Logical theory of the additive monoid of subsets of natural integers

Christian Choffrut* Serge Grigorieff*

May 5, 2014

Abstract

We consider the logical theory of the monoid of subsets of \mathbb{N} endowed solely with addition lifted to sets: no other set theoretical predicate or function, no constant (contrarily to previous work by Jeż and Okhotin cited below). We prove that the class of true Σ_{5} formulas is undecidable and that the whole theory is recursively isomorphic to second-order arithmetic. Also, each ultimately periodic set A (viewed as a predicate $X=A$) is Π_{4} definable and their collection is Σ_{6}. Though these undecidability results are not surprising, they involve technical difficulties witnessed by the following facts: 1) no elementary predicate or operation on sets (inclusion, union, intersection, complementation, adjunction of 0) is definable, 2) The class of subsemigroups is not definable though that of submonoids is easily definable. To get our results, we code integers by a Π_{3} definable class of submonoids and arithmetic operations on \mathbb{N} by Δ_{5} operations on this class.

Contents

1 Introduction

2 Preliminaries

2.1 Submonoids
2.2 Maximal submonoids
2.3 Basic predicates
2.3.1 Removing definable constants
2.3.2 Basic constants
2.3.3 Some classes of subsets
2.3.4 Least element in a set
2.3.5 Singleton sets

[^0]3 Using submonoids to approximate and emulate
3.1 Approximating inclusion and membership
3.1.1 Approximating inclusion
3.1.2 Approximating membership
3.2 Definability issues of special submonoids
3.2.1 Definability of each special submonoid
3.2.2 Definability of the class of special submonoids
3.3 Addition and multiplication on special submonoids
3.3.1 Insight into the proof
3.3.2 Addition on special submonoids
3.3.3 Multiplication on special submonoids

4 Complexity of the theory
4.1 Emulating second-order arithmetic
4.2 The theory of addition on sets is undecidable

5 Non definable predicates
5.1 What is so special about the predicate $0 \in X$?
5.2 Other non definable predicates

6 Structural definability in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$
6.1 Families of sets all containing 0
6.2 Families of sets invariant by translation
6.3 Definable sets of integers
6.4 Definability with an extra predicate

7 Remarkable definable subsets and classes of subsets
7.1 Operations on sets with close minimum elements
7.2 Fixed submonoids
7.3 Regular subsets of \mathbb{N}
7.3.1 Fixed regular subsets of \mathbb{N}
7.3.2 Finite and cofinite subsets of \mathbb{N}
7.3.3 The class of regular subsets of \mathbb{N}

8 Conclusion

1 Introduction

The object of this paper could hardly be more elementary since we are concerned with the class of subsets of nonnegative integers equipped with addition as unique operation. Presburger studied in 1929 the first-order logic of integers with addition and showed that this logic admits quantifier elimination on the language enriched with the order relation and all arithmetic congruences. Consequently, the theory is decidable and it was proved in 1974 [3] by Michael J. Fischer and Michael O. Rabin that its time complexity is upper bounded by a double exponential. In the sixties, the class of relations defined by the logic received a simple algebraic characterization by Seymour Ginsburg as the semilinear subsets of integers, [5]. It can thus be reasonably said that this logic is well-understood.

Our purpose is still a first-order theory but the domain is the power set of \mathbb{N} with set addition and equality, formally $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. At the beginning
of our investigation we came up every day with different properties. Some could be considered as the source of inspiration for exercises in an introductory course in logic or as entertaining mathematical recreation. Others played a more important role and are kept in this paper, but all had a low complexity in the arithmetical hierarchy, i.e., they were expressible with very few quantifier alternations. However, we could not build on them to get a consistent and general view of the problem. E.g., we were not even able to answer the question whether or not the property for a subset to be recognizable by a finite automaton is expressible. The final picture to the contrary is that the expressiveness of the theory is extremely powerful but, at least the way we did it, this was obtained by working out predicates of higher complexity.

It should not be surprising that the submonoids of \mathbb{N} play a crucial role since a nonempty subset X is a submonoid if and only if it satisfies the condition $X+X=X$. Submonoids of \mathbb{N} have a deceiving simplicity. Contrarily to submonoids of nonunary free monoids, they are finitely generated. They are related to an intriguing and well-celebrated problem attributed to Frobenius which asks the following. Say a submonoid is numerical if it is generated by a finite subset of integers with greatest common divisor equal to 1 . These submonoids are known to be cofinite in \mathbb{N} but what precisely is the largest integer not in the submonoid? There is a rich literature on the topic and many conferences are dedicated to the classification of these monoids [4, 9, 2, 11, nonetheless the problem seems to be far from solved and we could not find any result that would help us in our investigation.

We now turn to a quick presentation of our work. Section 2 gathers all basic material of algebraic or logical type used in the sequel and is essentially meant for the reader unfamiliar with the domain. Section 3 establishes the main properties of our paper which can be summarized as saying that under certain restrictions which cannot be relaxed, membership of an element to a subset and subset inclusion can be expressed via special (and simple) submonoids. Based on these results, Section 4 shows that the theory is highly undecidable by interpreting the second-order theory of arithmetic in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. Actually, the Σ_{5} fragment is already undecidable, see Theorem 4.2. At this point of the article the only useful subsets all contain the integer 0 . Section 5 investigates to what extent other classes of subsets are expressible. We show in particular that we cannot express the fact that a subset is obtained from another by just adding 0 . The same is true of the simplest set theoretical predicates (inclusion, union, intersection, complementation) and of the class of subsemigroups of \mathbb{N}. Nevertheless, this leaves the problem of trying to extend the classes of subsets expressible in the logic which is done in section 6. In particular, we show that a singleton class $\{A\}$ is definable with set addition if and only if it is definable in second-order arithmetic. An inventory of typical predicates expressible in the theory to
be found in Section 7 serves an illustrative purpose among which the class of regular subsets of \mathbb{N} which is Σ_{7} definable.

It is worthwhile mentioning the works of Jez and Okhotin since they can be interpreted as studying the Diophantine theory of the current structure enriched with all ultimately periodic subsets of \mathbb{N} (as set constants). In [6] they show that there exists an encoding of the subsets of \mathbb{N} under which each recursive subset of \mathbb{N} is the encoding of the unique solution of some system of equations involving the operation of sum of subsets and the regular subsets as unique constants. Furthermore they prove the satisfiability of this theory to be Π_{1}^{0}-complete. Because ultimately periodic constants are Π_{4} definable, their undecidable result is in accordance with ours and leaves the open question of finding the minimum undecidable fragment.

2 Preliminaries

In this section we recall classical and introduce elementary properties of two types: algebraic and logic.

2.1 Submonoids

Given a non negative integer n and two subsets $X, Y \subseteq \mathbb{N}$ we define

$$
\begin{align*}
n X & =\{n x \mid x \in X\} \tag{1}\\
X+Y & =\{x+y \mid x \in X, y \in Y\} \tag{2}
\end{align*}
$$

Observe that $2 X \neq X+X$.
Definition 2.1. A subset $X \subseteq \mathbb{N}$ is a subsemigroup if it is closed under addition, i.e., $X+X \subseteq X$. A subsemigroup is a submonoid if it is nonempty and contains 0 . Equivalently a submonoid is a nonempty subset satisfying the condition $X+X=X$.

The submonoid generated by Y, denoted Y^{*}, is the minimum submonoid containing Y, i.e. containing every finite sum of elements of Y

$$
Y^{*}=\{0\} \cup \bigcup_{n \geq 1} \overbrace{Y+\cdots+Y}^{n \text { times }}
$$

The subset Y is a generating subset of Y^{*}.
We are concerned with the first-order theory of $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. It is not surprising that the submonoids of \mathbb{N} play a central role since a set X containing 0 is a submonoid if and only if $X=X+X$ holds. Most of the following is folklore and does not contain anything new. For the sake of completeness we recall it with some detail. We start with two trivial observations the proofs of which are omitted.
\{s:preliminaries\}
\{ss:basic-on-submono
\{eq:nX\}
\{eq:XplusY\}
\{def:star\}

Proposition 2.2. A set $X \subseteq \mathbb{N}$ such that $0 \in X$ is a monoid if and only if $X \backslash\{0\}$ is a subsemigroup.

Proposition 2.3. If X and Y are two submonoids, so is $X+Y$.
A remarkable property of \mathbb{N} is that its submonoids are finitely generated. This can be stated more precisely.

Proposition 2.4. 1. Every submonoid X of \mathbb{N} is finitely generated and has a minimum generating set $G(X)$ which is equal to

$$
\begin{equation*}
G(X)=S \backslash(S+S) \quad \text { where } S=X \backslash\{0\} \tag{3}
\end{equation*}
$$

The set $G(X)$ is called the minimum generator or the minimum generating set of X and its elements are called the generators of X.
2. A submonoid X is of the form $\{0\}$ or of the form

$$
\begin{equation*}
X=b(F \cup(a+\mathbb{N})) \tag{4}
\end{equation*}
$$

where $b \geq 1$ and $0 \in F \subseteq\{0, \ldots, a-1\}$.
Observe that the numeric submonoids (i.e. those generated by a finite subset of \mathbb{N} with greatest common divisor equal to 1 , cf. [4, 11]) correspond to $b=1$. They are exactly the submonoids which are cofinite.

Proof. 1. Let b be the greatest common divisor of the elements in X. Then $X \subseteq b \mathbb{N}$. Let $a_{1}, \ldots, a_{n} \in X$ such that g.c.d. $\left(a_{1}, \ldots, a_{n}\right)=b$. By Bézout there exist $x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{n-\ell} \in \mathbb{N}$ such that

$$
x_{1} a_{1}+\cdots+x_{\ell} a_{\ell}-y_{1} a_{\ell+1}-\cdots-y_{n-\ell} a_{n}=b
$$

(up to a permutation of a_{1}, \ldots, a_{n}). Let $L=x_{1} a_{1}+\cdots+x_{\ell} a_{\ell}$ and $R=$ $y_{1} a_{\ell+1}+\ldots+y_{n-\ell} a_{n}$ and observe that $L, R \subseteq b \mathbb{N}$. For all integers k, set $k=q a_{1}+r$ where $0 \leq r<a_{1}$ and $q \in \mathbb{N}$. Then

$$
\left(a_{1}-1\right) R+k b=q b a_{1}+\left(a_{1}-1-r\right) R+r L \in a_{1} \mathbb{N}+\cdots+a_{n} \mathbb{N}
$$

which shows that all multiples of b greater than $\left(a_{1}-1\right) R$ are generated by a_{1}, \ldots, a_{n} hence that X is generated by the finite class consisting of all its elements less than or equal to

$$
\begin{equation*}
\max \left\{a_{1}, \ldots, a_{n},\left(a_{1}-1\right) R\right\} \tag{5}
\end{equation*}
$$

It is clear that $G(X)$ as in equation (3) generates X. Assume by contradiction that there exists a generating set H not containing $G(X)$ and let α be an element in $G(X) \backslash H$. We assume without loss of generality that $0 \notin H$.
\{p:sum-of-submonoids
\{p:N-submonoids\}
\{eq:minimum-generatir

Since $X=H^{*}$ we have $\alpha=\beta+\gamma$ where $\beta \in H$ and $\gamma \in H^{*} \backslash\{0\}$. Then $\alpha \in S+S$ which contradicts the definition of $G(X)$.
2. Observe that the integer in (5) is a multiple of b, say $a b$. Then in order to obtain (4) it suffices to consider the subset F satisfying $b F=$ $X \cap b\{0, \ldots, a-1\}$

The specific form of nonzero submonoids leads us to the following general notion.

Definition 2.5. A set $X \subseteq \mathbb{N}$ has ultimate period b if there exists an integer K such that for all $n \geq K$ we have

$$
n \in X \Longleftrightarrow n+b \in X
$$

If this holds for some $b \geq 1, X$ is ultimately periodic.
The following result is classical.
Proposition 2.6. Let $X \subseteq \mathbb{N}$.

1. The following conditions are equivalent:
(i) X is ultimately periodic,
(ii) X is a regular subset of \mathbb{N}.
(iii) $X=A \cup(B+b \mathbb{N})$ where $a, b \in \mathbb{N}, \emptyset \neq A \subseteq[0, a[$ and $B \subseteq[a, a+p[$.

The set X is finite if and only if $B=\emptyset$ in (iii).
2. If X has ultimate period b then all multiples of b are ultimate periods.
3. When X is a submonoid, the integer b of equation (4) is its minimum ultimate period.

Remark 2.7. Equation (3) of Proposition 2.4 gives a simple algorithm to compute $G(X)=\left\{g_{0}, \ldots, g_{n}\right\}$ provided its ultimate period b is known. Suppose the submonoid X has minimum nonzero element m. Let $g_{0}=m$ and let g_{i+1} be the minimum element of X not in $\sum_{j=0}^{j=i} g_{j} \mathbb{N}$. Halt when $\left\{g_{0}, \ldots, g_{n}\right\}$ generate m / b successive elements of the periodic tail of X.

The above representation of submonoids allows us to express the inclusion and intersection of submonoids simply.
\{rk:algo GX $\}$
\{p:pair submonoids\}

Proposition 2.8. Any pair of nonzero submonoids X, Y is of the form

$$
\left\{\begin{array} { l }
{ X = b F \cup (a d + b \mathbb { N }) } \\
{ Y = c G \cup (a d + c \mathbb { N }) }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
b \geq 1, c \geq 1, d=\text { l.c.m. }(b, c) \\
0 \in F \cap G, \quad F, G \text { finite } \\
b F \cup c G \subseteq\{0, \ldots, a d-1\}
\end{array}\right.\right.
$$

The intersection monoid is $X \cap Y=(b F \cap c G) \cup(a d+d \mathbb{N})$.
In particular, $X \subseteq Y$ if and only if $b F \subseteq c G$ and c divides b.
\{de:ultimate period\}

```
{p:regular}
```


2.2 Maximal submonoids

Notation 2.9. We write $X \triangleleft Y$ whenever X is an inclusion-maximal proper submonoid of the submonoid Y.

Proposition 2.10. Let X be a submonoid of \mathbb{N} with $G(X)$ as minimum generating set.

1. The proper maximal submonoids of X are the sets $X \backslash\{g\}$ where $g \in$ $G(X)$.
2. Every generator of X distinct from g is a generator of $X \backslash\{g\}$ (but there may be other ones, cf. Example 2.11). In other words,

$$
\begin{equation*}
G(X) \backslash\{g\} \subseteq G(X \backslash\{g\}) \tag{6}
\end{equation*}
$$

Proof. Let $g \in G(X)$. All elements in $X \backslash\{g\}$ are of the form

$$
\sum_{h \in G} x_{h} h \quad \text { with } \quad x_{g}=0 \quad \text { or } \quad \sum_{h \in G} x_{h} \geq 2
$$

These elements clearly define a proper submonoid of X and this monoid is maximal. Conversely, consider a proper submonoid X^{\prime} of X. There exists some $g \in G(X) \backslash X^{\prime}$ hence $X^{\prime} \subseteq X \backslash\{g\}$ and equality holds in case X^{\prime} is maximal.

Finally, for $g \in G(X)$, the following inclusion is straightforward:

$$
(S \backslash(S+S)) \backslash\{g\} \subseteq(S \backslash\{g\}) \backslash((S \backslash\{g\})+(S \backslash\{g\})) .
$$

Thus, every X-generator distinct from g is an $(X \backslash\{g\})$-generator.
Example 2.11. The subset $X=\{0\} \cup\{3,5,6\} \cup 8+\mathbb{N}$ is the submonoid with minimum generating set $\{3,5\}$ (use Remark 2.7). It thus has two proper maximal submonoids $X_{1} \triangleleft X$ and $X_{2} \triangleleft X$. The minimum generating set of $X_{1}=X \backslash\{3\}$ is $\{5,6,8,9\}$ and the minimum generating set of $X_{2}=X \backslash\{5\}$ is $\{3,8,10\}$. Thus X_{1} has 4 proper maximal submonoids and X_{2} has 3 proper maximal submonoids.

