Ti,j on t. Consider a branch B

and let k be the maximal P -priority that appears infinitely often on B in t. We
show that if k is odd, then B is rejecting in ρ.

First note that rk−1 is the maximal release that can occur infinitely often
on B in ρ. Hence, if the value of some l ≥ k changes infinitely often along B,
then the distance condition is not satisfied and B is rejecting. Otherwise, the
value of k becomes stable eventually on B. This value is odd because k is odd
(property 1 of S), and furthermore it is bigger than the values of the smaller
even priorities (property 2 of S). Hence, the maximal priority assumed infinitely
often in ρ along B is odd and thus B is rejecting in ρ. ⊓⊔

Lemma 5 (completeness). For every i, j-feasible language K ⊆ L, there ex-
ists M ∈ ω such that for all trees t ∈ K, there exists an accepting run ρ of A
over t with Ti,j(col(ρ)) ≤ M .

This is the difficult part of the proof (given in the appendix). The principle is
the following. Consider an automaton B of parity index (i, j) that accepts K.
There exists a mapping g such that (B, g) guides A (this is possible since A is
guidable). Let us consider an accepting run τ of B over a tree t ∈ K. The run ρ

we consider is g(τ). The difficulty is to construct a run of Ti,j witnessing that
Ti,j(col(ρ)) ≤ M for a bound M which does not depend on t (but depends on B).

The very informal idea for constructing the run of Ti,j is to try to mimic the
priorities used by the run τ . For defining the states of Ti,j used at each position
of the run, we heavily rely on Lemma 6 which relates the use of priorities in τ

to the use of priorities in ρ. This lemma is only usable in presence of loops
of B in τ . Therefore, in parts of τ where B has not yet entered a loop or enters
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a new strongly connected component of its transition graph, the states of Ti,j

map some priorities to an undefined value. The distance part of the condition
is exactly used as a counter of such “errors”. But as B can only finitely often
change the strongly connected component, one can imagine that the number of
those errors is bounded by some M depending on the size of B.

5 Conclusion

We have shown in this paper that the problem of deciding the levels of the non-
deterministic Mostowski hierarchy can be reduced to the problem of uniform
universality for distance-parity automata. The next step is of course to show
the decidability of this latter problem. We have already obtained partial results
showing that uniform universality is decidable for special classes of distance-
parity automata (over trees). We expect the decidability of the general problem.

A key tool in our reduction is the notion of guidable automaton. We have
shown that each regular language of infinite trees can be accepted by such an
automaton. This model is interesting in its own right because it somehow shows
that there is a canonical way of using non-determinism for accepting a language
of infinite trees. We plan to investigate this model further and to see if it can be
applied in other contexts.
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Appendix: Proof of the Completeness Lemma

We come back to the situation of the presentation in Section 4. In particular,
we aim at proving Lemma 5. From now on i, j are fixed, as well as a guidable
parity automaton A = (QA, A × G, qAI , δA, colA) such that L = L(A) and the
priorities used by A are from some interval P . Let also B = (QB, A, qBI , δB, colB)
be some parity automaton such that L(B) ⊆ L and the priorities used by B are
from the interval [i, j] (cf. Lemma 5). Because A is guidable there is a mapping
g such that (B, g) guides A.

We aim at showing that there is an N such that for every A-tree t ∈ L(B)
there is an accepting run of A that is accepted by Ti,j with distance parameter
N . Let t ∈ L(B) and ρB be an accepting run of B on t. Set ρA = g(ρB). We
show below that ρA is accepted by Ti,j by constructing an accepting run ρTi,j

based on the run ρB. At the end of this construction, we establish Lemma 14
from which Lemma 5 is directly obtained.

We need first some more definitions. First of all, to simplify notation, for
a position x ∈ {0, 1}∗ we write colA(x) and colB(x) to denote the respective
priorities of the states in the runs ρA and ρB at position x, i.e., colA(ρA(x)) and
colB(ρB(x)).

Let y, z ∈ {0, 1}∗ be two nodes with y ⊏ z. For ℓ ∈ [i, j] we say that (y, z) is
an ℓ-loop if

– ρA(y) = ρA(z),
– ρB(y) = ρB(z) =: q ∈ QB with colB(q) = ℓ, and
– colB(x) ≤ ℓ for all x with y ⊏ x ⊏ z.

So an ℓ-loop is a loop for A, and it has the same B-state with priority ℓ at the
first and the last position and no state with higher priority in-between (for B).

