
Fundamenta Informaticae XXI (2001) 1001–1019 1001

DOI 10.3233/FI-2012-0000

IOS Press

Logical theory of the monoid of languages over a non tally alphabet

Christian Choffrut
LIAFA
CNRS and Université Paris 7 Denis Diderot
France

Serge Grigorieff
LIAFA
CNRS and Université Paris 7 Denis Diderot
France

Abstract. We consider the first-order theory of the monoid P(A∗) of languages over a finite or
infinite alphabet A (with at least two letters) endowed solely with concatenation lifted to sets: no set
theoretical predicate or function, no constant. Coding a word u by the submonoid u∗ it generates, we
prove that the operation (u∗, v∗) 7→ (uv)∗ and the predicate {(u∗, X) | ε ∈ X, u ∈ X} are defin-
able in 〈P(A∗); ·,=〉. This allows to interpret the second-order theory of 〈A∗; ·,=〉 in the first-order
theory of 〈P(A∗); ·,=〉 and prove the undecidability of the Π8 fragment of this last theory. These
results involve technical difficulties witnessed by the logical complexity of the obtained definitions:
the above mentioned predicates are respectively ∆5 and ∆7.

1. Introduction

The topic of this paper falls under the following general issue: given a monoid M , investigate the first-
order theory of the power setP(M) endowed solely with concatenation lifted to sets (cf. the definition on
top of §2), i.e. with no set theoretical predicate or function and no constant. In particular the complement
of a subset is not immediately expressible. In a previous work we studied the case of the additive monoid
of subsets of the set N of nonnegative integers (where X+Y = {x+y | x ∈ X, y ∈ Y } for X,Y ⊆ N)
and were able to give a fairly complete account of what can and cannot be defined and on the complexity
of the logic which is highly undecidable, cf. [1].

Here we consider the case of the free monoids generated by an arbitrary alphabet A which is not
necessarily finite but which otherwise contains at least two letters. It can thus be viewed as an extension
of the above publication since N is the free one generator monoid. When passing from one to several
generators the situation changes drastically. We were ready to fail in extending all definability results of
N to A∗, thus the difficulties we met did not surprise us. A moment’s reflection on the probably most
elementary properties expressible in the logic such as XX = X (submonoids), XM = X (right ideals
in the sense of semigroups, cf. [3]) and XY = Y X (commutation) show that we can expect different
solutions to these questions. Indeed, in N all submonoids are finitely generated and recognizable by

1002 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

a finite automaton, all ideals are principal and commutation is trivial. None of this holds when there
are at least two generators. The most spectacular example is the commutation where maximal subsets
commuting with a given finite subset can be not recursively enumerable, [5]. One could draw the false
conclusion that the more involved the structure the easier it is to prove the undecidability of the logic.
Or that its undecidability would follow from the undecidability for N by simple transfer. However, we
were not able to express the embedding of N in A∗ which means that we had to use a different reduction.
Conversely, we cannot recover the undecidability of the theory of N from that of A∗ since the latter
makes heavy use of the noncommutativity of A∗.

Without being too technical, let us illustrate the type of difficulties we encountered. Since all ideals
of N are principal it is not difficult to show that the predicate “X is a singleton of N” is expressible in a
low level fragment of the logic. However we did not find a way the express this predicate in A∗; all we
could do is encode a word u by the language u∗. Then the product of two words u and v is encoded by
(uv)∗. It just happens that the predicate of all triples (u∗, v∗, (uv)∗) is definable thanks to combinatorial
properties of noncommuting words. This allowed us to interpret the second-order theory of 〈A∗; ·,=〉,
which is equivalent to the second-order theory of arithmetics, in the first-order theory of 〈P(A∗); ·,=〉
and to prove the undecidability of the Π8 fragment of this last theory. This method uses the fact that the
alphabet contains more than one letter and is therefore of no use for N.

Taking another road was tempting. Since the subsets u∗ are definable, why not identify N with any
cyclic submonoid u∗ and reduce the decidability problem forA∗ to that of N? But this is elusive since the
undecidability of 〈P(N); +,=〉 as we proved it in [1] requires the possibility to speak of arbitrary subsets
of N, i.e., considering the identification of N with a cyclic submonoid of A∗, it requires the possibility to
speak of subsets not necessarily containing the empty word. But we were only able to define the relation
“X is subset of u∗” for those X which contain the empty word.

Now we give a quick review of the manuscript.
In Section 2 we group all the elementary material of logical or algebraic nature.
Section 3 is a combinatorial investigation of the maximal submonoids of a submonoid. It later pro-

vides a tool for discriminating submonoids by comparing their minimal generating sets with that of their
maximal submonoids.

In Section 4 we introduce the important family of cyclic submonoids which can be identified with
their (unique) generator and allow to deal with words. A useful tool is the family of their submonoids
which we call “special” and which are the exact equivalent of those introduced in [1].

In Section 5 we show how we can express the cyclic submonoid generated by the product of two
words in terms of the two cyclic submonoids generated by these words. This leads us to interpret the
second-order theory of arithmetics in the first-order theory 〈P(A∗); ·,=〉 proving that it sits high in the
hierarchy of undecidable sets.

2. Preliminaries

The free monoid generated by the alphabet A is denoted A∗. Its elements are words. We denote by |u|
the length of the word u and by ε the empty word of length 0 which is the unit of the free monoid. The
operation is the concatenation (u, v)→ uv.