Consequently, every submonoid which is not reduced to 0 has finitely many proper maximal submonoids but some monoids fail to have minimal proper supermonoids. The following result characterizes them.

Proposition 2.12. The submonoids which have no minimal supermonoid are $\{0\}$ and the sets $b \mathbb{N}, b \geq 0$.

Proof. Suppose Y is a minimal nonzero supermonoid of X and let $G(Y)$ be its minimum generating set. Then $X=Y \backslash\{g\}$ for some $g \in G(Y)$ and $G(Y) \backslash\{g\} \subseteq G(X)$. First, using Proposition 2.4, we show that $\{0\}$
and the sets $b \mathbb{N}, b \geq 1$ have no minimal supermonoid. We argue by way of contradiction.

Case $X=\{0\}$. Then $G(X)=\emptyset$ hence $G(Y)=\{g\}$ so that $Y=g \mathbb{N}$. Now, $2 g \mathbb{N}$ is a submonoid strictly between $\{0\}$ and Y, contradicting the minimality of Y over X.

Case $G(X)=\{b\}$, i.e. $X=b \mathbb{N}$. For $b=1$ it is trivial so we assume $b>1$. Then $G(Y)$ has at most two generators. It cannot have only one generator because $G(X)$ would be empty. Thus, $G(Y)=\{b, c\}$ for some $c \notin b \mathbb{N}$. Then by Propostion $2.3, b \mathbb{N}+(b+1) c \mathbb{N}$ is a submonoid strictly between $X=b \mathbb{N}$ and $Y=b \mathbb{N}+c \mathbb{N}$, contradicting the minimality of Y over X.

We now show that every submonoid X distinct from $\{0\}$ and the sets $b \mathbb{N}, b \geq 1$, has a minimal supermonoid. This condition on X, together with Equation (4) supra, insure that $X=b(F \cup(a+\mathbb{N}))$ with $b \geq 1,0 \in F, a \geq 2$ and $a-1 \notin F$. The set $Y=\{0\} \cup b((a-1)+\mathbb{N})$ is clearly a submonoid. By Proposition 2.3, $X+Y$ is a supermonoid of X. A simple computation shows that $(X+Y) \backslash X=\{b(a-1)\}$, i.e., that $X+Y$ is a minimal supermonoid of X.

2.3 Basic predicates

In further sections we try to evaluate the complexity of the predicates which are expressible in the logic. Here we content ourselves with gathering the most elementary predicates.

We recall that a predicate is Σ_{n} (resp. Π_{n}) if it is defined by a formula that begins with some existential (resp. universal) quantifiers and alternates $n-1$ times between series of existential and universal quantifiers. It is Δ_{n} if it is both Σ_{n} and Π_{n}. It is $\Sigma_{n} \wedge \Pi_{n}$ if it is equivalent to a conjunction of a Σ_{n} and a Π_{n} formulas. We assume the reader has some familiarity with computing the logical complexity. As an example of the type of computation consider the $\Sigma_{1} \wedge \Pi_{1}$ formula

$$
\theta(x, y, z, t, u) \equiv \exists t \phi(x, y, t) \wedge \forall u \psi(x, z, u)
$$

Assume that x is the sole common free variable of ϕ and ψ. Then

$$
\begin{aligned}
\theta(x, y, z, t, u) & \Longleftrightarrow \exists t \forall u(\phi(x, y, t) \wedge \psi(x, z, u)) \\
& \Longleftrightarrow \forall u \exists t(\phi(x, y, t) \wedge \psi(x, z, u)) \\
\exists x \theta(x, y, z, t, u) & \Longleftrightarrow \exists x \exists t \forall u(\phi(x, y, t) \wedge \psi(x, z, u))
\end{aligned}
$$

showing both that the predicate associated to θ is Δ_{2} and that $\exists x \theta$ is Σ_{2}. Such a type of computation will not be explicitly carried out in the sequel.

2.3.1 Removing definable constants

Since we deal with definability in a particular structure, the following classical result in logic will be heavily used.
Proposition 2.13. Let \mathcal{M} be any logical structure and a an element of \mathcal{M}. Let $n, p \in \mathbb{N}$. Suppose a is Δ_{n} definable in \mathcal{M}, i.e. $x=a$ is equivalent to a Σ_{n} formula and to a Π_{n} formula. Then, for every $\Sigma_{p}\left(\right.$ resp. $\left.\Pi_{p}\right)$ formula $\phi(x, \vec{y})$ (with free variables x and possibly some other ones), there exists a $\Sigma_{\max (n, p)}$ (resp. $\Pi_{\max (n, p)}$) formula $\psi(\vec{y})$ such that $\phi(a, \vec{y})$ is equivalent to $\psi(\vec{y})$.
Proof. Suppose $x=a$ is equivalent to formulas

$$
\exists \overrightarrow{v_{1}} \forall \overrightarrow{v_{2}} \ldots Q_{n} \overrightarrow{v_{n}} F\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}, x\right) \quad, \quad \forall \overrightarrow{v_{1}} \exists \overrightarrow{v_{2}} \ldots R_{n} \overrightarrow{v_{n}} G\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}, x\right)
$$

where Q_{n} (resp. R_{n}) is \forall if n is even (resp. odd) and is \exists otherwise.
Letting $s=\max (n, p)$, if ϕ is $\exists \overrightarrow{z_{1}} \forall \overrightarrow{z_{2}} \ldots Q_{p} \overrightarrow{z_{p}} A\left(\overrightarrow{z_{1}}, \ldots, \overrightarrow{z_{p}}, x, \vec{y}\right)$ then

$$
\begin{aligned}
\phi(a, \vec{y}) \Longleftrightarrow \exists \overrightarrow{z_{1}} \exists \overrightarrow{v_{1}} \forall \overrightarrow{z_{2}} \forall \overrightarrow{v_{2}} \ldots & Q_{s} \overrightarrow{z_{s}} Q_{s} \overrightarrow{v_{s}} \\
& \left(F\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}, x\right) \wedge A\left(\overrightarrow{z_{1}}, \ldots, \overrightarrow{z_{p}}, x, \vec{y}\right)\right)
\end{aligned}
$$

and if ϕ is $\forall \overrightarrow{z_{1}} \exists \overrightarrow{z_{2}} \ldots R_{p} \overrightarrow{z_{p}} B\left(\overrightarrow{z_{1}}, \ldots, \overrightarrow{z_{p}}, x, \vec{y}\right)$ then

$$
\begin{aligned}
& \phi(a, \vec{y}) \Longleftrightarrow \forall \overrightarrow{z_{1}} \forall \overrightarrow{v_{1}} \exists \overrightarrow{z_{2}} \exists \overrightarrow{v_{2}} \ldots R_{s} \overrightarrow{z_{s}} R_{s} \overrightarrow{v_{s}} \\
&\left(G\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}, x\right) \Rightarrow B\left(\overrightarrow{z_{1}}, \ldots, \overrightarrow{z_{p}}, x, \vec{y}\right)\right)
\end{aligned}
$$

2.3.2 Basic constants

Proposition 2.14. 1. The predicate $X=\emptyset$ is Π_{1}.
2. The predicate $X=\{0\}$ is Π_{1}.
3. The predicate $0 \in X$ is Σ_{1}.
4. The predicate $X=\mathbb{N}$ is $\Sigma_{1} \wedge \Pi_{1}$.

Proof. 1. $X=\emptyset$ if and only if $\forall Y X+Y=X$.
2. $\{0\}$ is the neutral element of $\mathcal{P}(\mathbb{N})$ hence is the unique set satisfying $\forall Y X+Y=Y$.
3. $0 \in X$ if and only if $\exists Y(Y \neq \emptyset \wedge X+Y=Y)$.
4. $X=\mathbb{N}$ if and only if $0 \in X \wedge \forall Y(0 \in Y \Rightarrow X+Y=X)$.

2.3.3 Some classes of subsets

The following two classes of subsets are easily definable.
Proposition 2.15. 1. The class of submonoids of \mathbb{N} is Σ_{1} definable.
2. The class of final segments $\{n+\mathbb{N} \mid n \in \mathbb{N}\}$ is $\Sigma_{1} \wedge \Pi_{1}$ definable.

Proof. 1. X is a submonoid if and only if it is nonempty and $X+X=X$.
2. $X \in\{n+\mathbb{N} \mid n \in \mathbb{N}\}$ if and only if $X \neq \emptyset \wedge \forall Y(0 \in Y \Rightarrow X+Y=X)$.
\{sss:removing definab
\{p:remove constants\} ,

2.3.4 Minimum element in a set

The minimum element of a nonempty set X is denoted by $\min X$.
Proposition 2.16. The following predicates are definable by formulas of the stated complexity:

1. (a) $\min X \leq k$ is $\Pi_{2} \quad$ for $k \geq 1$
(b) $\min X=0$ is Σ_{1}
(c) $\min X=1$ is Π_{2}
(d) $\min X=k$ is $\Sigma_{2} \wedge \Pi_{2} \quad$ for $k \geq 2$
2. (a) $\min X \leq \min Y$ is Σ_{1}
(b) $\min X=\min Y \quad$ is Σ_{1}
(c) $\min X \leq \min Y+k$ is $\Pi_{2} \quad$ for $k \geq 1$
(d) $\min X=\min Y+1$ is Π_{2}
(e) $\min X=\min Y+k$ is $\Sigma_{2} \wedge \Pi_{2} \quad$ for $k \geq 2$
3. (a) $\min X+\min Y \leq \min Z$ is Σ_{1}
(b) $\min X+\min Y=\min Z$ is Σ_{1}

Proof. 1a. min $X \leq k$ if and only if $X \neq \emptyset$ and X is not the sum of $k+1$ sets which do not contain 0 :

$$
X \neq \emptyset \wedge \forall X_{1}, \ldots, X_{k+1}\left(X=X_{1}+\cdots+X_{k+1} \Rightarrow \bigvee_{i=1}^{i=k+1} 0 \in X_{i}\right)
$$

Claim 3 of Proposition 2.14 yields the stated logical complexity.
1b. Again use claim 3 of Proposition 2.14.
1c. Express that $\min X \leq 1$ and $\min X \neq 0$.
1d. Express that $\min X \leq k$ and $\min X \not \leq k-1$.
2a. $\min X \leq \min Y$ if and only if

$$
\exists A, B, R, S \quad(0 \in R \wedge 0 \in S \wedge X=A+R \wedge Y=A+B+S)
$$

Only if. Set $A=\{\min X\}, B=\{\min Y-\min X\}$, and $R=X-\min X$ and $S=Y-\min Y$.
If. $\min X=\min A \leq \min A+\min B=\min Y$.
2b. Express that $\min X \leq \min Y$ and $\min Y \leq \min X$.
2c. $\min X \leq \min Y+k$ if and only if

$$
\begin{aligned}
& \forall A, R, B_{1}, \ldots, B_{k+1} \\
& \left(\left(Y=A+R \wedge 0 \in R \wedge X=A+B_{1}+\cdots+B_{k+1}\right) \Rightarrow \bigvee_{i=1}^{i=k+1} 0 \in B_{i}\right)
\end{aligned}
$$

2d \& 2e. Express that $\min X \leq \min Y+k$ and $\min X \not \leq \min Y+k-1$.
3a. $\min X+\min Y \leq \min Z$ if and only if

$$
\begin{aligned}
\exists A, B, R, S, T \quad(0 \in R & \wedge 0 \in S \\
& \wedge X=A+R \wedge Y=B+S \wedge Z=A+B+T)
\end{aligned}
$$

3b. $\min X+\min Y=\min Z$ if and only if

$$
\begin{aligned}
\exists A, B, R, S, T \quad(0 \in R & \wedge 0 \in S \wedge 0 \in T \\
& \wedge X=A+R \wedge Y=B+S \wedge Z=A+B+T)
\end{aligned}
$$

2.3.5 Singleton sets

Proposition 2.17. 1. The predicate " X is a singleton" is Π_{2}.
2. The predicate $X=\{0\}$ is Π_{1}.
3. The predicate $X=\{k\}$ is $\Sigma_{2} \wedge \Pi_{2}$ for $k \geq 1$.
4. The predicate $Y \neq \emptyset \wedge X=\{\min Y\}$ is Π_{2}

Proof. 1. X is a singleton if and only if
$X \neq \emptyset$ and $\forall Y((Y \neq \emptyset \wedge \min Y=\min X) \Rightarrow \exists Z Y=X+Z)$
Only if. Let $X=\{\ell\}$. Since $\min Y=\ell$ we have $(Y-\ell)+\{\ell\}=Y$ hence we can let $Z=Y-\ell$.
If. Let $Y=\{\min X\}$. Equality $\{\min X\}=X+Z$ implies X and Z are singleton sets and $X=\{\min X\}$ and $Z=\{0\}$.
Complexity: to remove the constant \emptyset, apply Proposition 2.13 .
2. Already done in claim 2 of Proposition 2.14.
3. $X=\{k\}$ if and only if X is a singleton and $\min X=k$. We conclude with claim 3 of Proposition 2.16
4. We express that X is a singleton and $\min X=\min Y$.

3 Using submonoids to approximate and emulate

3.1 Special cases of inclusion and membership

The importance of the submonoids of \mathbb{N} relies on the fact that they provide some approximation of two important relations, namely subset inclusion $Y \subseteq X$ and membership $x \in X$

3.1.1 Special cases of inclusion

We will prove in Theorem 5.7 that the inclusion predicate $Y \subseteq X$ is not expressible in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. However, when X is a submonoid and Y contains 0 the inclusion is expressible.

Proposition 3.1. Let $0 \in Y$ and let X be a submonoid. Then

$$
Y \subseteq X \Longleftrightarrow Y+X=X
$$

Proof. Indeed, from right to left we have $X=Y+X \supseteq Y+\{0\}=Y$. Conversely, since $0 \in Y$ we have $X \subseteq Y+X$ and since $Y \subseteq X$ and X is a submonoid we have $Y+X \subseteq X+X=X$.

The following result helps us to tightly evaluate syntactical complexity.
Proposition 3.2. The predicate \triangleleft is $\Sigma_{1} \wedge \Pi_{1}$. Also, it is Π_{1} on submonoids: there exists a Π_{1} formula $F(X, Y)$ such that

$$
X, Y \text { are submonoids } \Rightarrow(F(X, Y) \Leftrightarrow X \triangleleft Y)
$$

Proof. Indeed, $Y \triangleleft X$ if and only if
X, Y are submonoids $\wedge Y \subseteq X \wedge Y \neq X$

$$
\wedge \forall Z((Z \text { is a submonoid } \wedge Y \subseteq Z \subseteq X) \Rightarrow(Z=Y \vee Z=X))
$$

To conclude we use Propositions 2.15 and 3.1

3.1.2 Special cases of membership

Concerning the approximation of membership we use a special (whence the notation) type of submonoids which is appropriate to evaluate the complexity of the logic.
Definition 3.3. For each integer $n \geq 1$ we let

$$
S_{n}=\{0\} \cup(n+\mathbb{N})
$$

These submonoids are called special. The class of special submonoids is denoted by Special.
E.g., $S_{1}=\mathbb{N}$ and $S_{2}=\{0\} \cup(2+\mathbb{N})=\mathbb{N} \backslash\{1\}$ is the largest proper submonoid of \mathbb{N} since the minimum generating subset of \mathbb{N} is $\{1\}$, cf. Proposition 2.10 Claim 1.

The following shows that the submonoids $S_{n}, n \geq 1$, can be used to test membership of a fixed n in X provided n is strictly greater than $\min (X)$. In particular, if X contains 0 then the property " $n>0$ and belongs to X " for a fixed n is expressible since the restriction n greater than 0 is no longer necessary, see Proposition 2.14 Claim 3. Definability of the subset S_{n} is done in Theorem 3.6.

Lemma 3.4. Let $m \in \mathbb{N}$ and $n \geq 1$. If $X \neq \emptyset$ and $m=\min X$ then $m+n \in X$ if and only if $X+S_{n}=X+S_{n+1}$.