We say that an ℓ-loop (y, z) is dominated by a priority k ∈ P (a priority of
A) if k is the highest A priority appearing in the loop (z excluded), i.e., if

– colA(x) ≤ k for all y ⊑ x ⊏ z, and
– colA(x) = k for some y ⊑ x ⊏ z.

The following lemma is easy to prove but it is the central reason why we
use guidable tree automata. It states that an accepting loop of B has to be
dominated by an accepting priority of A. This lemma the same as Lemma 2, but
presented with terminology used along the proof.

Lemma 6. Let (y, z) be an ℓ-loop dominated by k. Then ℓ even implies k even.

Proof. Assume that ℓ is even. The proof is a simple pumping argument. Let

ρ
[y,z)∗

B
be the run obtained from ρB by iterating the part between y and z.

Formally, let u ∈ {0, 1}∗ be such that z = yu. Then ρ
[y,z)∗

B
is defined by

ρ
[y,z)∗

B
(x) =

{

ρB(x) if y 6⊑ x,

ρB(yv) if x = yunv for some n ≥ 0 and v with u 6⊑ v.
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Because ρB(y) = ρB(z) this indeed defines a run of B, namely on the tree t[y,z)∗

(which is defined in the same way). Furthermore, ρ
[y,z)∗

B
is accepting because the

maximal priority seen on the branch yuω is ℓ. All the other infinite branches in

ρ
[y,z)∗

B
correspond from some point onwards to a branch in ρB and are therefore

accepting.

Now consider g(ρ
[y,z)∗

B
). Because g only locally translates the transitions

of B into transitions of A, and because ρA(y) = ρA(z), one can observe that

g(ρ
[y,z)∗

B
) = (g(ρB))[y,z)∗ = ρ

[y,z)∗

A
, i.e., applying g to ρ

[y,z)∗

B
yields the same as

applying g to ρB and then iterating the loop (y, z).

In ρ
[y,z)∗

A
the highest priority seen infinitely often on the branch yuω is k.

As ρ
[y,z)∗

B
is accepting, ρ

[y,z)∗

A
must also be accepting and therefore k must be

even. ⊓⊔

Having established this connection between priorities of A and B on loops,
we now start the construction of an accepting run of Ti,j on ρA. Recall that
the runs of Ti,j are in one-to-one correspondence with mappings that assign to
each node an element of S. We are now going to specify such a mapping that
associates to each node x ∈ {0, 1}∗ an element sx ∈ S and show that it defines
an accepting run of Ti,j on ρA.

Construction of the run of Ti,j. The essential idea is the following: In an ℓ-
loop we map (more precisely the elements of S used by the run in the loop map)
the highest priority for A on this loop (i.e., the priority dominating this loop)
to the highest priority of B on this loop (i.e., to ℓ). Then Lemma 6 ensures that
we indeed map odd priorities of A to odd priorities of B. To make this simple
idea work we have to tune the definitions a bit.

We say that a position x is covered by k in an ℓ-loop (y, z) if this loop is
dominated by k, and there is an x′ with y ⊑ x′ ⊑ x ⊏ z such that colA(x′) = k.
That is, a position with priority k has to appear before x in the loop. We just
say that x is covered by k if it is covered by k in some ℓ-loop.

We let

covx(k) = max{ℓ ∈ [i, j] | x is covered by k in an ℓ-loop}

where the maximum is undefined in case x is not covered by k.

Lemma 7. The function covx is nondecreasing (over its domain). Furthermore,
for all k such that covx(k) is defined, k odd implies covx(k) odd.

Proof. Let k ≤ k′ be such that covx(k) = ℓ and covx(k′) = ℓ′ are defined. By
definition, x is k-covered in some ℓ-loop (y, z) and k′-covered in some ℓ′-loop
(y′, z′). As (y, z) is k-dominated and k ≤ k′ we conclude that no position inside
(y, z) can have priority k′. This implies that y′

⊏ y ⊑ x ⊏ z′. Since (y′, z′) is an ℓ′-
loop, ℓ′ is the highest B-priority on (y′, z′) and in particular ℓ = colB(y) ≤ ℓ′.

The second statement is a direct consequence of Lemma 6. ⊓⊔
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Using covx we define sx : P → [i, j] as follows:

sx(k) =











⊥ if covx(k) is undefined,

covx(k) if k is odd or covx(k) is even or covx(k) = i,

covx(k) − 1 if k is even and covx(k) 6= i is odd.

Remark in this definition the special treatment of the priority i that is here just
for preventing the use of the disallowed value i − 1. Note also (see the remark
following the definition of covx(k)), that the second line in the definition of sx

is used iff k and covx(k) have the same parity (even or odd). While in the third
case the parity of k and covx(k) are different: the −1 is a correction to the value
of covx(k) to make it of the same parity as k. Hence, the two last cases can be
understood as taking the maximal priority below or equal to covx(k) that has
the same parity as k.