Given an integer n and subsets X,Y ⊆ A∗, we define XY = {xy | x ∈ X, y ∈ Y } and X0 = {ε}
and Xn = {x1 · · ·xn | x1, . . . , xn ∈ X} = X · · ·X (n copies of X) for n ≥ 1.

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1003

Most of the following is folklore or requires simple proofs. For the sake of completeness we recall
these results with some detail.

2.1. Definability of elementary constants and predicates

Proposition 2.1. (Simple definability results in 〈P(A∗); ·,=〉)
1. The predicate X = ∅ is Π1.
2. The predicate X = {ε} is Π1. We denote it Triv(X).
3. The predicate ε ∈ X is Σ1. We denote it Inε(X).
4. The predicate X = A∗ is Σ1 ∧Π1.

Proof:
1. Observe that X = ∅ if and only if ∀Y XY = X . Indeed, ∅Y = ∅ and if X 6= ∅ then X∅ = ∅ 6= X .
2. The set {ε} is the neutral element ofP(A∗) hence is the unique setX satisfying ∀Y XY = Y X = Y .
3. Observe that ε ∈ X if and only if ∃Y (Y 6= ∅ ∧XY = Y). Indeed, if ε ∈ X then XA∗ ⊇ {ε}A∗ =
A∗ hence XA∗ = A∗. If ε /∈ X and Y 6= ∅ then min{|u| | u ∈ XY } > min{|u| | u ∈ Y } hence
XY 6= Y .
4. Observe that X = A∗ if and only if ε ∈ X ∧ ∀Y (ε ∈ Y ⇒ XY = X). Indeed, if ε ∈ Y
then A∗Y ⊇ A∗ hence A∗Y = A∗. If ε ∈ X and X 6= A∗ and u /∈ X then u ∈ X{ε, u} hence
X{ε, u} 6= X . ut

2.2. Submonoids

Definition 2.2. A subset X ⊆ A∗ is a subsemigroup if it is closed under product, i.e., XX ⊆ X . A
subsemigroup is a submonoid if it contains the empty word ε. Equivalently, a submonoid is a subset
which contains the empty word and satisfies the condition XX = X .

The submonoid generated byX , denotedX∗, is the minimal submonoid containingX , i.e. the union
of all Xn, n ∈ N, namely X∗ =

⋃
n≥0X

n. The subset X is a generating subset of X∗.

A trivial consequence of the definition (and of Lemma 2.4 below).

Proposition 2.3. The following relations are Σ1 definable in the structure 〈P(A∗); ·,=〉 :

Mon = {M |M is a submonoid} , Sub = {(M,N) |M,N are submonoids and M ⊆ N}

The importance of the submonoids of A∗ relies on the fact that they provide special cases of two
important relations, namely subset inclusion X ⊆M and membership x ∈ X .

2.3. A restricted case of inclusion

When M is a submonoid and X contains ε, inclusion X ⊆M is expressible in 〈P(A∗); ·,=〉.

Lemma 2.4. Let M be a submonoid and ε ∈ X ⊆ A∗. Then

X ⊆M ⇐⇒ MX = M ⇐⇒ XM = M

1004 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

Proof:
If M = MX then M = MX ⊇ {ε}X = X . Conversely, if X ⊆M then MX ⊆MM = M (since M
is a submonoid) and M ⊆MX (since ε ∈ X) hence MX = M . Idem with equality M = XM . ut

We can push the previous result to products of two monoids.

Lemma 2.5. Let M,N be two submonoids and ε ∈ X ⊆ A∗. Then

X ⊆MN ⇐⇒ MXN = MN

Proof:
If MN = MXN then MN = MXN ⊇ {ε}X{ε} = X . Conversely, if X ⊆ MN then MXN ⊆
M(MN)N = MN and MN ⊆MXN (since ε ∈ X) hence MXN = MN . ut

2.4. A restricted case of membership

We give a special case of membership. It is technical but this tour de force should be judged by the
fact that we can express the predicate u ∈ X under some hypotheses, without being able to express the
inclusion of two subsets or the fact that a subset is a singleton.

Lemma 2.6. Suppose ε ∈ X and ε ∈ Z and u is a shortest non empty word of Z. The equivalences

u ∈ X ⇐⇒ (Z \ {u})X = ZX ⇐⇒ X (Z \ {u}) = XZ (∗)

hold in the following two cases:

{
(i) If X is a submonoid of A∗

(ii) If uX ⊆ Z
.

Proof:
Let T = Z \ {u}. Observe that ZX = TX ∪ uX . We first prove the right to left implication of (∗).

Suppose ZX = TX . Then uX ⊆ ZX = TX . Since ε ∈ X we have u ∈ uX hence u ∈ TX hence
u = vx with v ∈ Z and v 6= u and x ∈ X . Since u has shortest length in Z \ {ε}, we have v = ε or
|v| ≥ |u|. But v 6= u hence |v| ≥ |u| contradicts equality u = vx. Thus, v = ε and x = u hence u ∈ X .

We now prove the left to right implication of (∗).
1. AssumeX is a submonoid ofA∗. If u ∈ X then uX ⊆ XX = X = {ε}X ⊆ TX hence ZX = TX .
2. Assume now uX ⊆ Z. We first prove that ZX = TX ∪ {u}. Since ε ∈ X and uX ⊆ Z we have
u ∈ Z ⊆ ZX hence ZX ⊇ TX ∪ {u}. Also,

since uX ⊆ Z since ε ∈ X hence T ⊆ TX

ZX =
︷ ︸︸ ︷
TX ∪ uX ⊆ TX ∪ Z =

︷ ︸︸ ︷
TX ∪ T ∪ {u} = TX ∪ {u} .