Proof. Observe that

$$
\begin{aligned}
X+S_{n} & =X+(\{0\} \cup(n+\mathbb{N})) \quad=(X+\{0\}) \cup(X+(n+\mathbb{N})) \\
& =X \cup((m+n)+\mathbb{N}) \\
X+S_{n+1} & =X \cup((m+n+1)+\mathbb{N}) .
\end{aligned}
$$

Thus, $X+S_{n+1} \subseteq X+S_{n}$ and $\left(X+S_{n}\right) \backslash\left(X+S_{n+1}\right)=\{m+n\} \backslash X$.

3.2 Definability issues of special submonoids

We first show that each S_{n} can be defined. This is done by carefully investigating their proper maximal submonoids. In a second step we show that the fact of being an S_{n}, i.e., the class $\left\{S_{n} \mid n \geq 1\right\}$ is definable. This also relies on properties of the containment relation between submonoids.

3.2.1 Definability of each special submonoid

Recall the notation $G(X)$ for the minimum generating set of X, Proposition 2.4

Lemma 3.5. Assume $n \geq 1$.

1. $G\left(S_{n}\right)=\{n, \ldots, 2 n-1\}$. Thus (cf. Proposition 2.10), S_{n} is a monoid with exactly n maximal proper submonoids.
2. $G\left(S_{n} \backslash\{n\}\right)=G\left(S_{n+1}\right)=\{n+1, \ldots, 2 n+1\}$. Thus, $S_{n} \backslash\{n\}$ is a monoid with exactly $n+1$ maximal proper submonoids.
3. $G\left(S_{n} \backslash\{n+1\}\right)=\{n\} \cup\{n+2, \ldots, 2 n-1\} \cup\{2 n+1\}$. Thus, $S_{n} \backslash\{n+1\}$ is a monoid with exactly n maximal proper submonoids.
4. If $n+2 \leq i \leq 2 n-1$ then $G\left(S_{n} \backslash\{i\}\right)=\{n, n+1, \ldots, i-1, i+1, \ldots, 2 n-1\}$. Thus, $S_{n} \backslash\{i\}$ is a monoid with exactly $n-1$ maximal proper submonoids.

Proof. The right to left inclusions of the form $G(\ldots) \supseteq \ldots$ of the four claims are straightforward. We check the left to right inclusions.

1. For all integers $k \geq 0$ we have $2 n+k=n+(n+k) \in(X \backslash\{0\})+(X \backslash\{0\})$.
2. We apply Claim 1 with $n+1$ in place of n.
3. For all $k \geq 2$ we have $2 n+k=n+(n+k) \in(X \backslash\{0\})+(X \backslash\{0\})$.
4. For all $0 \leq k \neq i$ we have $2 n+k=n+(n+k) \in(X \backslash\{0\})+(X \backslash\{0\})$ and for $k=i$ we have $2 n+i=(n+1)+(n+i-1)$.

We now convert the previous result formally in our logic.
Theorem 3.6. 1. The predicate $X=S_{1}$ is $\Sigma_{1} \wedge \Pi_{1}$.
2. For each $n \geq 2$, the predicate $X=S_{n}$ is Δ_{2}.

Proof. 1. Since $S_{1}=\mathbb{N}$ this is Proposition 2.14 Claim 4.
2. In view of applying Lemma 3.5, we introduce variables X_{1}, \ldots, X_{n} to represent S_{1}, \ldots, S_{n} and consider some formulas involving these variables.
(1) Let A be the formula expressing $X_{1}=\mathbb{N}$.
(2) Let B be the formula expressing $X_{n} \triangleleft X_{n-1} \triangleleft \cdots \triangleleft X_{2} \triangleleft X_{1}$.
(3) Let C be the formula which expresses that, for $m=1, \ldots, n$, there exist $m+1$ pairwise distinct maximal proper submonoids of X_{m}.
Lemma 3.5 insures that every maximal submonoid of S_{m} has at most m maximal submonoids, except $S_{m} \backslash\{m\}=S_{m+1}$ which has $m+1$ maximal submonoids. Thus, a straightforward induction on $m=1, \ldots, n$ shows that
the formula $A \wedge B \wedge C$ implies that $X_{m}=S_{m}$. As a consequence, both formulas

$$
\begin{array}{ll}
& \exists X_{1} \ldots X_{n}\left(A \wedge B \wedge C \wedge X_{n}=X\right) \\
\text { and } & \forall X_{1} \ldots X_{n}\left(A \wedge B \wedge C \Rightarrow X_{n}=X\right)
\end{array}
$$

express that $X=S_{n}$. By Proposition 3.2, formulas A, B are $\Sigma_{1} \wedge \Pi_{1}$ and formula C is Σ_{2}. This shows that the predicate $X=S_{n}$ is Σ_{2} and is Π_{2}.

3.2.2 Definability of the class of special submonoids

We now look for a formula defining the class of special submonoids S_{n}, $n \geq 1$.
Definition 3.7. If M is a submonoid of \mathbb{N} with m as minimum nonzero element, we denote by ∂M the submonoid $M \backslash\{m\}$ of M.

The following technical result based on Proposition 2.10 is crucial for a definition of the submonoids S_{n}. It is general and relates the generators of a submonoid with its maximal submonoids.

Proposition 3.8. Let M be a submonoid of \mathbb{N}, K a maximal submonoid of M and g a generator of M such that $K=M \backslash\{g\}$. For $k \in \mathbb{N}$, the following conditions are equivalent:
(1) There are exactly k generators of $M \backslash\{g\}$ which are not in $G(M)$, i.e. $G(M \backslash\{g\})$ is equal to $G(M) \backslash\{g\}$ augmented with k elements.
(2) There are exactly k sets in the class \mathcal{Z} of maximal submonoids L of K such that K is the unique submonoid Z satisfying $L \triangleleft Z \triangleleft M$.
(3) There are exactly k sets in the class \mathcal{Y} of maximal submonoids L of K such that K is the unique submonoid Z satisfying $L \subsetneq Z \subsetneq M$.

Proof. We use Proposition 2.4. Any maximal submonoid L of K is of the form $L=K \backslash\{h\}=M \backslash\{g, h\}$ for some $h \in G(K)$. There are obviously only two sets Z such that $M \backslash\{g, h\} \subsetneq Z \subsetneq M$, namely $M \backslash\{g\}=K$ and $M \backslash\{h\}$. Thus, $K \in \mathcal{Y}$ if and only if $M \backslash\{h\}$ is not a submonoid. Observe that the sole possible reason for a failure of $L \triangleleft M \backslash\{h\} \triangleleft M$ is that $M \backslash\{h\}$ is not a submonoid. Thus, $K \in \mathcal{Z}$ if and only if $M \backslash\{h\}$ is not a submonoid. To conclude, observe that $M \backslash\{h\}$ is not a submonoid if and only if $h \notin G(M)$.

Definition 3.9. Let M be a submonoid of \mathbb{N} and $k \in \mathbb{N}$. A generator g of M is k-creative if condition (1) of Proposition 3.8 holds. A maximal submonoid K of M is k-creative if condition (2) of Proposition 3.8 holds, i.e. if $K=M \backslash\{g\}$ where g is a k-creative generator of M.

We shall write $(\geq \ell)$-creative to mean k-creative for some $k \geq \ell$.
Proposition 2.4 yields the following result.

```
{sss:class-Sn}
```

\{def:partial M\}

Lemma 3.10. If M is a submonoid different from $\{0\}$ then $m=\min (M \backslash$ $\{0\})$ is a (≥ 2)-creative generator of M. Thus, ∂M is $a(\geq 2)$-creative maximal submonoid of M.

Proof. Since m cannot be a sum of two nonzero elements of M we see that $m \in G(M)$. Also, $G(M \backslash\{m\}) \supseteq\{2 m, m+p\}$ hence g is (≥ 2)-creative.

Definition 3.11. A submonoid M of \mathbb{N} is good if ∂M is its unique maximal submonoid which is is (≥ 2)-creative, i.e. $\min M$ is the sole (≥ 2)-creative generator of M.

Lemma 3.12. The submonoids $S_{n}, n \geq 2$, are good.
Proof. We use Lemma 3.5. The generators of S_{n} are $n, \ldots, 2 n-1$.
Case of $S_{n} \backslash\{n\}$. The generators of $S_{n} \backslash\{n\}=S_{n+1}$ are $n+1, \ldots, 2 n+1$. Only two of them (namely, $2 n, 2 n+1$) are not in $G\left(S_{n}\right)$. Thus, n is a 2-creative generator of S_{n}.
Case of $S_{n} \backslash\{n+1\}$. The generators of $S_{n} \backslash\{n+1\}$ are the elements in $\{n\} \cup\{n+2, \ldots, 2 n-1\} \cup\{2 n+1\}$. Only one of them (namely, $2 n+1$) is not in $G\left(S_{n}\right)$. Thus, $n+1$ is a 1-creative generator of S_{n}.
Case of $S_{n} \backslash\{i\}$ with $n+2 \leq i \leq 2 n-1$. The generators of $S_{n} \backslash\{i\}$ are the elements in $\{n, \ldots, 2 n-1\} \backslash\{i\}$. All of them are in $G\left(S_{n}\right)$. Thus, i is a 0 -creative generator of S_{n}.
This shows that $n=\min S_{n}$ is the sole (≥ 2)-creative generator of S_{n}.
The submonoids S_{n} are not the sole examples of good submonoids.
Example 3.13. The monoid $M=\{0,6,7,8,9\} \cup(11+\mathbb{N})$ with minimum generating set $\{6,7,8,9,11\}$ is good. Indeed, using Remark 2.7, we get the facts shown in the following table:

g	$M \backslash\{g\}$	$G(M \backslash\{g\})$	
6	$\{0,7,8,9\} \cup(11+\mathbb{N})$	$\{7,8,9,11, \mathbf{1 2}, \mathbf{1 3}\}$	6 is 2 -creative
7	$\{0,6,8,9\} \cup(11+\mathbb{N})$	$\{6,8,9,11, \mathbf{1 3}\}$	7 is 1 -creative
8	$\{0,6,7,9\} \cup(11+\mathbb{N})$	$\{6,7,9,11\}$	8 is 0 -creative
9	$\{0,6,7,8\} \cup(11+\mathbb{N})$	$\{6,7,8,11\}$	9 is 0 -creative
11	$\{0,6,7,8,9\} \cup(12+\mathbb{N})$	$\{6,7,8,9\}$	11 is 0 -creative

Remark 3.14. Not every submonoid is good. For instance, the submonoid $X=\{0,3,5,6\} \cup(8+\mathbb{N})$ in Example 2.11 has two (≥ 2)-creative generators. Indeed, $G(X)=\{3,5\}$ and $G(X \backslash\{3\})=\{5,6,8,9\}$ and $G(X \backslash\{5\})=$ $\{3,8,10\}$ hence 3 is 3 -creative and 5 is 2 -creative.

Lemma 3.15. 1. The following predicate is Σ_{2} :
K is a (≥ 2)-creative maximal submonoid of the submonoid M
2. The class of good submonoids is Π_{2}.

Proof. 1. Using condition (2) of Proposition 3.8 , let $A(M, K)$ be the formula

$$
\begin{aligned}
& K \triangleleft M \wedge \exists L_{1}, L_{2}\left(L_{1} \neq L_{2} \wedge L_{1} \triangleleft K \wedge L_{2} \triangleleft K\right. \\
& \wedge \forall L(L \text { is a submonoid } \Rightarrow \\
& \left.\left.\left(L=K \Leftrightarrow\left(L_{1} \subsetneq L \subsetneq M\right)\right) \wedge\left(L=K \Leftrightarrow L_{2} \subsetneq L \subsetneq M\right)\right)\right)
\end{aligned}
$$

Since the class of submonoids is Σ_{1} and the predicate \triangleleft is $\Sigma_{1} \wedge \Pi_{1}$ and inclusion of submonoids is Σ_{0} (cf. Propositions 3.1, 2.15, 3.2), the above formula $A(M, K)$ is Σ_{2}.
2. By definition M is good if and only if M is a submonoid and there exists a unique K such that $A(M, K)$. Using Lemma 3.10 , we see that it suffices to say that there exists at most one K such that $A(M, K)$, i.e.

$$
M \text { is a submonoid } \wedge \forall K^{\prime} \forall K^{\prime \prime}\left(\left(A\left(M, K^{\prime}\right) \wedge A\left(M, K^{\prime \prime}\right)\right) \Rightarrow K^{\prime}=K^{\prime \prime}\right)
$$

Since A is Σ_{2}, this formula is Π_{2}.
Lemma 3.16. The following predicate is $\Sigma_{2} \wedge \Pi_{2}$

$$
\{(L, M) \mid M \text { is a good submonoid and } L=\partial M\}
$$

Proof. By Lemma 3.10, when M is good, ∂M is the unique K such that $A(M, K)$. Thus, the formula M is good $\wedge A(M, L)$ defines the considered predicate. It is Π_{2} by Lemma 3.15 .

We can now get a useful extension of Lemma 3.4.
Lemma 3.17. Let L, M be submonoids and m be the minimum nonzero element of M. Then $m \in L$ if and only if $L+\partial M=L+M$.

Proof. Trivially, if $m \in L$ then $L+\partial M=L+M$. Suppose now $L+\partial M=$ $L+M$. Since $m \in L+M$ we have $m \in L+\partial M$ hence $m=x+y$ with $x \in L$ and $y \in \partial M$. Since all nonzero elements of ∂M are strictly greater than m we have $y=0$ hence $m=x \in L$.

The following proves the definability of the class of special submonoids S_{n}.

Theorem 3.18. The class Special $=\left\{S_{n} \mid n \geq 1\right\}$ is Π_{3}.

Proof. Consider the following formula $\operatorname{Special}(X)$ which (by Lemma 3.17 and Proposition 3.1) is Π_{4} and expresses that X is a submonoid and, for any good M with m as minimum nonzero element, if $m \in X$ then $M \subseteq X$:
X is a submonoid and $\forall M \forall L$
(M is a good submonoid and $L=\partial M$ and $X+L=X+M$

$$
\Rightarrow X+M=X)
$$

The submonoids S_{n} clearly satisfy this property. Conversely, if X satisfies this property and n is the minimum nonzero element of X then, applying the property with the good submonoid $M=S_{n}$, we get $S_{n} \subseteq X$ hence $S_{n}=X$.

Proposition 3.19. The following predicates are Π_{3} :

$$
\begin{aligned}
\operatorname{Succ}_{1}(X, Y) & \equiv(X, Y) \in\left\{\left(S_{n}, S_{n+1}\right) \mid n \geq 1\right\} \\
\operatorname{Succ}_{k}(X, Y) & \equiv(X, Y) \in\left\{\left(S_{n}, S_{n+k}\right) \mid n \geq 1\right\} \\
\operatorname{Succ}_{*}(X, Y) & \equiv(X, Y) \in\left\{\left(S_{n}, S_{n+k}\right) \mid n, k \geq 1\right\}
\end{aligned}
$$

For $k=1$ we simply write Succ in place of Succ $_{1}$.
Proof. Observe that

$$
\begin{aligned}
\operatorname{Succ}_{1}(X, Y) & \Longleftrightarrow X \text { is special and } Y=\partial X \\
\operatorname{Succ}_{k}\left(X_{0}, Y\right) \Longleftrightarrow & \Longleftrightarrow \operatorname{Special}\left(X_{0}\right) \wedge \forall X_{1} \ldots \forall X_{k} \\
& \left(\left(\bigwedge_{0}^{k-1} X_{i} \text { is good and } X_{i+1}=\partial X_{i}\right) \Rightarrow Y=X_{k}\right) \\
\operatorname{Succ}_{*}(X, Y) \Longleftrightarrow & \Longleftrightarrow X \text { are special and } Y \subseteq X
\end{aligned}
$$

then apply Theorem 3.18, Lemma 3.16 and Proposition 3.1.