A very important thing to remark is that, though covx is monotonic over its
domain, this is not the case for sx: Consider, e.g., the case covx(2) = covx(1) = 1.
This mapping is monotonic, but we get sx(2) = 0 and sx(1) = 1, which is not
monotonic (and this case can happen for real). That is why the item 2 in the
definition of S is weaker than monotonicity.

Lemma 8. For each x, the mapping sx belongs to S.

Proof. 1. If k is odd, then covx(k) is odd (Lemma 7). The second line in the
definition of sx has to be taken, and hence sx(k) = covx(k) is odd.

2. Let k′ > k, k′ odd such that sx(k) and sx(k′) are defined. From the def-
inition of sx, sx(k) ≤ covx(k). Still from the definition, and by Lemma 7,
sx(k′) = covx(k′) is odd. Furthermore by Lemma 7, covx(k′) ≥ covx(k).
Hence sx(k′) = covx(k′) ≥ covx(k) ≥ sx(k). ⊓⊔

Thus, we have assigned to each node x some sx ∈ S, defining a unique run
ρTi,j

of Ti,j on ρA. It remains to show that this run of Ti,j is accepting. Since
Ti,j uses a distance-parity condition, we need to show that the parity condition
of Ti,j evaluates to 0, and that the distance condition evaluates to at most N

where N depends on B but not on the specific run under consideration (nor the
underlying tree). Our first step is to show that ρTi,j

is accepting for the parity
condition.

Lemma 9. The run ρTi,j
is accepting for the parity condition.

Proof. Recall that the priority output by the run of Ti,j when in state (s′, k, s)
is:

pri(s′, k, s) =

{

sx(k) if s(k) is defined,

i if s(k) is undefined.

This means that the priority assumed by ρTi,j
is sx(colA(x)) if defined, and i

otherwise.
Take an infinite branch B and let k and ℓ be the maximal priorities assumed

by ρA and ρB respectively that appear infinitely often on this branch. Both k
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and ℓ are even since ρA and ρB are accepting. Then there is a suffix B′ of
B on which k and ℓ are the maximal priorities of A and B, and furthermore
each position on B′ is k-covered in some ℓ-loop. By definition of covx(k) as a
maximum, covx(k) ≥ ℓ. This implies sx(k) ≥ ℓ is even (since both ℓ and covx(k)
are even). This priority sx(k) is seen infinitely often on B′.

For the sake of contradiction, consider the maximal priority n appearing
infinitely often in the run ρTi,j

over B′, and assume it is odd. Two cases can
happen, either n = i is odd, and in this case n < ℓ, a contradiction. Else
(definition of sx), this priority has to be seen on some node x of B′ such that
colA(x) = k′ is odd, meaning sx(k′) = n. Because k is the maximal priority
on B′ and is even, we get k′ < k. Since sx(k′) = n is defined, k′ dominates
some n-loop (y′, z′). By the choice of B′ we know that x is also k-covered in an
ℓ-loop (y, z). Because (y′, z′) is dominated by k′ and not by k we conclude that
y ⊏ y′ ⊑ x. Thus, n ≤ ℓ (definition of an ℓ-loop). And for parity reasons, we get
n < ℓ. Again a contradiction. ⊓⊔

We now turn to the distance condition. Recall that the distance values are
of the form dk and rk−1 for each k ∈ P . The distance condition is satisfied if
there is an N such that for each k the number of times that dk occurs without
any dk′ or rk′−1 for k′ > k in-between is bounded by N . We start by presenting
Lemmas 10 and 11 that are concerned with the evolution of the value of sx(k)
when x changes.

Lemma 10. Let x ⊏ x′ be such that sx(k) 6= sx′(k) and colA(u) 6= k for all
x ⊑ u ⊑ x′. Then sx(k) > sx′(k).

Proof. If sx(k) is undefined, then x′ is k-covered in an ℓ′-loop (y′, z′) in which x

is not k-covered (or that does not even contain x). Then the position k-covering
x′ must be between x and x′, contradicting the assumption that colA(u) 6= k for
all x ⊑ u ⊑ x′.