In particular, if u ∈ X then u ∈ TX hence ZX = TX . ut

Example 2.7. Lemma 2.6 does not cover all cases of membership. For instance, letM = {ε, ab, aba, ab2},
X = {ε, ab, (ab)2, bab}. Then ab ∈ X but M and X are not submonoids and abX 6⊆M .

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1005

3. Generators and maximal submonoids

3.1. Generators

A remarkable well-known property is the existence of a smallest set of generators (Care: we use a notion
of generator specific to language theory).

Definition 3.1. For X ⊆ A∗ we let G(X) = Y \ Y 2Y ∗ where Y = X \ {ε}.

When X is a submonoid we have Y Y ∗ = (X \ {ε})X = X \ {ε}. Thus Y 2Y ∗ = (Y Y ∗)(Y Y ∗) holds
and the above condition becomes G(X) = Y \ Y Y .

Proposition 3.2. If M is a submonoid of A∗ then G(M) generates M and is included in every subset
generating M . G(M) is called the minimum generator or the minimum generating set of M and its
elements are called the generators of M .

Proof:
Inclusion G(M)∗ ⊆ M is trivial. An easy induction on the length of words shows that every element
x ∈ M is in G(M)∗. This is trivial if x = ε or x ∈ G(M). Suppose ε 6= x /∈ G(M). Then x = yz
with y, z ∈M \ {ε}. In particular, |y|, |z| < |x| and, by induction hypothesis, y, z ∈ G(M)∗. A fortiori
x = yz ∈ G(M)∗.

Assume by contradiction that there exists a generating set H not containing G(M) and let α be an
element in G(M) \H . We can assume that ε 6∈ H . Since M = H∗ we have α = βγ where β ∈ H and
γ ∈ H∗ \ {ε}. Then α ∈ (M \ {ε})(M \ {ε}) which contradicts the definition of G(M). ut

Proposition 3.3. Let M 6= {ε} be a submonoid of A∗. Any shortest non empty word u ∈M belongs to
G(M).

Proof:
Having shortest length, u cannot be a product of two nonempty words in M . ut

3.2. Maximal submonoids

Definition 3.4. We write X /Y whenever X is a maximal (with respect to inclusion) proper submonoid
of the submonoid Y .

Proposition 3.5. The predicate / is Σ1 ∧ Π1 as the trace of a Π1 predicate on the Σ1 family of sub-
monoids.

Proof:
Indeed, using Propositions 2.3 and 2.4, Y / X if and only if

Sub(Y,X) ∧ Y 6= X ∧ ∀Z
(
(Mon(Z) ∧ Y ⊆ Z ⊆ X) ⇒ (Z = Y ∨ Z = X)

)
2

1006 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

3.3. Maximal submonoids and generators

Proposition 3.6. Let M be a submonoid of A∗ with G(M) as minimal generating set.
1. The proper maximal submonoids of M are the sets M \ {g} where g ∈ G(M).
2. Every generator of M distinct from g is a generator of M \ {g} (but there may be other ones). I.e.

G(M) \ {g} ⊆ G(M \ {g}) (1)

Proof:
1. If g ∈ G(M) then g /∈ (M \{g})(M \{g}). Thus, M \{g} is a subsemigroup. Since it contains ε it is
a submonoid. Finally, since M \ {g} is obtained by removing only one element to M , it is necessarily a
maximal submonoid. Conversely, if N is a maximal submonoid of M then there is at least one generator
g of M outside N . Thus, N is a submonoid of M \ {g}. Since N is maximal we have N = M \ {g}.
2. Finally, letting S = M \ {ε}, for g ∈ G(M), we have(

S \ (SS)
)
\ {g} ⊆ (S \ {g}) \

(
(S \ {g})(S \ {g})

)
since (S \ SS) ∩ (S \ {g})(S \ {g}) = ∅ and (S \ SS) \ {g} ⊆ S \ {g}. Thus, every M -generator
distinct from g is an (M \ {g})-generator. ut

Let us state a practical way to compute G(M \ {g}) by ruling out those elements of M \ {g} which
cannot possibly be generators.

Lemma 3.7. Let M be a submonoid of A∗ and g ∈ G(M). Then

G(M \ {g}) = G
(
G(M) \ {g} ∪ gG(M) ∪G(M)g ∪ gG(M)g

)
(2)

Proof:
Indeed, let B = {a} ∪ C, a 6∈ C be an alphabet in one-to-one correspondence with the generators of M
where a corresponds to g and let ϕ : B∗ →M be the canonical morphism. Then ϕ(B∗\{a}) = M \{g}.
Every word different from the letter a is a product of words in the (finite) set C ∪ aB ∪Ba∪ aBa. This
is checked by a direct computation on the words of length less than or equal to 3. All words u of length
greater than or equal to 4 can be written as u = vw with |v| = 2 and |w| ≥ 2 and we argue by induction.
Furthermore, it is clear that no word in C ∪ aB ∪Ba∪ aBa is a product of two or more elements of this
set. This shows that

G(B∗ \ {a}) = C ∪ aB ∪Ba ∪ aBa (3)

Equality 2 is a consequence of the inclusion ϕ(G(B∗ \ {a})) ⊇ G(ϕ(B∗ \ {a})) = G(M \ {g})). ut

Remark 3.8. The expression 3 is an illustration, as stated in Proposition 3.6 claim 2, that every generator
different from g is a generator of M \ {g} but there exist other generators. In this particular case, if B∗

has k generators then B∗ \ {a} has 4k − 2 generators.