3.3 Addition and multiplication on special submonoids

Here we show that the set of submonoids of the form S_{n}, with $n \geq 1$, can be equipped with two definable operations \oplus and \otimes which make it isomorphic to $\langle\mathbb{N} \backslash\{0\} ;+, \times,=\rangle$.

3.3.1 Insight into the proof

This paragraph is meant to give some intuition behind the formal proofs of the next two ones. The idea is to define two operations on the family of special submonoids, namely an addition $\left(S_{n}, S_{p}\right) \rightarrow S_{n+p}$ and a multiplication $\left(S_{n}, S_{p}\right) \rightarrow S_{n \times p}$.

The addition is defined via the finite initial segments by observing that $\{0, \ldots, n+p\}=\{0, \ldots, n\}+\{0, \ldots, p\}$ holds and by using the correspondence $S_{n} \mapsto\{0, \ldots, n\}$ (which is definable, cf. Proposition 3.25).

Based on a number theoretic result which we recall below, multiplication can be expressed by using addition and divisibility. Divisibility is defined via the sets of the form $n \mathbb{N}$ by observing that n divides p if and only if $p \mathbb{N} \subseteq n \mathbb{N}$ and by using the correspondence $S_{n} \mapsto n \mathbb{N}$ (which is definable, cf. Proposition 3.28.
Lemma 3.20. Multiplication on \mathbb{N} is definable from addition and divisibility. More precisely, it is Δ_{1} relative to addition and some predicates which are themselves Π_{1} relative to divisibility.

Proof. Schnirelman's famous result (1931) insures the existence of a constant K such that every integer ≥ 2 is the sum of at most K primes. Olivier Ramaré, [8], showed that $\bar{K} \leq 7$. If $x=\sum_{i=1}^{a} p_{i}$ and $y=\sum_{j=1}^{b} q_{j}$ with $a, b \leq 7$ and the numbers p_{i}, q_{j} are primes then $x \times y=\sum_{i=1}^{a} \sum_{j=1}^{b} p_{i} \times q_{j}$. Now, the product of two primes p, q (distinct or not) is the unique number with p, q as sole proper divisors. Let $s \mid t$ mean that s is a divisor of t, let $P(x)$ mean that x is prime and let $A(x, p, q)$ mean that p, q are prime and $x=p \times q$. Then

$$
\begin{aligned}
P(p) \equiv & p \neq 1 \wedge \forall s(s \mid p \Longleftrightarrow s=1 \vee s=p) \\
A(x, p, q) \equiv & P(p) \wedge P(q) \wedge x \neq p, q \\
& \wedge \forall s(s \mid x \Longleftrightarrow s=1 \vee s=x \vee s=p \vee s=q)
\end{aligned}
$$

are Π_{1} relative to divisibility. Also, the predicate $z=x \times y$ is expressed as the conjunction of the formulas $(x=0 \vee y=0) \Rightarrow z=0, x=1 \Rightarrow z=y$ and $y=1 \Rightarrow z=x$ and any one of the following formulas:

$$
\begin{aligned}
E(x, y, z) & \equiv x, y \geq 2 \Rightarrow \bigvee_{a, b \in\{1, \ldots, 7\}} \exists\left(x_{i}, y_{j}, z_{i, j}\right)_{1 \leq j \leq b}^{1 \leq j \leq b}\left(\varphi \wedge z=\sum_{i, j} z_{i, j}\right) \\
F(x, y, z) & \equiv x, y \geq 2 \Rightarrow \bigvee_{a, b \in\{1, \ldots, 7\}} \forall\left(x_{i}, y_{j}, z_{i, j}\right)_{1 \leq j \leq b}^{1 \leq j \leq b}
\end{aligned}\left(\varphi \Rightarrow z=\sum_{i, j} z_{i, j}\right) \text {) }
$$

where φ is $x=\sum_{i} x_{i} \wedge y=\sum_{j} y_{i} \wedge \bigwedge_{i, j} P\left(x_{i}\right) \wedge P\left(y_{j}\right) \wedge A\left(z_{i, j}, x_{i}, y_{j}\right)$.

3.3.2 Addition on special submonoids

\{des: 五申dition\}
\{p:initial segment $\}$

Proposition 3.22. The class Initial is Π_{4}
Proof. Observe that $X \in$ Initial if and only if $0 \in X$ and $X \neq \mathbb{N}$ and, for all $x \geq 2$, if $x \in X$ then $x-1 \in X$. This is expressible as follows:

$$
\begin{aligned}
& 0 \in X \wedge X \neq \mathbb{N} \wedge \forall Z, T, U \\
& \quad((\operatorname{Succ}(Z, T) \wedge \operatorname{Succ}(T, U) \wedge X+T=X+U) \Rightarrow X+Z=X+T)
\end{aligned}
$$

using the predicate Succ defined in Proposition 3.19 and Lemma 3.4 .

As explained in paragraph 3.3.1 we view an integer as the maximal element of an initial segment which allows us to indirectly express that it belongs to some subset containing 0 .

Proposition 3.23. The following two predicates are Π_{4}
$X \in$ Initial $\wedge 0 \in Y \wedge \max X \in Y, X \in \operatorname{Initial} \wedge 0 \in Y \wedge \max X \notin Y$
Proof. Observe that the maximum element of a finite initial segment X non reduced to $\{0\}$ is the integer n such that $n \in X$ and $n+1 \notin X$. Thus, $\max X \in Y$ is expressed by the formula

$$
\begin{aligned}
& \operatorname{Initial}(X) \wedge 0 \in Y \wedge(X \neq\{0\} \Rightarrow \forall Z \forall T \forall U \\
& \qquad \begin{aligned}
(\operatorname{Succ}(Z, T) \wedge \operatorname{Succ}(T, U) \wedge(X+Z=X+T) \wedge & (X+T \neq X+U) \\
& \Rightarrow Y+Z=Y+T)
\end{aligned}
\end{aligned}
$$

Idem for the second predicate with $\max X \notin Y:$ just replace the last equality $Y+Z=Y+T$ by an inequality. The stated complexity comes from Propositions $3.22,3.19$ and 2.14 .

Proposition 3.24. The following predicate is Π_{4}

$$
X, Y, Z \in \text { Initial } \wedge \max X+\max Y=\max Z
$$

Proof. Observe that equality $\max X+\max Y=\max Z$ is equivalent to $X+$ $Y=Z$ when X, Y, Z are finite initial segments.

Proposition 3.25. The following predicate is Π_{4} :

$$
X \in \text { Initial } \wedge X \neq\{0\} \wedge Y=S_{\max X}
$$

Proof. Observe that $\max X$ is the largest n such that $\max X \in S_{n}$. Thus, the predicate can be expressed as follows:

$$
\begin{aligned}
X \in \text { Initial } \wedge X \neq\{0\} \wedge \max X & \in Y \wedge \operatorname{Special}(Y) \\
& \wedge \forall Z(\operatorname{Succ}(Y, Z) \Rightarrow \max X \notin Z)
\end{aligned}
$$

using Proposition 3.23 and Lemma 3.4 .
Theorem 3.26. The relation $\left\{\left(S_{n}, S_{p}, S_{n+p}\right) \mid n, p \geq 1\right\}$ is Δ_{5}. We write $T \oplus U=V$ if (T, U, V) is in this relation.

Proof. Using Propositions 3.25 and $3.24, T \oplus U=V$ holds if and only if it any one of the following formulas holds

$$
\begin{aligned}
& \varphi \wedge \exists I \exists J \exists K(\psi \wedge I+J=K) \quad, \quad \varphi \wedge \forall I \forall J \forall K(\psi \Rightarrow I+J=K) \\
& \text { where }\left\{\begin{aligned}
& \varphi \equiv \operatorname{Special}(T) \wedge \operatorname{Special}(U) \wedge \operatorname{Special}(V) \\
& \psi \equiv I, J, K \in \operatorname{Initial} \wedge I, J, K \neq\{0\} \\
& \wedge T=S_{\max I} \wedge U=S_{\max } J \wedge V=S_{\max K}
\end{aligned}\right.
\end{aligned}
$$

3.3.3 Multiplication on special submonoids

We introduce two useful predicates.

```
{sss:multiplication}
{p:the-bNs}
```

Proposition 3.27. The predicate Periodic $=\{n \mathbb{N} \mid n \geq 1\}$ is Π_{2}.
Proof. By Proposition 2.12 , the sets $n \mathbb{N}, n \geq 1$, are the nonzero submonoids with no minimal supermonoid:

$$
\operatorname{Periodic}(X) \Longleftrightarrow(X \neq\{0\} \text { is a submonoid and } \forall Y \neg(X \triangleleft Y))
$$

Conclude with Proposition 3.2 .
Proposition 3.28. 1. The predicate $\mathcal{B}=\left\{\left(S_{n}, n \mathbb{N}\right) \mid n \geq 1\right\}$ is Π_{3}.
2. The relation $\left\{\left(S_{n}, S_{p}\right) \mid n \geq 1\right.$ and n divides $\left.p\right\}$ is Δ_{4}.

Proof. 1. Recall that Periodic (X) is the Π_{2} predicate of Proposition 3.27. Observing that $n \mathbb{N}$ is the unique submonoid which is included in S_{n} and not in $\partial\left(S_{n}\right)=S_{n+1}$, the predicate $(X, Y) \in \mathcal{B}$ is expressible as

```
Special (X) ^ Periodic}(Y)\wedgeY\subseteqX\wedge\forallZ(Z=\partial(X)=>Y\not\subseteqZ
```

Theorem 3.18, Proposition 3.1 and Lemma 3.16 give the complexity.
2. Recall that n divides p if and only if $p \mathbb{N} \subseteq n \mathbb{N}$. Thus, the formulas

$$
\left\{\begin{array}{l}
\exists Y \exists Y^{\prime}\left(\mathcal{B}(X, Y) \wedge \mathcal{B}\left(X^{\prime}, Y^{\prime}\right) \wedge Y^{\prime} \subseteq Y\right) \\
\forall Y \forall Y^{\prime}\left(\left(\mathcal{B}(X, Y) \wedge \mathcal{B}\left(X^{\prime}, Y^{\prime}\right)\right) \Rightarrow Y^{\prime} \subseteq Y\right)
\end{array}\right.
$$

(which are Σ_{4} and Π_{4}) define the divisibility predicate on the submonoids S_{n}.

Theorem 3.29. The relation $\left\{\left(S_{n}, S_{p}, S_{n \times p}\right) \mid n, p \geq 1\right\}$ is Δ_{5}. We write $T \otimes U=V$ if (T, U, V) is in this relation.

Proof. Do the following in the formulas $E(x, y, z)$ and $F(x, y, z)$ given in the proof of Lemma 3.20 (and involving the predicates P and A):

- replace the variables $x, y, z, x_{i}, y_{j}, z_{i, j}$ by $X, Y, Z, X_{i}, Y_{j}, Z_{i, j}$,
- replace addition by the Δ_{5} predicate \oplus (cf. Theorem 3.26),
- using claim 2 of Proposition 3.28, replace the predicates P and A which are Π_{1} relative to divisibility, by Π_{4} predicates in $X, Y, Z, X_{i}, Y_{j}, Z_{i, j}$.

We now extend the two elementary operations of addition and multiplication to an arbitrary polynomial.

Corollary 3.30. Let $T\left(x_{1}, \ldots, x_{k}\right)$ be a polynomial with non zero coefficients in \mathbb{N} and variables in $\left\{x_{1}, \ldots, x_{n}\right\}$ with $n \geq 1$. The following relation is Δ_{5} :

$$
\left\{\left(S_{n_{1}}, \ldots, S_{n_{k}}, S_{p}\right) \mid n_{1}, \ldots, n_{k} \geq 1 \text { and } p=T\left(n_{1}, \ldots, n_{k}\right)\right\}
$$

Proof. There are polynomials T_{0}, \ldots, T_{s} such that $T=T_{s}$ and, for $0 \leq i \leq s$, T_{i} is the constant 1 or a variable or $T_{j}+T_{\ell}$ or $T_{j} \times T_{\ell}$ with $j, \ell<i$. Let I be the set of numbers i such that $T_{i}=1$, let J be the set of pairs (i, m) such that $T_{i}=x_{m}, A($ resp. $M)$ be the set of triples (i, j, ℓ) such that $T_{i}=T_{j}+T_{\ell}$ (resp. $T_{i}=T_{j} \times T_{\ell}$). The relation is expressed by either of the following formulas with free variables X_{1}, \ldots, X_{k}, X :

$$
\exists Z_{1} \ldots \exists Z_{s}\left(\varphi \wedge X=Z_{s}\right) \quad, \quad \forall Z_{1} \ldots \forall Z_{s}\left(\varphi \Rightarrow X=Z_{s}\right)
$$

where φ is $\bigwedge_{i \in I} Z_{i}=S_{1} \wedge \bigwedge_{(i, m) \in J} Z_{i}=X_{m}$

$$
\wedge \bigwedge_{(i, j, \ell) \in A} Z_{i}=Z_{j} \oplus Z_{\ell} \wedge \bigwedge_{(i, j, \ell) \in M} Z_{i}=Z_{j} \otimes Z_{\ell}
$$

By Theorems 3.6, 3.26, 3.29, these formulas are respectively Σ_{5} and Π_{5}.

4 Complexity of the theory

4.1 Emulating second-order arithmetic

Here, we show that we can interpret the second-order theory of arithmetic in the theory of $\langle\mathcal{P}(\mathbb{N}) ;=,+\rangle$.

Theorem 4.1. 1. To each second-order arithmetical formula φ one can computably associate a formula $\operatorname{Trad}(\varphi)$ so that if φ has m free first-order variables and n free second-order variables then $\operatorname{Trad}(\varphi)$ has $m+n$ free variables and, for all $a_{1}, \ldots, a_{m} \in \mathbb{N}$ and $A_{1}, \ldots, A_{n} \subseteq \mathbb{N}$,

$$
\begin{aligned}
& \langle\mathbb{N}, \mathcal{P}(\mathbb{N}) ;=, \in, 1,+, \times\rangle \models \varphi\left(a_{1}, \ldots, a_{m}, A_{1}, \ldots, A_{n}\right) \Longleftrightarrow \\
& \langle\mathcal{P}(\mathbb{N}) ;=,+\rangle \models \operatorname{Trad}(\varphi)\left(S_{1+a_{1}}, \ldots, S_{1+a_{m}},\{0\} \cup\left(1+A_{1}\right), \ldots,\{0\} \cup\left(1+A_{1}\right)\right)
\end{aligned}
$$

2. If φ is quantifier-free then $\operatorname{Trad}(\varphi)$ can be taken either Σ_{5} or Π_{5}. If φ is in prenex form with a nonempty quantifier prefix of the form $Q_{1} \xi_{1} \ldots Q_{k} \xi_{k}$ where the variables ξ_{i} are first or second order variables and there are ℓ alternating blocks of quantifiers \exists, \forall in $Q_{1} \ldots Q_{k}$ then $\operatorname{Trad}(\varphi)$ can be taken $\Sigma_{\ell+4}$ if $Q_{1}=\exists$ and $\Pi_{\ell+4}$ if $Q_{1}=\forall$.

Proof. 1. The transformation Trad is defined as the composition $\Omega \circ \Theta$ of two reductions. The first reduction Θ allows to go from the second-order arithmetical structure of \mathbb{N} to that of $\mathbb{N} \backslash\{0\}$. The second reduction Ω allows to go to the structure $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$.