Let ℓ = sx(k) and ℓ′ = sx′(k). Then x is covered by k in an ℓ-loop (y, z) and
x′ is covered by k in an ℓ′-loop (y′, z′). Assume that ℓ′ > ℓ. Then y′ cannot be
between y and z since this would contradict the fact that (x, y) is an ℓ-loop. If
y′ is above y, then x would also be k covered in the ℓ′-loop (y′, z′) and hence
sx(k) ≥ ℓ′. If y′ is below y, then it has to be below x because otherwise it would
be between y and z. But then the position covering x′ in the loop (y′, z′) must
be between x and x′, contradicting the assumption that colA(u) 6= k for all
x ⊑ u ⊑ x′. ⊓⊔

Lemma 11. Let (y, z) be a k-dominated ℓ-loop and x ⊏ x′ positions that are
k-covered in (y, z). Then sx(k) ≥ sx′(k).

Proof. Assume that sx(k) < sx′(k). Then x′ must be k-covered in an ℓ′-loop
(y′, z′) with ℓ′ > ℓ such that x is not k-covered in this ℓ′-loop. From ℓ′ > ℓ, we
deduce that y′ cannot be between y and z and hence y′

⊏ y. But then x is also
k-covered in (y′, z′) because it is in (y, z). ⊓⊔
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Let β be a finite piece of branch such that max{dst(x) | x ∈ β} = dk (we
simplify notation using dst(x) = dst(s, k, sx)). By piece of branch we mean that
β is linearly ordered, and x, x′ ∈ β with x ⊏ x′ implies that u ∈ β for all
x ⊏ u ⊏ x′. Let Dk = {x ∈ β | dst(x) = dk} be the positions on β with distance
value dk. We want to find a uniform bound on the size of Dk. We order the
positions in Dk as x1 ⊏ · · · ⊏ xM . Our goal is to prove that |Dk| is bounded by
a value that depends solely on B. We first prove it inside a loop in the following
lemma before getting the more general Lemma 13.

Lemma 12. Let (y, z) be an ℓ-loop with y, z ∈ β. There cannot be more than
2(j − i + 2) many elements from Dk between y and z .

Proof. Let us remark the following property (call it ⋆) that directly results from
the definition of dst : let x be the parent of xm for some m > 1, then sx(k) 6=
sxm

(k) if sxm
(k) is defined.

Let y ⊑ x ⊏ z be such that colA(u) 6= k for all y ⊑ u ⊏ x. Then for
all xm between y and x the value sxm

(k) is defined because colA(x) 6= k but
dst(xm) = dk. Hence, by Lemma 10 and (⋆) we get that the values assigned by
Ti,j to the Dk positions in this initial part of the loop must strictly decrease
(whenever there is a change it must be a decrease by Lemma 10, and between
two Dk positions there must be a change by (⋆)). There can be at most j − i+1
such decreases. Thus, if (y, z) contains more than j − i + 2 positions from Dk,
we can choose x such that colA(x) = k and the part between y and x contains
at most j − i + 2 positions from Dk. All the positions from Dk that are between
x and z are thus k-covered (no priority higher than k can occur in β because
colA(x) > k implies that dst(x) > dk). Hence, we can use Lemma 11 and (⋆)
to infer that the values assigned to these Dk positions by Ti,j must also strictly
decrease. Thus, on the second part of the loop (y, z) there can also be at most
j − i + 2 many positions from Dk. ⊓⊔

Finally we can give a bound in all cases.

Lemma 13. |Dk| ≤ (2(j − i + 2)|QA||QB| + 1)j−i+1.

Proof. Let ℓ = max{colB(x) | x ∈ β} be the maximal B-priority on β. For each
m ∈ {1, . . . ,M − 1} let ℓm = max{colB(x) | xm ⊏ x ⊑ xm+1}. Assume that ℓ

appears more than 2(j− i+2)|QA||QB| often among the ℓm. Then there are two
positions y′, z′ in β that form an ℓ-loop such that this ℓ-loop contains more than
2(j − i + 2) many positions from Dk. This contradicts Lemma 12. Thus, there
are at most 2(j − i + 2)|QA||QB| many of the ℓm that are equal to ℓ.

If ℓ = i, then this implies that |Dk| is bounded by 2(j − i + 2)|QA||QB| + 1.
For ℓ = i+h with h > 0, we can split β in at most 2(j− i+2)|QA||QB|+1 many
pieces on which the maximal B-priority is less than ℓ. By induction hypothesis,
each of these pieces contains at most (2(j − i + 2)|QA||QB|+ 1)h many elements
from Dk. In total we get that |Dk| ≤ (2(j − i + 2)|QA||QB| + 1)j−i+1. ⊓⊔

Putting together Lemmas 9 and 13, we get to the conclusion of the proof.

Lemma 14. val(ρTi,j
) ≤ (2(j − i + 2)|QA||QB| + 1)j−i+1.
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