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1007

3.4. Creative rank

The following notions are crucial for the definition to be given in §5.2 of the function (u∗, v∗) 7→ (uv)∗,
i.e. a version of concatenation inA∗ which makes sense in the monoid P(A∗) (where there are no words,
only sets of words).

Proposition 3.9. Let M be a submonoid of A∗ and g a generator of M and h a generator of M \ {g}.
The following conditions are equivalent.

(i) h is not a generator of M ,
(ii) ∀Z (M \ {g} = Z ⇐⇒ M \ {g, h} / Z /M).

Proof:
There are only two sets Z such that M \ {g, h} (Z (M , namely M \ {g} and M \ {h}. Also,
M \ {g, h} /M \ {h} /M holds if and only if M \ {h} is a submonoid of M . Thus, condition (ii) holds
if and only if M \ {h} is not a submonoid of M if and only (i) holds. ut

Proposition 3.9 can be restated in terms of maximal submonoids.

Proposition 3.10. Let M,N,P be submonoids of A∗ such that P /N /M . There exists a unique set Q
such that Q 6= N and P (Q (M . Moreover, the following conditions are equivalent.

(i) Q is not a submonoid,
(ii) ∀Z (N = Z ⇐⇒ P / Z /M).

Definition 3.11. Let M be a submonoid of A∗ and k ∈ N \ {0}.
1. A generator g ofM is k-creative (or has creative rank k) if there exists exactly k generators ofM \{g}
which are not generators of M , i.e. G(M \ {g}) \G(M) has exactly k elements.
2. A maximal submonoid N of M is k-creative if N = M \ {g} with g a k-creative generator.
3. We shall write (≥ `)-creative to mean k-creative for some k ≥ `.

E.g., as observed in Remark 3.8, every maximal proper submonoid of the free monoid generated by k
elements is 3k − 1-creative. As a corollary of Proposition 3.9, we get

Proposition 3.12. The following relations are respectively Σ2 and Σ2 ∧Π2 :

Creative
≥
k = {(N,M) | N /M and N is (≥ k)-creative}

Creative=
k = {(N,M) | N /M and N is k-creative}

Proof:
Let Creative≥k (N,M) be the formula

N /M ∧ ∃L1, . . . , Lk

∧
i

Li / N ∧
∧
i 6=j

Li 6= Lj

∧
∧
i

∀L (Mon(L)⇒ (L = N ⇔ Li (L (M))

)

1008 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

Since the family of submonoids is Σ1 and the predicate / is Σ1 ∧ Π1 (cf. Propositions 2.3, 3.5), and
inclusion is quantifier free for submonoids, the above formula is Σ2.

Let Creative=
k be Creative

≥
k ∧ ¬Creative

≥
k+1. Proposition 3.10 insures that Creative≥k and

Creative=
k define the two considered relations. ut

Proposition 3.3 can be improved.

Proposition 3.13. Let M 6= {ε} be a submonoid of A∗. Every shortest word u ∈M \{ε} is a generator
of M which is (≥ 2)-creative.

Proof:
Let v be a minimal proper extension of u lying in M . We show that u2 and vu witness that u is (≥ 2)-
creative. It is clear that u2 and vu are distinct and are not generators of M . Thus, it suffices to prove that
u2 and vu are generators of M \ {u}. Since u has minimal length in M \ {ε}, equation u2 = xy has
no solution x, y in M \ {u, ε}. Thus, u2 is a generator of M \ {u}. To show that vu is a generator of
M \ {u}, assume by way of contradiction that vu = xy with x, y ∈ M \ {u, ε}. Since u has shortest
length in M \ {ε} and u is a prefix of v, equation vu = xy implies that u is a prefix of x hence a proper
prefix of x (recall x 6= u). Since v is a minimal proper extension of u and vu = xy, v is a prefix of x.
Now, u is a suffix of y since u has shortest length and vu = xy. Length consideration then insures that
v = x and u = y. This last equality contradicts the hypothesis y 6= u. ut

4. Commutative submonoids

The purpose of this section is to develop the machinery which will allow us in §5.2 to define concatena-
tion as the ternary relation {(u∗, v∗, w∗) | w = uv} on submonoids.

We shall use the following well-known fact about submonoids of 〈N; +〉.

Lemma 4.1. 1. Every submonoid of 〈N; +〉 different from {0} is of the form F ∪ (a+pN) where p ≥ 1
and F ⊆ {0, . . . , a− 1}.
2. The submonoids of 〈N; +〉 with no minimal supermonoid are the submonoids pN with p ≥ 1.

4.1. Commutative versus monogeneous submonoids

We recall the following elementary combinatorial result on words, cf. §1.3 of [6]

Proposition 4.2. Given two words u, v ∈ A∗, the following conditions are equivalent
1. uv = vu,
2. there exists w ∈ A∗ such that u, v ∈ w∗,
3. u∗ ∩ v∗ 6= {ε}.

This leads to the following very classical definition.

Definition 4.3. A word v is primitive if it is not of the formwn with n ≥ 2 (in particular, it is nonempty).
The root of a nonempty word u is the unique primitive word v such that u = vn for some n ≥ 1. By
convention the empty word is its own root.