The reduction Θ maps a second-order arithmetical formula φ to another such formula $\Theta(\varphi)$ with the same free variables so that, for all $a_{1}, \ldots, a_{m} \in \mathbb{N}$ and $A_{1}, \ldots, A_{n} \subseteq \mathbb{N}$,

$$
\begin{aligned}
& \langle\mathbb{N}, \mathcal{P}(\mathbb{N}) ;=, \epsilon, 1,+, \times\rangle \models \varphi\left(a_{1}, \ldots, a_{m}, A_{1}, \ldots, A_{n}\right) \Longleftrightarrow \\
& \langle\mathbb{N} \backslash\{0\}, \mathcal{P}(\mathbb{N} \backslash\{0\}) ;=, \epsilon, 1,+, \times\rangle \models \Theta(\varphi)\left(1+a_{1}, \ldots, 1+a_{m}, 1+A_{1}, \ldots, 1+A_{n}\right)
\end{aligned}
$$

Thus, in $\Theta(\varphi)$, integer quantifications are over $\mathbb{N} \backslash\{0\}$ and set quantifications are over $\mathcal{P}(\mathbb{N} \backslash\{0\})$. This is simply done by replacing in φ any equation over integers $Q\left(x_{1}, \ldots, x_{k}\right)=R\left(x_{1}, \ldots, x_{k}\right)$ by the equation obtained from $Q\left(x_{1}-1, \ldots, x_{k}-1\right)=R\left(x_{1}-1, \ldots, x_{k}-1\right)$ by developing and moving any monomial with negative coefficient from one side to the other side of the equation. For instance, $\Theta(x+y=z)$ is obtained by the above process from $(x-1)+(y-1)=z-1$ hence $\Theta(x+y=z)$ is $x+y=z+1$; similarly $\Theta(x \times y=z)$ is obtained from $(x-1) \times(y-1)=z-1$ and is therefore $x \times y+2=x+y+z$. As for subformulas $x \in X$, they are left unchanged.

We now define Ω which maps a second-order arithmetical formula ψ to a formula $\Omega(\psi)$ with the same number of free variables so that, for all $b_{1}, \ldots, b_{m} \in \mathbb{N} \backslash\{0\}$ and $B_{1}, \ldots, B_{n} \subseteq \mathbb{N} \backslash\{0\}$,

$$
\begin{aligned}
&\langle\mathbb{N} \backslash\{0\}, \mathcal{P}(\mathbb{N} \backslash\{0\}) ;=, \in, 1,+, \times\rangle \models \psi\left(b_{1}, \ldots, b_{m}, B_{1}, \ldots, B_{n}\right) \\
& \Longleftrightarrow\langle\mathcal{P}(\mathbb{N}) ;=,+,\rangle \models \Omega(\psi)\left(S_{b_{1}}, \ldots, S_{b_{m}},\{0\} \cup B_{1}, \ldots,\{0\} \cup B_{n}\right)
\end{aligned}
$$

First, we distinguish two disjoint infinite families of set variables $\left(U_{i}\right)_{i \in \mathbb{N}}$ and $\left(V_{i}\right)_{i \in \mathbb{N}}$. The variables U_{i} in $\Omega(\psi)$ are to vary over the class of special submonoids (i.e. the sets S_{n}), they correspond to first-order variables in ψ : if x_{i} takes value $n \in \mathbb{N} \backslash\{0\}$ then U_{i} is to take value $S_{n} \in \mathcal{P}(\mathbb{N})$. The variables V_{i} in $\Omega(\psi)$ correspond to the second-order variables in ψ : if X_{i} takes value $B \in \mathcal{P}(\mathbb{N} \backslash\{0\})$ then V_{i} is to take value $\{0\} \cup B \in \mathcal{P}(\mathbb{N})$.

In view of Claim 2, we inductively define two variants of Ω, namely Ω^{\exists} and Ω^{\forall}.
(1) If ψ is an atomic formula $Q\left(x_{1}, \ldots, x_{k}\right)=R\left(x_{1}, \ldots, x_{k}\right)$ then $\Omega^{\exists}(\psi)$ and $\Omega^{\forall}(\psi)$ are the Σ_{5} and Π_{5} formulas

$$
\begin{aligned}
\Omega^{\exists}(\psi) \equiv & \exists U\left(A\left(U_{1}, \ldots, U_{k}, U\right) \wedge B\left(U_{1}, \ldots, U_{k}, U\right)\right) \\
\Omega^{\forall}(\psi) \equiv & \operatorname{Special}\left(U_{k}\right) \wedge \ldots \wedge \operatorname{Special}\left(U_{k}\right) \wedge \forall U \forall U^{\prime} \\
& \left(\left(A\left(U_{1}, \ldots, U_{k}, U\right) \wedge B\left(U_{1}, \ldots, U_{k}, U^{\prime}\right)\right) \Rightarrow U=U^{\prime}\right)
\end{aligned}
$$

where A, B are Σ_{6} formulas associated to Q and R by Corollary 3.30 (thus, the i-th first-order variable x_{i} is replaced by the variable U_{i}). Note: the subformulas Special $\left(U_{i}\right)$ are omittted in $\Omega^{\exists}(\psi)$ since they are implied by $A\left(U_{1}, \ldots, U_{k}, U\right)$.
(2) If ψ is $x_{i} \in X_{m}$ then, relying on Lemma $3.4, \Omega^{\exists}(\psi)$ and $\Omega^{\forall}(\psi)$ are the Σ_{4} and Π_{4} formulas (cf. Proposition 3.19)

$$
\begin{aligned}
\Omega^{\exists}(\psi) \equiv & 0 \in V_{m} \wedge \exists U\left(\operatorname{Succ}\left(U_{i}, U\right) \wedge V_{m}+U_{i}=V_{m}+U\right) \\
\Omega^{\forall}(\psi) \equiv & \operatorname{Special}\left(U_{i}\right) \wedge 0 \in V_{m} \\
& \wedge \forall U\left(\operatorname{Succ}\left(U_{i}, U\right) \Rightarrow V_{m}+U_{i}=V_{m}+U\right)
\end{aligned}
$$

(3) Ω^{\exists} and Ω^{\forall} commute with conjunction and disjunction.
(4) $\Omega^{\exists}(\neg \varphi)=\neg \Omega^{\forall}(\varphi)$ and $\Omega^{\forall}(\neg \varphi)=\neg \Omega^{\exists}(\varphi)$.
(5) $\Omega^{\exists}\left(\exists x_{i} \psi\right)=\Omega^{\forall}\left(\exists x_{i} \psi\right)=\exists U_{i}\left(\operatorname{Special}\left(U_{i}\right) \wedge \Omega^{\exists}(\psi)\right)$
$\Omega^{\exists}\left(\forall x_{i} \psi\right)=\Omega^{\forall}\left(\forall x_{i} \psi\right)=\forall U_{i}\left(\right.$ Special $\left.\left(U_{i}\right) \Rightarrow \Omega^{\forall}(\psi)\right)$
(6) $\Omega^{\exists}\left(\exists X_{m} \psi\right)=\Omega^{\forall}\left(\exists X_{m} \psi\right)=\exists V_{m}\left(0 \in V_{m} \wedge \Omega^{\exists}(\psi)\right)$
$\Omega^{\exists}\left(\forall X_{m} \psi\right)=\Omega^{\forall}\left(\forall X_{m} \psi\right)=\forall V_{m}\left(0 \in V_{m} \Rightarrow \Omega^{\forall}(\psi)\right)$
Letting Ω be either Ω^{\exists} or Ω^{\forall}, Corollary 3.30 and Lemma 3.4, show that the above clauses insure the wanted property of Ω hence also those of Trad : $\varphi \mapsto \Omega(\Theta(\varphi))$.
2. The assertion about quantifier-free formulas φ is clear from clauses (1) and (2). An easy induction on the complexity of φ shows that if φ has ℓ alternating blocks of quantifiers and the last one is a Q-block then $\operatorname{Trad}\left(\Omega^{Q}(\Theta(\varphi))\right)$ is $\Sigma_{\ell+4}$ if the first block is a \exists-block and is $\Pi_{\ell+4}$ if the first block is a \forall-block.

4.2 The theory of addition on sets is undecidable

The complexity results concerning the theory $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ are direct consequences of the results in the previous sections.

Theorem 4.2. The class of Σ_{5} sentences true in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ is undecidable.

Proof. Use the undecidability of the Diophantine theory of $\langle\mathbb{N} ;=, 1,+, \times\rangle$ (Matiyasevich's celebrated result) and Theorem 4.1.

The theory of addition on sets is, in fact, highly undecidable.
Theorem 4.3. The class \mathcal{T} of sentences true in $\langle\mathcal{P}(\mathbb{N}) ;=,+\rangle$ is recursively isomorphic to the second order theory \mathcal{A} of $\langle\mathbb{N} ;=,+, \times\rangle$, i.e. there exists a computable bijection θ between the set of first-order formulas in the language $\{=,+\}$ and the set of second-order formulas in the language $\{=,+, \times\}$ such that $\mathcal{T}=\theta^{-1}(\mathcal{A})$.

Remark 4.4. The class of sentences with quantifications over \mathbb{N} only which are true in $\langle\mathbb{N} ;=, 1,+, \times\rangle$ (i.e. the first order theory of arithmetic) is Δ_{1}^{1} and not Σ_{n}^{0} for any $n \in \mathbb{N}$. As for the class of sentences with quantifications over \mathbb{N} and over $\mathcal{P}(\mathbb{N})$ which are true in $\langle\mathbb{N}, \mathcal{P}(\mathbb{N}) ;=, \in, 1,+, \times\rangle$ (i.e. the second order theory of arithmetic), it is Δ_{1}^{2} and not Σ_{n}^{1} for any $n \in \mathbb{N}$. Thus, the Turing degree of the second order theory of arithmetic is an order of magnitude higher than that of the first order theory.

Proof of Theorem 4.3. Recall Myhill's isomorphism theorem which is the computable analog of Cantor-Bernstein's theorem in set theory (cf. [10] Theorem VI page 85, or [7 Theorem III.7.13 page 325): if $X, Y \subseteq \mathbb{N}$ and there exists computable injective maps $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ and $\psi: \mathbb{N} \rightarrow \mathbb{N}$ such that $X=\varphi^{-1}(Y)$ and $Y=\psi^{-1}(X)$ then there exists a computable bijective map $\theta: \mathbb{N} \rightarrow \mathbb{N}$ such that $X=\theta^{-1}(Y)$. Thus, to prove the theorem it suffices to get injective computable reductions of \mathcal{T} to \mathcal{A} and of \mathcal{A} to \mathcal{T}.

Recursive reduction of \mathcal{T} to \mathcal{A}. To each sentence about $\langle\mathcal{P}(\mathbb{N}) ;=,+\rangle$ associate the second order arithmetical formula obtained by replacing any subformula $X+Y=Z$ by

$$
\forall r(r \in Z \Longleftrightarrow \exists p, q(n=p+q \wedge p \in X \wedge q \in Y) .
$$

Recursive reduction of \mathcal{A} to \mathcal{T}. Use Theorem 4.1.

5 Non definable predicates

5.1 What is so special about the predicate $0 \in X$?

As implicitly used in numerous instances in the previous sections, the existence of 0 in a subset seems to be the crux for proving remarkable properties such as those in paragraph 3.1. If the logic could allow us to add 0 to an arbitrary subset then we could extend these properties to all subsets. However this is not possible. We show that the following predicate is not definable:

$$
\begin{equation*}
Y=X \cup\{0\} \tag{7}
\end{equation*}
$$

The proof uses two ingredients. The first one, cf. Lemma 5.2 below, insures that equations and inequations between set variables can be split into conditions on elements of \mathbb{N} and conditions on subsets which are either empty or contain 0 . This transformation is lifted to formulas in Lemma 5.3 below. The second ingredient, cf. Lemma 5.4 below, is a general result about formulas consisting of combinations of claims on disjoint sets of variables.
Notation 5.1. Let $\mathcal{P}_{0}(\mathbb{N})$ be the class of sets which contain 0 . Let $\mathcal{P}_{0, \emptyset}(\mathbb{N})=$ $\mathcal{P}_{0}(\mathbb{N}) \cup\{\emptyset\}$ be the class of sets which contain 0 or are empty. Let
(1) \mathcal{E} be the subset $\{\emptyset\}$ of $\mathcal{P}_{0, \emptyset}$
(2) $+_{\mathbb{N}}$ and $=_{\mathbb{N}}$ be addition and equality on \mathbb{N},

We consider the following two sort structure:

$$
\mathcal{M}=\left\langle\mathbb{N}, \mathcal{P}_{0, \emptyset}(\mathbb{N}) ;+_{\mathbb{N}},+_{\mathcal{P}_{0, \theta}}, \mathcal{E},={ }_{\mathbb{N}},=\mathcal{P}_{0, \emptyset}\right\rangle
$$

Lemma 5.2. Let I, J be disjoint subsets such that $I \cup J=\{1, \ldots, n\}$. Then, for all integers $a_{1}, \ldots, a_{n} \in \mathbb{N}$ and sets $A_{1}, \ldots, A_{n} \in \mathcal{P}_{0, \emptyset}$,

$$
\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \vDash \sum_{i \in I} a_{i}+A_{i}=\sum_{j \in J} a_{j}+A_{j} \Longleftrightarrow \mathcal{M} \models \psi\left(a_{1}, \ldots, a_{n}, A_{1}, \ldots, A_{n}\right)
$$

where $\psi\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{n}\right)$ is a Boolean combination of formulas $\mathcal{E}\left(X_{\ell}\right)$, for $\ell=1, \ldots, n$, and equalities $\sum_{i \in I} x_{i}=\sum_{j \in J} x_{j}$ and $\sum_{i \in I} X_{i}=\sum_{j \in J} X_{j}$.
Proof. Consider the class \mathcal{S} of solutions of equation $\sum_{i \in I} X_{i}=\sum_{j \in J} X_{j}$ in $\mathcal{P}(\mathbb{N})$. Then $\mathcal{S}=\mathcal{Z} \cup(\mathcal{S} \backslash \mathcal{Z})$ where
(i) \mathcal{Z} is the class of n-tuples of sets satisfying $X_{i}=X_{j}=\emptyset$ for some $i \in I$ and $j \in J$.
(ii) $\mathcal{S} \backslash \mathcal{Z}$ is the class of n-tuples in \mathcal{S} consisting of nonempty sets.

Since $a+\emptyset=\emptyset$ for all $a \in \mathbb{N}$, we have

$$
\begin{array}{r}
\mathcal{Z}=\left\{\left(a_{1}+A_{1}, \ldots, a_{n}+A_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbb{N}, A_{1}, \ldots, A_{n} \in \mathcal{P}_{0, \emptyset}(\mathbb{N}),\right. \tag{8}\\
\left.A_{i}=A_{j}=\emptyset \text { for some } i \in I \text { and } j \in J\right\} .
\end{array}
$$

Let $\mathcal{S}_{0}=\mathcal{S} \cap\left(\mathcal{P}_{0}(\mathbb{N})\right)^{n}$ and $\mathcal{R}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n} \mid \sum_{i \in I} a_{i}=\sum_{j \in J} a_{j}\right\}$. Observe that if $B_{1}, \ldots, B_{n} \in \mathcal{P}(\mathbb{N})$ are all nonempty and $a_{i}=\min B_{i}, A_{i}=$ $B_{i}-a_{i}$ (i.e. $B_{i}=a_{i}+A_{i}$ with $A_{i} \in \mathcal{P}_{0}(\mathbb{N})$) for $i=1, \ldots, n$, then equality $\sum_{i \in I} B_{i}=\sum_{j \in J} B_{j}$ holds if and only if both equalities $\sum_{i \in I} b_{i}=\sum_{j \in J} b_{j}$ and $\sum_{i \in I} A_{i}=\sum_{j \in J} A_{j}$ hold. Thus,

$$
\begin{equation*}
\mathcal{S} \backslash \mathcal{Z}=\left\{\left(a_{1}+A_{1}, \ldots, a_{n}+A_{n}\right) \mid \vec{a} \in \mathcal{R}, \vec{A} \in \mathcal{S}_{0}\right\} \tag{9}
\end{equation*}
$$

Consider the following formulas (recall $\mathcal{E}(X)$ expresses $X=\emptyset)$:

$$
\begin{aligned}
\psi_{\mathcal{Z}}\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{n}\right) \equiv & \bigvee_{i \in I, j \in J} \mathcal{E}\left(X_{i}\right) \wedge \mathcal{E}\left(X_{j}\right) \\
\psi_{\mathcal{S} \backslash \mathcal{Z}}\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{n}\right) \equiv & \neg \mathcal{E}\left(X_{1}\right) \wedge \ldots \wedge \neg \mathcal{E}\left(X_{n}\right) \\
& \wedge \sum_{i \in I} x_{i}=\sum_{j \in J} x_{j} \wedge \sum_{i \in I} X_{i}=\sum_{j \in J} X_{j}
\end{aligned}
$$

Equalities (8) and (9) show that, for $a_{1}, \ldots, a_{n} \in \mathbb{N}$ and $A_{1}, \ldots, A_{n} \in$ $\mathcal{P}_{0, \emptyset}(\mathbb{N})$,

$$
\begin{aligned}
& \langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \models \sum_{i \in I} a_{i}+A_{i}=\sum_{j \in J} a_{j}+A_{j} \\
& \Longleftrightarrow \mathcal{M} \models \psi_{\mathcal{Z}}\left(a_{1}, \ldots, a_{n}, A_{1}, \ldots, A_{n}\right) \vee \psi_{\mathcal{S} \backslash \mathcal{Z}}\left(a_{1}, \ldots, a_{n}, A_{1}, \ldots, A_{n}\right)
\end{aligned}
$$

We now lift Lemma 5.2 to formulas with quantifications over $\mathcal{P}(\mathbb{N})$.

Lemma 5.3. For any Boolean combination $F(\vec{Y}, \vec{X})$ of equalities between sums of the set variables X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{k}, there exists a Boolean combination $\mathcal{T}(F)$ of
(1) equalities between sums of the set variables $U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{k}$,
(2) equalities between sums of the integer variables
(3) formulas $\mathcal{E}\left(X_{1}\right), \ldots, \mathcal{E}\left(X_{n}\right), \mathcal{E}\left(Y_{1}\right), \ldots, \mathcal{E}\left(Y_{k}\right)$,
such that, for all integers $a_{1}, \ldots, a_{n} \in \mathbb{N}$, all sets A_{1}, \ldots, A_{n} in $\mathcal{P}_{0, \emptyset}(\mathbb{N})$ (i.e. each A_{i} is either empty or contains 0), any sequence Q_{1}, \ldots, Q_{k} of quantifiers \exists or \forall,

$$
\begin{align*}
& \langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \models Q_{1} Y_{1} \cdots Q_{k} Y_{k} F\left(\vec{Y}, a_{1}+A_{1}, \ldots, a_{n}+A_{n}\right) \\
& \quad \Longleftrightarrow \mathcal{M} \models Q_{1} v_{1} Q_{1} V_{1} \cdots Q_{k} v_{k} Q_{k} V_{k} \mathcal{T}(F)(\vec{v}, \vec{a}, \vec{V}, \vec{A}) \tag{10}
\end{align*}
$$

Proof. If E is an equation then Lemma 5.2 gives a formula ψ_{E} which is a convenient $\mathcal{T}(E)$. For a Boolean combination F of equations E_{1}, \ldots, E_{p}, let $T(F)$ be the same Boolean combination with $\psi_{E_{1}}, \ldots, \psi_{E_{p}}$.
Having defined $\mathcal{T}(F)$, we now prove the Lemma by induction on k. The case $k=0$ (i.e. no prefix of quantifications) is clear from Lemma 5.2, Suppose 10 holds for the quantification prefix $Q_{1} \ldots Q_{k}$ and any Boolean combination F. Then, for $a_{1}, \ldots, a_{n} \in \mathbb{N}, A_{1}, \ldots, A_{n}$ in $\mathcal{P}_{0, \emptyset}(\mathbb{N})$ and $Q \in$ $\{\exists, \forall\}$,

$$
\begin{array}{r}
\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \models Q Z Q_{1} Y_{1} \cdots Q_{k} Y_{k} F\left(\vec{Y}, Z, a_{1}+A_{1}, \ldots, a_{n}+A_{n}\right) \\
\Longleftrightarrow Q b \in \mathbb{N} Q B \in \mathcal{P}_{0, \emptyset}(\mathbb{N}) \\
\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \models \overrightarrow{Q Y} F\left(\vec{Y}, b+B, a_{1}+A_{1}, \ldots, a_{n}+A_{n}\right) \\
\Longleftrightarrow Q b \in \mathbb{N} Q B \in \mathcal{P}_{0, \emptyset}(\mathbb{N}) \\
\mathcal{M} \models Q_{1} v_{1} Q_{1} V_{1} \cdots Q_{k} v_{k} Q_{k} V_{k} \mathcal{T}(F)(\vec{v}, b, \vec{a}, \vec{V}, B, \vec{A}) \\
\Longleftrightarrow \mathcal{M} \models Q w Q W Q_{1} v_{1} Q_{1} V_{1} \cdots Q_{k} v_{k} Q_{k} V_{k} \\
\mathcal{T}(F)(\vec{v}, w, \vec{a}, \vec{V}, W, \vec{A})
\end{array}
$$

where line (\dagger) is obtained using the induction hypothesis.
Lemma 5.4 (Splitting lemma). Consider two disjoint sets of variables $z_{1}, \ldots, z_{k}, Z_{1}, \ldots, Z_{k}$ and $t_{1}, \ldots, t_{n}, T_{1}, \ldots, T_{n}$ and let $\Phi(\vec{t}, \vec{T})$ be a formula with $2 n$ free variables of the form

$$
\Phi(\vec{t}, \vec{T}) \equiv Q_{k} z_{k} Q_{k} Z_{k} \cdots Q_{1} z_{1} Q_{1} Z_{1} \mathcal{B}(\vec{z}, \vec{Z}, \vec{t}, \vec{T})
$$

where the Q_{i} 's are quantifiers in $\{\exists, \forall\}$ and where $\mathcal{B}(\vec{z}, \vec{Z}, \vec{t}, \vec{T})$ is a Boolean combination of atomic formulas depending on the variables \vec{z}, \vec{t} only and atomic formulas depending on the variables \vec{Z}, \vec{T} only. Then there
exists $r \geq 1$ and finitely many formulas ϕ_{ℓ}, ψ_{ℓ}, for $\ell=1, \ldots, r$ each having n variables, such that $\Phi(\vec{t}, \vec{T})$ is logically equivalent to

$$
\bigvee_{\ell=1, \ldots, r} \phi_{\ell}(\vec{t}) \wedge \psi_{\ell}(\vec{T})
$$

Proof. We argue by induction on $k \in \mathbb{N}$. The initial case $k=0$ is an instance of the classical disjunctive normal form. We now show the induction step. Suppose the Lemma is true for $k-1$ with $k \geq 1$. Then there exists $r \geq 1$ and $\phi_{k-1, \ell}\left(z_{k}, \vec{t}\right), \psi_{k-1, \ell}\left(Z_{k}, \vec{T}\right)$, for $\ell=1, \ldots, r$, such that

$$
\begin{array}{r}
Q_{k-1} z_{k-1} Q_{k-1} Z_{k-1} \cdots Q_{1} z_{1} Q_{1} Z_{1} \mathcal{B}\left(z_{1}, \ldots, z_{k-1}, z_{k} Z_{1}, \ldots, Z_{k-1}, Z_{k}, \vec{t}, \vec{T}\right) \\
\Longleftrightarrow \bigvee_{\ell=1, \ldots, r} \phi_{k-1, \ell}\left(z_{k}, \vec{t}\right) \wedge \psi_{k-1, \ell}\left(Z_{k}, \vec{T}\right)
\end{array}
$$

Then, in case Q_{k} is \exists,

$$
\begin{aligned}
& \exists z_{k} \exists Z_{k} Q_{k-1} z_{k-1} Q_{k-1} Z_{k-1} \cdots Q_{1} z_{1} Q_{1} Z_{1} \mathcal{B}(\vec{z}, \vec{Z}, \vec{t}, \vec{T}) \\
& \Longleftrightarrow \exists z_{k} \exists Z_{k} \bigvee_{\ell=1, \ldots, r} \phi_{k-1, \ell}\left(z_{k}, \vec{t}\right) \wedge \psi_{k-1, \ell}\left(Z_{k}, \vec{T}\right) \\
& \Longleftrightarrow \bigvee_{\ell=1, \ldots, r}\left(\exists z_{k} \phi_{k-1, \ell}\left(z_{k}, \vec{t}\right)\right) \wedge\left(\exists Z_{k} \psi_{k-1, \ell}\left(Z_{k}, \vec{T}\right)\right) \\
& \Longleftrightarrow \bigvee_{\ell=1, \ldots, r} \phi_{k, \ell}(\vec{t}) \wedge \psi_{k, \ell}(\vec{T})
\end{aligned}
$$

where $\phi_{k, \ell}(\vec{t})$ is $\exists z_{k} \phi_{k-1, \ell}(\vec{t})$ and the same with $\psi_{k, \ell}(\vec{T})$. Finally, the case Q_{k} is \forall is treated similarly by first converting from disjunctive to conjunctive form and, after distributing the \forall quantifiers, converting back from conjunctive to disjunctive form.

We finally come to the wanted nondefinability result.
Theorem 5.5. The predicate $Y=\{0\} \cup X$ is not definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$.
Proof. By way of contradiction, assume that the predicate $Y=\{0\} \cup X$ can be defined in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. There exists a Boolean combination $F(\vec{Z}, X, Y)$ of equalities of sums of the sets Z_{i} and X, Y such that

$$
\begin{equation*}
\langle\mathcal{P}(\mathbb{N}) ;+, \Rightarrow\rangle \vDash Y=\{0\} \cup X \Longleftrightarrow Q_{1} Z_{1} \cdots Q_{k} Z_{k} F(\vec{Z}, X, Y) \tag{11}
\end{equation*}
$$

\{thm:plus-0-not-expre
\{eq:0 cup X\}

By Lemma 5.3, for all $a, b \in \mathbb{N}$ and sets $A, B \in \mathcal{P}_{0, \emptyset}(\mathbb{N})$,

$$
\begin{align*}
& \langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \models A=\mathbb{N} \wedge b+B=\{0\} \cup(a+A) \\
& \quad \Longleftrightarrow \mathcal{M} \models Q_{1} v_{1} Q_{1} V_{1} \cdots Q_{k} v_{k} Q_{k} V_{k} \mathcal{T}(F)(\vec{v}, \vec{V}, a, b, A, B) \tag{12}
\end{align*}
$$

\{eq:TF in proof $\}$
where $\mathcal{T}(F)(\vec{v}, \vec{V}, u, v, U, V)$ is a Boolean combination of formulas with free variables among u, v and formulas with free variables among U, V. By

Lemma 5.4. we get formulas $\varphi_{\ell}(u, v), \psi_{\ell}(U, V), \ell=1, \ldots, L$, such that

$$
\begin{align*}
\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle \models b+B=\{0\} \cup & (a+A) \\
& \Longleftrightarrow \mathcal{M} \tag{13}
\end{align*}
$$

Now, for each $n \geq 1$, we have $0+S_{n}=\{0\} \cup(n+\mathbb{N})$ hence there exists ℓ such that $\varphi_{\ell}(n, 0)$ and $\psi_{\ell}\left(\mathbb{N}, S_{n}\right)$ are true. Since there are finitely many such indices ℓ, there exists two values of n, say $p, q \geq 1, p \neq q$, with the same associated ℓ. In particular, $\varphi_{\ell}(p, 0) \wedge \psi_{\ell}\left(\mathbb{N}, S_{q}\right)$ is true yielding equality $p+\mathbb{N}=0+S_{q}$, contradicting the condition $p \neq q$.

5.2 Other nondefinable predicates

Theorem 5.5implies the nondefinability of many other predicates. We select some of them in this section. In particular, we compare four ways to code integers by sets in definable classes:

$$
\begin{array}{lll}
\text { Final } & =\{n+\mathbb{N} \mid n \geq 1\} & \\
\text { (see Proposition 2.14) } \\
\text { Single } & =\{\{n\} \mid n \geq 1\} & \text { (see Proposition 2.17) } \\
\text { Special } & =\{\{0\} \cup n+\mathbb{N} \mid n \geq 1\} & \text { (see Theorem 3.18) } \\
\text { Periodic } & =\{n \mathbb{N} \mid n \geq 1\} & \text { (see Proposition 3.27) }
\end{array}
$$

Definition 5.6. 1. Given predicates A_{1}, \ldots, A_{k} and B over $\mathcal{P}(\mathbb{N})$, we say that B is definable from A_{1}, \ldots, A_{k} in $\langle\mathcal{P}(\mathbb{N}) ;+, \Rightarrow\rangle$ if B is first-order definable in the structure $\left\langle\mathcal{P}(\mathbb{N}) ;+,=, A_{1}, \ldots, A_{k}\right\rangle$. We then write $\left(A_{1}, \ldots, A_{k}\right) \leadsto B$. 2. A and B are definable from each other in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ if $A \leadsto B$ and $B \leadsto A$.

Theorem 5.7. No predicate in Table 1 is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. Moreover, any two of them are definable from each other in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$.

Open problem 5.8. Is there a non definable predicate which is not definable from each other with the predicates in Table 1?
\{eq:conjunct of varpl
\{ss:nondefinable\}

\{def:leadsto\}

\{thm:inclusion-not-e
\{open:equidefinabilit

$E(X, Y)$	Inclusion	$X \subseteq Y$
$F(X, Y)$	Adjoin 0	$Y=X \cup\{0\}$
$F_{1}(X, Y, Z)$	Union	$X \cup Y=Z$
$F_{2}(X, Y, Z)$	Intersection	$X \cap Y=Z$
$F_{3}(X, Y)$	Complement	$X=\mathbb{N} \backslash Y$
$F_{4}(X, Y)$	Star	$Y=X^{*}$
$G(X, Y)$	Coding	$(X, Y) \in\left\{\left(n+\mathbb{N}, S_{n}\right) \mid n \geq 1\right\}$
$G_{1}(X, Y)$	interchange	$(X, Y) \in\left\{\left(\{n\}, S_{n}\right) \mid n \geq 1\right\}$
$G_{2}(X, Y)$		$(X, Y) \in\{(n+\mathbb{N}, n \mathbb{N}) \mid n \geq 1\}$
$G_{3}(X, Y)$		$(X, Y) \in\{(\{n\}, n \mathbb{N}) \mid n \geq 1\}$
$H(X, Y)$	Membership	$(X, Y) \in\{(n+\mathbb{N}, B) \mid n \in B\}$
$H_{1}(X, Y)$		$(X, Y) \in\{(\{n\}, B) \mid n \in B\}$
$H_{2}(X, Y)$		$(X, Y) \in\{(n \mathbb{N}, B) \mid n \in B\}$
$H_{3}(X, Y)$		$(X, Y) \in\left\{\left(S_{n}, B\right) \mid n \in B\right\}$
$H_{4}(X, Y)$		$(X, Y) \in\{(A, B) \mid \min A \in B\}$
$H_{5}(X, Y)$		$(X, Y) \in\left\{(A, B) \mid\right.$ the $2^{\text {d }}$ elem. of A is in $\left.B\right\}$
$J(X)$	Semigroup	X is a semigroup (i.e. $X+X \subseteq X)$
$J_{1}(X)$		$X \in\{a n+n \mathbb{N} \mid n \geq 1, a \in \mathbb{N}\}$
$J_{2}(X)$		$X \in\{n+n \mathbb{N} \mid n \geq 1\}$

Table 1: Some predicates not definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$
Proof of Theorem 5.7. Together with the predicates Final, Single, Special and Periodic recalled supra, we also freely use some definable predicates such as $\min X \leq \min Y$ (cf. § 2.3.4) and

$$
\begin{aligned}
\theta(X, Y) & =\left\{\left(A, S_{n}\right) \mid(\min A)+n \in A\right\} \\
\sigma(X, Y) & \equiv X \text { is a submonoid containing } Y \wedge 0 \in Y
\end{aligned} \quad \text { (cf. Lemma 3.4) }
$$