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1009

Proposition 4.4. 1. Every commutative submonoid of A∗ is a submonoid of some unique v∗ where v is
primitive.
2. A submonoid M of A∗ is in Prim = {v∗ | v ∈ A∗, v is primitive} if and only if it is maximal in Com.
3. A submonoid M of A∗ is in Word = {u∗ | u ∈ A∗} if and only if it is in Com and has no minimal
supermonoid in Com.

Proof:
1. Trivial ifM = {ε}. Otherwise, assumeM ⊆ u∗∩v∗ where u and v are primitive. Then by Proposition
4.2 u = zn and v = zm which implies n = m = 1 and thus u = v.
2. If u is primitive and u∗ ⊆ v∗ then u = vn for some integer n which implies n = 1 and v = u.
Conversely if u is nonempty and nonprimitive then u = vn with n ≥ 2, thus v ∈ v∗ \ u∗ and u∗ ⊆ v∗.
3. Interpret Lemma 4.1 in v∗ where v is primitive such that M ⊆ v∗. ut

Proposition 4.5. The family Com of commutative submonoids is Σ1 ∧Π1.

Proof:
A submonoid P ofA∗ is in Com if and only if all its words commute if and only if all its subsets containing
ε commute. Using Propositions 2.1, 2.3 and Lemma 2.4, this can be expressed by the following Σ1 ∧Π1

formula Com(P) : Mon(P) ∧ ∀U, V (PU = PV = P ⇒ UV = V U). ut

Proposition 4.6. 1. The family Word = {u∗ | u ∈ A∗} is Π2.
2. The family Prim = {v∗ | v ∈ A∗, v is primitive} is Π2.

Proof:
Claims 2 and 3 of Proposition 4.4 show that

U ∈ Prim ≡ U ∈ Com ∧ ∀P ((P ∈ Com ∧ PU = P)⇒ P = U)

U ∈ Word ≡ U ∈ Com ∧ ∀P (P ∈ Com⇒ ¬(U / P))

and Propositions 4.5, 3.5 and Lemma 2.4 give the complexity. ut

4.2. Letters

Proposition 4.7. The familyR = {(A∗ \ {a}, X) | a ∈ A, ε, a ∈ X} is ∆2.

Proof:
The generators of A∗ are the letters a ∈ A hence the maximal submonoids of A∗ are the A∗ \ {a} for
a ∈ A (cf. Proposition 3.6). To defineR, express that ε ∈ X and (using Lemma 2.4)X 6⊆ L = A∗\{a} :

(L,X) ∈ R ≡ ε ∈ X ∧ ∃Z (Z = A∗ ∧ L / Z ∧ L 6= LX)

≡ ε ∈ X ∧ ∀Z (Z = A∗ ⇒ (L / Z ∧ L 6= LX))

Propositions 2.1, 3.5 give the stated complexity. ut

Proposition 4.8. The family Letter = {a∗ | a ∈ A} is Σ2.

1010 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

Proof:
A set X is in this family if and only if it is the smallest submonoid containing some given letter a :

Mon(X) ∧ ∃Z,L (F (Z,L) ∧ L 6= LX ∧ ∀Y ((Mon(Y) ∧ L 6= LY)⇒ Y = Y X))

where F (Z,L) is the Σ1 ∧Π1 formula Z = A∗ ∧ L / Z. ut

4.3. Special commutative submonoids

Definition 4.9. For each integer n ≥ 1 we pose Su,n = {ε} ∪ unu∗. These submonoids of u∗ are
called special commutative.

E.g., Su,0 = Su,1 = u∗ and Su,2 = {ε} ∪ u2u∗ = u∗ \ {u} is the largest proper submonoid of u∗

since the minimal generating subset of u∗ is {u}, cf. Proposition 3.6 Claim 1.

Definability of the subset Su,n is done in Theorem 4.12 infra.

The following shows how to use Su,n’s to test membership.

Lemma 4.10. If ε ∈ X ⊆ u∗ then un ∈ X if and only if XSu,n = XSu,n+1.

Proof:
Since unX ⊆ unu∗ ⊆ Su,n and Su,n \{un} = Su,n+1, apply claim 2 of Lemma 2.6 withM = Su,n. ut

4.4. Defining each special commutative submonoid

To define each Su,n we carefully investigate its maximal submonoids.
Recall the notation G(M) for the minimal generating set of a submonoid M , cf. Definition 3.2.

Lemma 4.11. Assume n ≥ 1. Then

G(Su,n) = {ui | n ≤ i ≤ 2n− 1}
G(Su,n \ {un}) \G(Su,n) = {u2n, u2n+1}

G(Su,n \ {un+1}) \G(Su,n) = {u2n+1}
G(Su,n \ {u`}) \G(Su,n) = ∅ for n+ 2 ≤ ` ≤ 2n− 1.

Proof:
The first equation is trivial. The three other equations are immediate consequences of the following
routine verifications:
G(Su,n \ {un}) = G(Su,n+1) = {ui | n+ 1 ≤ i ≤ 2n+ 1},
G(Su,n \ {un+1}) = {un} ∪ {ui | n+ 2 ≤ i ≤ 2n− 1} ∪ {u2n+1},
G(Su,n \ {u`}) = {ui | i 6= ` and n ≤ i ≤ 2n− 1} if n+ 2 ≤ ` ≤ 2n− 1. ut

We now get a definition of the Su,n’s for each fixed n.

Theorem 4.12. For each n ≥ 1, the relation {(u∗, Su,n) | u ∈ A∗} is Π2.