(cf. Propositions 2.14, 2.15, 3.1)
We also freely use definable constants and functions (cf. 2.3 .1 : $\emptyset,\{0\}, \mathbb{N}$, $X \mapsto\{\min X\}$ (defined for $X \neq \emptyset$) and

$$
\begin{array}{lllll}
\text { Succ } & =S_{n} \mapsto S_{n+1} & \text { for } n \geq 1 & & \text { (cf. Proposition } 3.19) \\
S & =n \mathbb{N} \mapsto S_{n} & \text { for } n \geq 1 & & \text { (cf. Proposition } 3.28 \\
\pi & =S_{n} \mapsto n \mathbb{N} & & \text { for } n \geq 1 & \\
S_{\max } & =A \mapsto S_{\max A} A & & \text { for initial segments } A \neq\{0\} & \\
\text { (cf. Proposition } & 3.28 \\
\hline
\end{array}
$$

The structure of the proof is as follows:

$$
E \leadsto F \leadsto \begin{cases}F_{4} \leadsto G \leadsto G_{2} \leadsto G_{3} \leadsto G_{1} \leadsto G & \\ F_{3} \leadsto G & G_{1} \leadsto E \leadsto H \leadsto H_{1} \leadsto G_{1} \\ F_{2} \leadsto E & \left(E, G_{3}\right) \leadsto H_{2} \leadsto H_{3} \leadsto G_{1} \\ F_{1} \leadsto E \leadsto J \leadsto J_{1} \leadsto J_{2} \leadsto G_{3} & H_{1} \leadsto H_{4} \leadsto H_{5} \leadsto H_{3}\end{cases}
$$

$E \leadsto F$. Use E to express that Y is the smallest set containing X and $\{0\}$.
$F \leadsto F_{i}$ for $i=1,2,3$. For $i=3$, we have to relate, for any n, condition $n \in X$ with condition $n \in Y$. The case $n=0$ is treated apart whereas the case $n \geq 1$ can be treated with θ relatively to $X \cup\{0\}$ (which is obtained using F). The cases $i=1,2$ are similar. Thus,

$$
\begin{aligned}
F_{3}(X, Y) \Leftrightarrow & (0 \in X \Leftrightarrow 0 \notin Y) \wedge \forall X_{0} \forall Y_{0}\left(F\left(X, X_{0}\right) \wedge F\left(Y, Y_{0}\right)\right. \\
& \Rightarrow \forall T\left(\operatorname{Special}(T) \Rightarrow\left(\theta\left(X_{0}, T\right) \Leftrightarrow \neg \theta\left(Y_{0}, T\right)\right)\right) \\
F_{1}(X, Y, Z) \Leftrightarrow & (0 \in Z \Leftrightarrow(0 \in X \vee 0 \in Y)) \\
& \wedge \forall X_{0} \forall Y_{0} \forall Z_{0}\left(F\left(X, X_{0}\right) \wedge F\left(Y, Y_{0}\right)\right. \\
& \Rightarrow \forall T\left(\operatorname{Special}(T) \Rightarrow\left(\theta\left(Z_{0}, T\right) \Leftrightarrow\left(\theta\left(X_{0}, T\right) \vee \theta\left(Y_{0}, T\right)\right)\right)\right. \\
F_{2}(X, Y, Z) \Leftrightarrow & (0 \in Z \Leftrightarrow(0 \in X \wedge 0 \in Y)) \\
& \wedge \forall X_{0} \forall Y_{0} \forall Z_{0}\left(F\left(X, X_{0}\right) \wedge F\left(Y, Y_{0}\right)\right. \\
& \Rightarrow \forall T\left(\operatorname{Special}(T) \Rightarrow\left(\theta\left(Z_{0}, T\right) \Leftrightarrow\left(\theta\left(X_{0}, T\right) \wedge \theta\left(Y_{0}, T\right)\right)\right)\right.
\end{aligned}
$$

$F \leadsto F_{4}$. Express that X^{*} is the smallest submonoid containing $X \cup\{0\}$.

$$
F_{4}(X, Y) \Leftrightarrow \exists X_{0}\left(F\left(X, X_{0}\right) \wedge \sigma\left(Y, X_{0}\right) \wedge \forall T\left(\sigma\left(T, X_{0}\right) \Leftrightarrow \sigma(T, Y)\right)\right)
$$

$F_{1} \leadsto E, F_{2} \leadsto E . E(X, Y) \Leftrightarrow F_{1}(X, Y, Y) \Leftrightarrow F_{2}(X, Y, X)$.
$F_{3} \leadsto G$. Observe that if X is a final segment then its complement is an initial segment and apply Proposition 3.25 .

$$
\begin{aligned}
G(X, Y) \Leftrightarrow \quad \operatorname{Final}(X) & \wedge(X=1+\mathbb{N} \Rightarrow Y=\mathbb{N}) \\
& \wedge\left(X \neq 1+\mathbb{N} \Rightarrow \exists Z\left(F_{3}(X, Z) \wedge Y=\operatorname{Succ}\left(S_{\max }(Z)\right)\right)\right)
\end{aligned}
$$

$F_{4} \leadsto G . G(X, Y) \Leftrightarrow \operatorname{Final}(X) \wedge F_{4}(X, Y)$.
$G \sim G_{2} . G_{2}(X, Y) \Leftrightarrow$ Periodic $(Y) \wedge G(X, S(Y))$.
$G_{2} \leadsto G_{3} . G_{3}(X, Y) \Leftrightarrow \operatorname{Single}(X) \wedge G_{2}(X+\mathbb{N}, Y)$.
$G_{3} \leadsto G_{1} . G_{1}(X, Y) \Leftrightarrow \operatorname{Periodic}(Y) \wedge \operatorname{Single}(X) \wedge G_{3}(X, S(Y))$
$G_{1} \leadsto G . G(X, Y) \Leftrightarrow \operatorname{Final}(X) \wedge G_{1}(\min (X), Y)$.
$G_{1} \leadsto E$. Observe that $X \subseteq Y$ if and only if three conditions hold: 1) $\min X \geq \min Y 2) \min X \in Y$ and 3) for all $p, q \geq 1$, if $(\min X)+p=$ $(\min Y)+q$ then $(\min X)+p \in X$ implies $(\min Y)+q \in Y$. Now, $\min X \in Y$ if and only if $\min X=\min _{\tilde{\sim}} Y$ or $(\min Y)+a \in Y$ with $a=\min X-\min Y \geq 1$. In the next formula $\widetilde{X}, \widetilde{Y}$ denote $S_{\min X}, S_{\min Y}$ and P denotes $S_{p}(p>0)$ and Q denotes S_{q} (with $q=p+a$ and $p \geq 0$). Also line 3 expresses min $X \in Y$ (in the sole necessary case where $\min X>\min Y$) and line 4 expresses that
if $p, q \geq 1$ and $\min X+p=\min Y+q$ holds then $\min X+p \in X$ implies $\min Y+q \in Y$.

$$
\begin{aligned}
& E(X, Y) \Leftrightarrow \min X \geq \min Y \wedge \exists \tilde{X} \exists \tilde{Y} \forall P \forall Q \\
& \left(G_{1}(\{\min X\}, \widetilde{X}) \wedge G_{1}(\{\min Y\}, \widetilde{Y}) \wedge \operatorname{Special}(P) \wedge \operatorname{Special}(Q)\right) \\
& \Rightarrow(((\min X>\min Y \wedge \widetilde{X}=\widetilde{Y} \oplus Q) \Rightarrow \theta(Y, Q))) \\
& \wedge \widetilde{X} \oplus P=\widetilde{Y} \oplus Q \Rightarrow(\theta(X, P) \Rightarrow \theta(Y, Q)) \\
& E \leadsto H . H(X, Y) \Leftrightarrow \operatorname{Final}(X) \wedge E(\{\min X\}, Y) \text {. } \\
& H \leadsto H_{1} . H_{1}(X, Y) \Leftrightarrow \operatorname{Single}(X) \wedge H(X+\mathbb{N}, Y) . \\
& H_{1} \leadsto G_{1} . G_{1}(X, Y) \Leftrightarrow \operatorname{Special}(Y) \wedge H_{1}(X, Y) \wedge \neg H_{1}(X, \operatorname{Succ}(Y)) \text {. } \\
& \left(E, G_{3}\right) \leadsto H_{2} . H_{2}(X, Y) \Leftrightarrow \operatorname{Periodic}(X) \wedge \exists Z\left(G_{3}(Z, X) \wedge E(Z, Y)\right) \text {. } \\
& H_{2} \leadsto H_{3} . H_{3}(X, Y) \Leftrightarrow \operatorname{Special}(X) \wedge H_{2}(\pi(X), Y) \text {. } \\
& H_{3} \leadsto G_{1} . G_{1}(X, Y) \Leftrightarrow \operatorname{Single}(X) \wedge \operatorname{Special}(Y) \wedge H_{3}(Y, X) \wedge \neg H_{3}(\operatorname{Succ}(Y), X) . \\
& H_{1} \leadsto H_{4} . H_{4}(X, Y) \Leftrightarrow H_{1}(X+\mathbb{N}, Y) \text {. } \\
& H_{4} \leadsto H_{5} . H_{5}(X, Y) \Leftrightarrow X \neq \emptyset \wedge \neg \operatorname{Single}(X) \\
& \wedge \exists Z\left(\operatorname{Single}(Z) \wedge(\min Z>\min X) \wedge H_{4}(Z, X) \wedge H_{4}(Z, Y)\right. \\
& \left.\wedge \forall T\left((\operatorname{Single}(T) \wedge \min X<\min T<\min Z) \Rightarrow \neg H_{4}(T, X)\right)\right) \text {. } \\
& H_{5} \leadsto H_{3} . H_{3}(X, Y) \Leftrightarrow \operatorname{Special}(X) \wedge H_{5}(X, Y) \text {. } \\
& E \leadsto J \text {. Observe that } X \text { is a semigroup if and only if } X+X \subseteq X \text {. } \\
& J \leadsto J_{1} \text {. Let } \mathcal{T}=\{a+n \mathbb{N} \mid a \in \mathbb{N}, n \geq 1\} \text {. Then } \mathcal{T}(X) \text { if and only if } \\
& X=Y+Z \text { for some } Y, Z \text { satisfying Single }(Y) \text { and Periodic }(Z) \text {. Now, } \\
& J_{1}(X) \text { if and only if } \mathcal{T}(X) \text { and } X \text { is a semigroup: implication } \Rightarrow \text { is obvious, } \\
& \text { conversely, if } X=a+n \mathbb{N} \text { is a semigroup then its ultimate period is } n \text {. It } \\
& \text { divides all elements of } X \text { and in particular } a \text { and } J_{1}(X) \text { holds. } \\
& J_{1} \leadsto J_{2} \text {. Observe that } J_{2}(X) \text { if and only if } J_{1}(X) \text { and } \min X \neq 0 \text { and } \\
& \{\min X\} \text { is the unique singleton set such that } X=T+Y \text { for some } T, Y \\
& \text { such that } T \neq\{0\} \text {, } \operatorname{Single}(T) \text { and } J_{1}(Y) \text {. } \\
& J_{2} \leadsto G_{3} . G_{3}(X, Y) \Leftrightarrow \exists Z\left(J_{2}(Z) \wedge X=\{\min Z\} \wedge Z=X+Y\right) \text {. }
\end{aligned}
$$

Out of the six pairs of the four codings of $\mathbb{N} \backslash\{0\}$ by Final, Single, Special and Periodic, Table 5.2 tells that four conversions are incomparable with respect to \leadsto (cf. predicates G and $\left.G_{i}, i=1,2,3\right)$. In contrast the two remaining ones are definable as shown in the next result.
Proposition 5.9. The following predicates are respectively Π_{2} and Π_{3}.

$$
(X, Y) \in\{(n+\mathbb{N},\{n\}) \mid n \geq 1\} \quad, \quad(X, Y) \in\left\{\left(n \mathbb{N}, S_{n}\right) \mid n \geq 1\right\}
$$

Proof. Observe that $(X, Y) \in\{(n+\mathbb{N},\{n\}) \mid n \geq 1\}$ if and only if $0 \notin Y$ and Y is a singleton set and $Y+\mathbb{N}=X$. Expressing the last equality as $\forall Z(Z=$ $\mathbb{N} \Rightarrow Y+Z=X)$ Propositions 2.14 and 2.17 give the Π_{2} complexity.

For the second predicate see Proposition 3.28.

6 Logical definability in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$

6.1 Families of sets all containing 0

A simple application of Theorem 4.1 proves the following result.
Theorem 6.1. Suppose $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a class of sets all containing 0 . Then \mathcal{F} is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ if and only if it is definable in second-order arithmetic.

Proof. Observe that \mathcal{F} is definable in second-order arithmetic if and only if so is $\{A \mid\{0\} \cup(1+A) \in \mathcal{F}\}$ and apply Theorem 4.1.

Corollary 6.2. Suppose $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a class of sets all containing an integer in $\{0, \ldots, n\}$. Then \mathcal{F} is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ if and only if it is definable in second-order arithmetic.

Proof. The \Rightarrow implication is trivial. Conversely, suppose \mathcal{F} is definable in second-order arithmetic. For $i=1, \ldots, n$, let $\mathcal{F}_{i}=\mathcal{F} \cap\{X \mid \min X=i\}$ and $\mathcal{G}_{i}=\left\{X-\min X \mid X \in \mathcal{F}_{i}\right\}$. Then the formulas \mathcal{G}_{i} are also definable in second-order arithmetic. Since all sets in the formulas \mathcal{G}_{i} contain 0 , these formulas \mathcal{G}_{i} are definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ (use Theorem 6.1). Then so are the sets $\left\{i+X \mid X \in \mathcal{G}_{i}\right\}=\mathcal{F}_{i}$ hence also their union which is \mathcal{F}.

6.2 Families of sets invariant by translation

There is yet another application of Theorem 4.1 which extends the class of subsets definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$.

Theorem 6.3. Suppose $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a class of subsets such that for all subsets $A \subseteq \mathbb{N}$ and all integers $a \in \mathbb{N}$ it holds

$$
A \in \mathcal{F} \Leftrightarrow A+a \in \mathcal{F}
$$

Then \mathcal{F} is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ if and only if it is definable in secondorder arithmetic.

Proof. Let \mathcal{F}_{0} be the subclass of subsets in \mathcal{F} containing 0 . For all $B \in \mathcal{F}$ the subset $B-\min B$ is in \mathcal{F}_{0}. Clearly \mathcal{F}_{0} is definable in second-order arithmetic, thus in $\langle\mathcal{P}(\mathbb{N}) ;+, \Rightarrow\rangle$ by a formula $\phi(X)$. Then \mathcal{F} is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ by the formula

$$
\exists X \exists Y(\phi(X) \wedge \operatorname{Sing}(Y) \wedge Z=Y+X)
$$

Corollary 6.4. The following classes of subsets are definable
(i) $\{A \subseteq \mathbb{N} \mid A$ is finite $\}$,
(ii) $\{A \subseteq \mathbb{N} \mid A$ is cofinite $\}$,
(iii) $\{A \subseteq \mathbb{N} \mid A$ is regular by a finite automaton $\}$).

Proof. Assertions (i) and (ii) are clear. Concerning assertion (iii) recall (cf. Proposition 2.6 that a subset $A \subseteq \mathbb{N}$ is recognizable by a finite automaton if and only if it is a finite union of subsets of the form $a+b \mathbb{N}$ with $a, b \in \mathbb{N}$. Thus, this class satisfies the conditions of Theorem 6.3 .

6.3 Definable sets of integers

Theorem 6.5. Let $A \in \mathcal{P}(\mathbb{N})$. The following conditions are equivalent:
(1) As a set of integers, A is definable in second-order arithmetic,
(2) As a class of sets, $\{A\}$ is definable in second-order arithmetic,
(3) $\{A\}$ is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$.

Proof. (1) $\Leftrightarrow(2)$ is straightforward. (3) $\Rightarrow(2)$ is obvious.
$(2) \Rightarrow(3)$. Let $a=\min A$. If $\{A\}$ is definable in second-order arithmetic then so is $\{A-a\}$. By Theorem 6.1 $\{A-a\}$ is definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$ (since $0 \in A-a$) hence so is $\{A\}=\{X+a \mid X \in\{A-a\}\}$.

6.4 Definability with an extra predicate

Theorem 6.6. Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ and A be any predicate in Table 1. Then \mathcal{F} is definable in second-order arithmetic if and only if \mathcal{F} is definable in the structure $\langle\mathcal{P}(\mathbb{N}) ;+, A,=\rangle$.

Proof. Implication \Leftarrow is obvious since all predicates in Table 1 are definable in second-order arithmetic. Conversely, suppose \mathcal{F} is definable in secondorder arithmetic. Then so are the classes

$$
\mathcal{F}^{+}=\mathcal{F} \cap\{A \mid 0 \in A\}, \mathcal{F}^{-}=\mathcal{F} \cap\{A \mid 0 \notin A\}, \mathcal{H}=\left\{\{0\} \cup A \mid A \in \mathcal{F}^{-}\right\}
$$

By Theorem 6.1 \mathcal{F}^{+}and \mathcal{H} are definable in $\langle\mathcal{P}(\mathbb{N}) ;+,=\rangle$. Using the predicate $F(X, Y)$ (which insures $Y=\{0\} \cup X$) one can then define \mathcal{F}^{-}from \mathcal{H}. Finally, $\mathcal{F}=\mathcal{F}^{+} \cup \mathcal{F}^{-}$is definable in $\langle\mathcal{P}(\mathbb{N}) ;+, F,=\rangle$. Since all predicates in Table 1 are definable from each other, $\mathcal{F}=\mathcal{F}^{+} \cup \mathcal{F}^{-}$is also definable in $\langle\mathcal{P}(\mathbb{N}) ;+, A,=\rangle$ for any A in Table 1.

7 Remarkable definable sets and classes

7.1 Operations on sets with close minimum elements

General set-theoretical operations are not definable. Here we show sufficient conditions for some of these operations to be definable.

Proposition 7.1. The predicate $\min X=\min Y \wedge \phi(X, Y, Z)$ is Π_{4} when $\phi(X, Y, Z)$ is either $X \cup Y=Z$ or $X \cap Y=Z$ or $X \subseteq Y$.

Proof. We argue for union. The $\min X=\min Y$ condition is Σ_{1} (cf. Proposition 2.16) and, by Lemma 3.4, $X \cup Y=Z$ if and only if, for all $n \geq 1$,

$$
Z+S_{n}=Z+S_{n+1} \Longleftrightarrow\left(\left(X+S_{n}=X+S_{n+1}\right) \vee\left(Y+S_{n}=Y+S_{n+1}\right)\right)
$$

Theorem 3.18 and Proposition 3.19 yield the stated logical complexity.
Proposition 7.2. 1. The predicate $|\min X-\min Y| \leq k \wedge \phi(X, Y, Z)$ is Π_{4} when the integer $k \geq 1$ is fixed and $\phi(X, Y, Z)$ is either $X \cup Y=Z$ or $X=\mathbb{N} \backslash Y$ or $X \subseteq Y$.
2. The following predicate is Π_{4} when the integer $k \in \mathbb{N}$ is fixed:

$$
\max (|\min (X)-\min (Y)|,|\min X-\min Z|) \leq k \wedge X \cap Y=Z
$$

Proof. Point 1. Since the condition $|\min X-\min Y| \leq k$ is a disjunction of conditions $\min X=\min Y+\ell$ with $|\ell| \leq k$, it suffices to prove that the predicate $\min X=\min Y+k \wedge \phi(X, Y, Z)$ is Π_{5}. We argue for union. The $\min (X)=\min (Y)+k$ condition is $\Sigma_{2} \wedge \Pi_{2}$ (cf. Proposition 2.16). Assuming $\min (X)=\min (Y)+k$, Lemma 3.4 insures that $X \cup Y=Z$ if and only if

1) $\min Z=\min Y$,
2) $Z+S_{n}=Z+S_{n+1} \Longleftrightarrow Y+S_{n}=Y+S_{n+1}$ for all $n \in\{1, \ldots, k-1\}$,
3) $Z+S_{k}=Z+S_{k+1}$,
4) for all $n \geq 1$,

$$
Z+S_{k+n}=Z+S_{k+n+1}
$$

$$
\Longleftrightarrow\left(X+S_{n}=Z+S_{n+1} \vee Y+S_{k+n}=Y+S_{k+n+1}\right)
$$

Theorems 3.6, 3.18 and Proposition 3.19 yield the stated logical complexity. The proof of Point 2 is similar.

Remark 7.3. Observe that the intersection is not definable even when the minima of the two subsets differ by 1 : we have to also bound the difference between $\min (X \cap Y)$ and $\min X$. For instance, $\left\{\left(n+\mathbb{N}, S_{n}\right) \mid n \geq 2\right\}$ which is $G(X, Y)$ of Theorem 5.7 is expressed as follows

$$
\exists Z(\text { Special }(Z) \wedge Y=\partial Z \wedge(X=Y \cap(Z+1)))
$$

Indeed, if $Z=S_{n}$ then Y and $1+Z$ have close minimum elements since $\min (1+Z)=1$ and $\min Y=0$ but $\min (Y \cap(1+Z))=n+1$ is not close to $\min Y$.

7.2 Fixed submonoids

Lemma 7.4. Let X be a subset with minimum element equal to m and let $a_{1}<\ldots<a_{n}$ be elements of \mathbb{N}. The following predicates $\phi_{m}(X)$ and $\psi_{m}(X)$ are Δ_{2} :

$$
\begin{aligned}
& \phi_{m}(X): \min X=m \text { and } a_{1}, \ldots, a_{n}>m \text { belong to } X \\
& \psi_{m}(X): \min X=m \text { and } a_{1}, \ldots, a_{n}>m \text { do not belong to } X
\end{aligned}
$$

Proof. Using Lemma 3.4, we have:

$$
\begin{aligned}
& \phi_{m}(X) \equiv \min X=m \wedge \bigwedge_{1 \leq i \leq n} X+S_{a_{i}-m}=X+S_{a_{i}-m+1} \\
& \psi_{m}(X) \equiv \min X=m \wedge \bigwedge_{1 \leq i \leq n} X+S_{a_{i}-m} \neq X+S_{a_{i}-m+1}
\end{aligned}
$$

The Δ_{2} complexity is a corollary of Theorem 3.6 and Proposition 2.13.
Theorem 7.5. Let M be a submonoid. The predicate $X=M$ is definable and its complexity is as follows

1. Case $M=\{0\}$. The predicate $X=M$ is Π_{1}.
2. Case $M=\mathbb{N}$. The predicate $X=M$ is $\Sigma_{1} \wedge \Pi_{1}$.
3. Case $M=\{0\} \cup(a+\mathbb{N})=S_{a}$ with $a \geq 2$. The predicate $X=M$ is Δ_{2}.
4. For the general case the predicate $X=M$ is Π_{2}.

Proof. Claims 1, 2: cf. Proposition 2.14. Claim 3: cf. Theorem 3.6.
4. Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be the minimum generating set for M which we assume ordered. Then M is the smallest submonoid containing G. If $\phi_{0}(X)$ is the formula of Lemma 7.4 with g_{1}, \ldots, g_{n} in place of a_{1}, \ldots, a_{n} the predicate $X=M$ is equivalent to

$$
\phi_{0}(X) \wedge X+X=X \wedge \forall Y\left(\left(\phi_{0}(Y) \wedge(Y+Y=Y)\right) \Rightarrow X+Y=Y\right)
$$

expressing that X is the smallest submonoid containing G. The Π_{2} complexity comes from Lemma 7.4 .

7.3 Regular subsets of \mathbb{N}

Here we give a precise estimate of the structural complexity of some subsets and classes of subsets of particular importance, the definability of which is a consequence of Theorem 6.3 .
\{thm:each submonoid $\}$
\square

7.3.1 Fixed regular subsets of \mathbb{N}

Theorem 7.6. If $R \subseteq \mathbb{N}$ is regular then the predicate $X=R$ is Π_{4}. In case $R=\emptyset$ or $R=\{0\}$ it is Π_{1}. In case R is a singleton different from 0 it is $\Sigma_{2} \wedge \Pi_{2}$.

Proof. By Proposition 2.6, $R=A \cup(B+p \mathbb{N})$ with $a, p \in \mathbb{N}$ and $\emptyset \neq A \subseteq[0, a[$ and $B \subseteq[a, a+p[$. First, we introduce some formulas. We set $m=\min A$ and $b=a+p$ with the convention $b=a$ when B is empty. The following Σ_{4} and Π_{4} predicates tell which elements in the initial interval [0, b [belong to the set and which do not.

$$
\begin{aligned}
F^{\exists}(X) & \equiv m=\min X \wedge \exists Y_{1}, \ldots, Y_{b-m-1} Z_{1}, \ldots, Z_{b-m-1} \\
& \bigwedge_{i \in A \cup B \backslash\{m\}}\left(Y_{i}=S_{i-m} \wedge \operatorname{Succ}\left(Y_{i}, Z_{i}\right) \wedge X+Y_{i}=X+Z_{i}\right) \\
& \wedge \bigwedge_{i \in\{m+1, \ldots, b-1\} \backslash(A \cup B)}\left(Y_{i}=S_{i-m} \wedge \operatorname{Succ}\left(Y_{i}, Z_{i}\right) \wedge X+Y_{i} \neq X+Z_{i}\right) \\
F^{\forall}(X) & \equiv m=\min X \wedge \forall Y, Z \\
& \bigwedge_{i \in A \cup B \backslash\{m\}}\left(\left(Y=S_{i-m} \wedge \operatorname{Succ}(Y, Z)\right) \Rightarrow X+Y=X+Z\right) \\
& \wedge \bigwedge_{i \in\{m+1, \ldots, b-1\} \backslash(A \cup B)}\left(\left(Y=S_{i-m} \wedge \operatorname{Succ}(Y, Z)\right) \Rightarrow X+Y \neq X+Z\right)
\end{aligned}
$$

If the subset is finite, it suffices to express the fact that it does not contain any integer greater than or equal to a. This leads to the Π_{4} formula

$$
\begin{aligned}
G(X) & \equiv \forall Y, Z, T\left(\left(T=S_{a-m} \wedge \operatorname{Succ}(Y, Z) \wedge Y+T=T\right)\right. \\
& \Rightarrow X+Y \neq X+Z)
\end{aligned}
$$

Thus when R is finite it is expressed by the predicate $F^{\forall}(X) \wedge G(X)$.
When the subset is infinite, i.e., when $B \neq \emptyset$ we must say that the subset of R consisting of all elements greater than or equal to a is periodic of period p, equivalently for all $x \geq a$ we have $x \in R \Leftrightarrow x+p \in R$ which is expressed by the Π_{4} formula

$$
\begin{aligned}
H(X) & \equiv \forall T, Y, Y^{\prime}, Z, Z^{\prime}: \\
& T=S_{a-m} \wedge \operatorname{Succ}\left(Y, Y^{\prime}\right) \wedge \operatorname{Succ}\left(Z, Z^{\prime}\right) \wedge \operatorname{Succ}_{p}(Y, Z) \\
& \Rightarrow\left(X+Y=X+Y^{\prime} \Leftrightarrow X+Z=X+Z^{\prime}\right)
\end{aligned}
$$

Thus, when R is infinite it is expressed by the formula $F^{\forall}(X) \wedge H(X)$.
The remaining cases are a consequence of Proposition 2.17.

7.3.2 Finite and cofinite subsets of \mathbb{N}

Proposition 7.7. The predicates " X is finite" and X is cofinite" are Σ_{5}.
Proof. For the finiteness predicate, use Lemma 3.4 to express that $\min (X)+$ $n \notin X$ for all large enough n :
$\exists Y(\operatorname{Special}(Y) \wedge \forall Z, W((Y+Z=Y \wedge \operatorname{Succ}(Z, W)) \Rightarrow X+Z \neq X+W)$
For the cofiniteness predicate, express that $\min (X)+n \in X$ for all large enough n. The logical complexity is given by Theorem 3.18 and Proposition 3.19 .

7.3.3 The class of regular subsets of \mathbb{N}

Theorem 7.8. The predicate " X is regular" is Σ_{6}.
Proof. Observe that X is regular if and only if X is finite or is periodic with period $p \geq 1$. This latter assertion means that there exist two integers n and p such that all for all integers $x \geq n$ we have $x \in X$ if and only if $x+p \in X$. Using Theorems 3.26 and Proposition 7.7 this can be expressed as follows (where the variables N, P encode the above integers n and p and where the pairs of variables $\left(V, V^{\prime}\right)$ and $\left(W, W^{\prime}\right)$ respectively encode x and $\left.x+p\right)$:

$$
\begin{aligned}
& X \text { is finite } \vee \exists N \exists P \forall V, W, V^{\prime}, W^{\prime} \\
& \begin{aligned}
(\operatorname{Special}(N) & \wedge \operatorname{Special}(P) \wedge N+V=N \wedge V \oplus P=W \\
& \wedge \operatorname{Succ}\left(V, V^{\prime}\right) \wedge \operatorname{Succ}\left(W, W^{\prime}\right) \\
& \left.\Longrightarrow\left(X+V=X+V^{\prime} \Leftrightarrow X+W=X+W^{\prime}\right)\right)
\end{aligned}
\end{aligned}
$$

8 Conclusion

This paper proves the undecidability of the Σ_{5} theory of additive monoid of subsets of \mathbb{N}. The decision problem for positive Σ_{1} formulas (i.e. no negation) is trivially decidable since every equation is satisfied when all the variables are equal to the emptyset. What about the full Σ_{1} theory? Care: we are looking at formulas in which the atomic subformulas are equations between variables (such as $X Y X Z=Z X X$): no parameter is allowed. When regular sets are allowed as parameters then the decision problem for systems of equations becomes undecidable, cf. [6].

The question "What is definable and what is not definable in the additive monoid of subsets of \mathbb{N} ?" is largely answered in this paper. Some definability results involve logically complex definitions: up to Σ_{6} for the class of regular sets. Are such complex definitions optimal?

The additive monoid of subsets of \mathbb{N} can be seen as the monoid of tally languages. What about the monoid of languages over an alphabet with at least two letters. This question is investigated in a forthcoming paper [1].

References

[1] Christian Choffrut and Serge Grigorieff. Logical theory of the monoid of languages over a non tally alphabet. In preparation.
[2] Leslie Cohn. On the submonoids of the additive group of integers, http://www.macs.citadel.edu/cohnl/submonoids2002.pdf.
[3] Michael Jo Fischer and Michael O. Rabin. Super-exponential complexity of presburger arithmetic. In SIAM-AMS Symposium in Applied Mathematics, volume 7, page 2741, 1974.
[4] Pedro A. García-Sánchez. Numerical semigroups minicourse, http://www.ugr.es/ pedro/minicurso-porto.pdf.
[5] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages. Pacific J. Math., 16:285-296, 1966.
[6] Artur Jez and Alexander Okhotin. Equations over sets of natural numbers with addition only. In $S T A C S$, pages 577-588, 2009.
[7] Piergiorgio Odifreddi. Classical recursion theory. Vol. 1: The theory of functions and sets of natural integers. North Holland, 1989.
[8] Olivier Ramaré. On Shnirelman's constant. 22(4):645-706, 1995.
[9] Jorge Luis Ramírez-Alfonsín. The Diophantine Frobenius Problem. Oxford University Press, 2005.
[10] Hartley Rogers. Theory of recursive functions and effective computability. McGraw Hill, 1967.
[11] José Carlos Rosales and Pedro A. García-Sánchez. Numerical semigroups. Number 20 in Developments in Mathematics. Springer, 2009.

[^0]: *LIAFA, CNRS and Université Paris 7 Denis Diderot, France.