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1011

Proof:
Case n = 1. Since Su,1 = u∗ apply Proposition 4.6.
Case n ≥ 2. Recall Word is Π2 (cf. Proposition 4.6). Let Gi(P) be a Σ2 formula expressing that P is a
submonoid with at least i distinct maximal submonoids. Let K(M,N1, . . . , Nn) be the Σ2 formula

N1 = M ∧
i=n−1∧
i=1

(Ni+1 / Ni ∧ Gi+1(Ni+1))

Applying Lemma 4.11, we express (M,N) ∈ {(u∗, Su,n) | u ∈ A∗} as follows:

Word(M) ∧ ∀N1, . . . , Nn (K(M,N1, . . . , Nn)⇒ N = Nn) . 2

4.5. Derivative of a commutative submonoid

We now want a formula defining the family of Su,n’s, n ≥ 1 and u ∈ A∗.

Definition 4.13. If M is a submonoid of u∗ with um as shortest nonempty element, we denote by ∂M
the submonoid M \ {um} of M .

Lemma 4.11 yields the following result about the creative rank of a maximal submonoid, cf. §3.4.

Proposition 4.14. Let M be a submonoid of u∗ different from {ε}. Then ∂M is a (≥ 2)-creative
maximal submonoid of M .

Proof:
Apply Proposition 3.13. ut

Proposition 4.14 leads to the following definition.

Definition 4.15. A submonoid of A∗ is good if it has a unique maximal proper submonoid which is
(≥ 2)-creative.

Proposition 4.14 implies the following variant of Definition 4.15.

Proposition 4.16. A submonoid of A∗ is good if it has at most one maximal proper submonoid which is
(≥ 2)-creative.

Lemma 4.17. For n ≥ 2, ∂Su,n = Su,n+1 is the unique (≥ 2)-creative maximal submonoid of Su,n. In
particular, Su,n is good.

Proof:
Direct consequence of Lemma 4.11 which shows that un is the sole (≥ 2)-creative generator of Su,n. ut

Proposition 4.18. The following relations are respectively Π2 and Σ2 ∧Π2 :

Good = {(u∗,M) |M is a good submonoid of u∗}
Deriv = {(u∗,M,L) |M is a good submonoid of u∗ and L = ∂M}

1012 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

Proof:
By Proposition 4.16, we can express (U,M) ∈ Good as follows:

Word(U) ∧ UM = U ∧ ∀P ∀Q ((Creative≥2(P,M) ∧ Creative≥2(Q,M))⇒ P = Q)

When M is good, ∂M is the unique (≥ 2)-creative maximal submonoid of M hence Deriv(U,M,L) is
definable as Good(U,M) ∧ Creative≥2(L,M). Propositions 4.6, 3.12 give the complexities. ut

4.6. Defining the family of special commutative submonoids

We are now in a position to define the family of all Su,n’s.

Theorem 4.19. The relation SpCom = {(u∗, Su,n) | u ∈ A∗, n ≥ 1} is Π3.

Proof:
Consider the following formula SpCom(U,X) which, by Lemma 2.6, expresses that U ∈ Word and
X is a submonoid of U and, for any good M ⊆ U with um as shortest nonempty element (hence
M = {um} ∪ ∂M), if um ∈ X then M ⊆ X :

Word(U) ∧ Sub(X,U) ∧ ∀M ∀L
(
(Deriv(U,M,L) ∧ MX = LX)⇒ XM = X

)
This property is satisfied by (u∗, Su,n) since (cf. Lemma 2.6) equality MX = LX implies that the
shortest nonempty element of M , say um belongs to Su,n thus umu∗ ⊆ Su,n. Conversely, let (U,X)
satisfy this property and let un be the shortest nonempty element of X . Take M as the good submonoid
Su,n whose shortest nonempty element is un. By Lemma 2.6 this implies MX = LX . Then we get
Su,n ⊆ X hence Su,n = X . Finally, by Propositions 4.6, 4.18, the complexity of SpCom is Π3. ut

Proposition 4.20. The following predicates are Π3 :

Succk(U,X, Y) ≡ (U,X, Y) ∈ {(u∗, Su,n, Su,n+k) | u ∈ A∗, n ≥ 1}
Succ∗(U,X, Y) ≡ (U,X, Y) ∈ {(u∗, Su,n, Su,n+k) | u ∈ A∗, n, k ≥ 1}

For k = 1 we simply write Succ in place of Succ1.

Proof:

Observe that

Succk(U,X0, Y) ⇐⇒ SpCom(U,X0) ∧ ∀X1 . . . ∀Xk((∧k−1

0 Deriv(U,Xi, Xi+1)
)
⇒ Y = Xk

)
Succ∗(U,X, Y) ⇐⇒ SpCom(U,X) ∧ SpCom(U, Y) ∧ XY = X

.

Then apply Theorem 4.19 and Proposition 4.18. ut

5. First-order theory of concatenation on languages

5.1. Singleton sets up to an epsilon

Though singleton sets are easily obtained in the monoid 〈N; +〉, it is not the case with the monoid 〈A∗; ·〉
for a nontally alphabet. In fact, we are not able to get singletons, only pairs {ε, u}’s. And this requires
all the machinery developed in order to get the Su,n’s.

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1013

Lemma 5.1. The relation Single+ε = {(u∗, {ε, u}) | u ∈ A∗} is Π4.

Proof. By Lemma 4.10, if ε ∈ X and X ⊆ u∗ then uk ∈ X if and only if Su,k+1X = Su,kX . Thus,
(U,X) ∈ Sing+ε if and only if ε ∈ X ⊆ U and u ∈ X but uk /∈ X for k ≥ 2, which is expressed by
the Π4 formula

Word(U) ∧ ε ∈ X ∧ UX = U ∧ ∀Q (Succ(U,U,Q))⇒ QX = UX)

∧ ∀P,Q ((P 6= U ∧ Succ(U,P,Q))⇒ QX 6= PX) 2

5.2. Concatenation on words

Theorem 5.2. The relation Conc = {(u∗, v∗, w∗) | uv = w} is ∆5.

Proof:
We consider three cases.
Case 0: u = ε or v = ε. Then uv = w is expressed by the Π2 formula

Cε(U, V,W) ≡ Word(U) ∧ Word(V) ∧ (U = {ε} ∨ V = {ε}) ∧W = UV

Case 1: uv 6= vu (hence u, v 6= ε). We claim that w = uv holds if and only if {ε, w} is included in
u∗ v∗ but is not included in any of the sets (u∗ \ {u}) v∗, u∗ (v∗ \ {v}).

Suppose w = uv. Clearly, uv ∈ u∗ v∗. By way of contradiction, suppose uv ∈ (u∗ \ {u}) v∗, i.e.
uv = upvq with p 6= 1. If p = 0 then uv = vq hence q ≥ 2 (since u 6= ε) and u = vq−1, contradicting
the hypothesis uv 6= vu. If p ≥ 2 then v = up−1vq and up−1 6= ε hence q = 0 and v = up−1, again
contradicting the hypothesis uv 6= vu. Thus, uv /∈ (u∗ \ {u}) v∗. Similarly, uv /∈ u∗ (v \ {v}).

Conversely, suppose w ∈ u∗ v∗ and w /∈ (u∗ \ {u}) v∗, w /∈ u∗ (v \ {v}). Condition w ∈ u∗ v∗

implies w = upvq for some p, q ≥ 0. Conditions upvq /∈ (u∗ \ {u}) v∗ and upvq /∈ u∗ (v∗ \ {v})
respectively imply p /∈ N \ {1} and q /∈ N \ {1} hence p = 1 and q = 1. Thus, w = upvq = uv.

Consider now the auxiliary predicates

G(U, V,W, Ũ , Ṽ ,X) ≡ Deriv(U, Ũ) ∧ Deriv(V, Ṽ) ∧ Sing+ε(W,X)

H(U, V,W, Ũ , Ṽ ,X) ≡ UXV = UV ∧ ŨXV 6= ŨV ∧ UXṼ 6= UṼ .

Clearly, G means that, for some u, v, w ∈ A∗, we have U = u∗, V = v∗, W = w∗ and Ũ = u∗ \ {u},
Ṽ = v∗ \ {v}, X = {ε, w}. If G holds then (by Lemma 2.5) H expresses that {ε, w} ⊆ u∗v∗ but
{ε, w} 6⊆ u∗ \ {u} and {ε, w} 6⊆ v∗ \ {v}.

Formally, we can express (U, V,W) ∈ Conc for the present Case 1 by the formulas

CΣ
1 (U, V,W) ≡ Word(U) ∧ Word(V) ∧ UV 6= V U ∧ Word(W)

∧ ∃Ũ , Ṽ ,X (G(U, V,W, Ũ , Ṽ ,X) ∧ H(U, V,W, Ũ , Ṽ ,X))

CΠ
1 (U, V,W) ≡ Word(U) ∧ Word(V) ∧ UV 6= V U ∧ Word(W)

∧ ∀Ũ , Ṽ ,X (G(U, V,W, Ũ , Ṽ ,X)⇒ H(U, V,W, Ũ , Ṽ ,X))

By Proposition 4.18 and Lemma 5.1, formula CΣ
1 is Σ5 and CΠ

1 is Π5.
Case 2: uv = vu and u, v 6= ε. The proof consists of taking advantage of the solution in the previous

1014 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

case. Indeed, loosely speaking the previous case shows that, given two noncommuting words u and v,
the concatenation uv is indirectly expressible through the monoid it generates. Let z be a letter of the
alphabet which does not commute with u nor v. Such a letter exists, it suffices to take a letter different
from the first letter of u since both u and v start with the same letter. Observe that z is expressible up to
a permutation of the alphabet. Since uz 6= zu and vz 6= zv hold the products zu and vz are indirectly
expressible. Furthermore we have zuvz 6= vzuz because v does not start with z, and thus the product
zuvz is again indirectly definable. Finally, it suffices to say that w is the only solution of the equation
zwz = zuvz by cancelling out the first and last occurrences of z.

This is implemented by introducing the variables Z, Xzu, Xvz , Xzuvz , Xuvz (to represent the sets
z∗, (zu)∗, (vz)∗, (zuvz)∗ and (uvz)∗) and the auxiliary predicates

E(U, V,W) ≡ Word(U) ∧ Word(V) ∧ Word(W)

∧ UV = V U ∧ U 6= {ε} ∧ V 6= {ε}
FΣ(· · ·) ≡ D(· · ·) ∧ CΣ

1 (W,Z,Xuvz)

FΠ(· · ·) ≡ D(· · ·)⇒ CΠ
1 (W,Z,Xuvz)

with D(· · ·) ≡ Letter(Z) ∧ CΣ
1 (Z,U,Xzu) ∧ CΣ

1 (V,Z,Xvz)

∧ CΣ
1 (Xzu, Xvz, Xzuvz) ∧ CΣ

1 (Z,Xuvz, Xzuvz)

The auxiliary predicates can be interpreted as follows
• CΣ

1 and CΠ
1 have the same meaning as in case 1 (and defines the products of noncommuting words).

• E defines the subsets u∗, v∗ and w∗ and expresses the property that u and v are two nonempty com-
muting words.
• D expresses that z is a letter not commuting with u and v and defines the products zu, vz, zuvz
• FΣ (resp.FΠ) defines existentially (resp. universally) the equality wz = uvz and thus asserts w = uv.

Formally, we can express (U, V,W) ∈ Conc for Case 3 by the formulas

CΣ
2 (U, V,W) ≡ E(U, V,W) ∧ ∃Z,Xzu, Xvz, Xzuvz, Xuvz F

Σ(· · ·)
CΠ

2 (U, V,W) ≡ E(U, V,W) ∧ ∀Z,Xzu, Xvz, Xzuvz, Xuvz F
Π(· · ·)

By Proposition 4.8 and the previous case, formula CΣ
2 is Σ5 and CΠ

2 is Π5.

To conclude, by gathering the three cases, Conc can be expressed by the following Σ5 and Π5 for-
mulas where the predicate Cε is as in case 0:

Cε(U, V,W) ∨ CΣ
1 (U, V,W) ∨ CΣ

2 (U, V,W)

Cε(U, V,W) ∨ CΠ
1 (U, V,W) ∨ CΠ

2 (U, V,W) 2

Proposition 5.3. The relation Pref = {(u∗, v∗) | u is a prefix of v} is Σ5.

Proof:
Use Conc and Word to transfer to u∗, v∗, w∗ the fact that u is a prefix of v if and only if ∃w v = uw. ut

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1015

5.3. Special submonoids

Definition 5.4. For each u ∈ A∗ we pose Tu = {ε} ∪ uA∗. These submonoids are called special.

Proposition 5.5. 1. Tu \ {u} is a maximal submonoid of Tu.
2. The relations Spec = {(u∗, Tu) | u ∈ A∗} and Spec∂ = {(u∗, Tu \ {u}) | u ∈ A∗} are Π6.

Proof:
1. Observe that u is a generator of Tu.
2. Observe that M = Tu if and only if M is a submonoid of A∗ and, for every word v 6= ε, we have
v∗ ⊆M if and only if u is a prefix of v.

Also, N = Tu \ {u} if and only if N is a submonoid of A∗ and, for every word v 6= ε, we have
v∗ ⊆M if and only if u is a proper prefix of v.

Thus, (U,M) ∈ Spec and (U,N) ∈ Spec∂ are expressed as follows:

Word(U) ∧ Mon(T) ∧ ∀V (Word(V)⇒ (TV = T ⇔ Pref(U, V)))

Word(U) ∧ Mon(T) ∧ ∀V (Word(V)⇒ (TV = T ⇔ (Pref(U, V) ∧ U 6= V))

which are Π6 by Proposition 5.3. ut

5.4. Membership up to an epsilon

In §2.4 we obtained a restriction of the membership relation which proved very useful subsequently.
Now, we are in a position to get the membership relation only constrained by the clause ε ∈ X .

Theorem 5.6. The relation IsIn = {(u∗, X) | {ε, u} ⊆ X} is ∆7.

Proof. Since uX is always included in Tu = {ε} ∪ uA∗, Lemma 2.6 insures that, if ε ∈ X then u ∈ X
if and only if (Tu \ {u})X = TuX . Thus, lettting Inε(X) be the Σ1 formula of Proposition 2.1, and
using the predicates Spec and Spec∂ of Proposition 5.5, the relation (U,X) ∈ IsIn is expressed by the
Σ7 and Π7 formulas

Inε(X) ∧ ∃P,Q (Spec(U,P) ∧ Spec∂(U,Q) ∧ QX = PX)

Inε(X) ∧ ∀P,Q ((Spec(U,P) ∧ Spec∂(U,Q))⇒ QX = PX) 2

5.5. Second-order theory of words up to an epsilon

Theorem 5.7. Let L be the language consisting of the equality predicate and a binary operation ·. Let
F (2)
x1,...,xn,X1,...,Xp

be the family of second-order formulas of L with free first-order variables x1, . . . , xn

and free second-order variablesX1, . . . , Xp. Let F (1)
λ1,...,λn

be the family of first-order formulas of L with
free variables λ1, . . . , λn.

Hint: the second-order formulas are interpreted in the monoid of words whereas the first-order
formulas are interpreted in the monoid of languages.

There exists a computable family of maps

Tradx1,...,xn,X1,...,Xp,δ : F (2)
x1,...,xn,X1,...,Xp

−→ F (1)
λ1,...,λn+p

1016 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

(with δ ⊆ {X1, . . . , Xp}) such that, for any F ∈ F (2)
x,X, δ ⊆ {X1, . . . , Xp}, u1, . . . , un ∈ A∗ and

E1, . . . , Ep ∈ P(A∗) such that ε ∈ Ei if Xi ∈ δ and ε /∈ Ei if Xi /∈ δ,

〈A∗; ·,=〉 |= F (u1, . . . , un, E1, . . . , Ep)

⇐⇒ 〈P(A∗); ·,=〉 |= Tradx,X,δ(F)(u∗1, . . . , u
∗
n, {ε} ∪ E1, . . . , {ε} ∪ Ep)

Moreover, if the second-order formula F is Σk (resp. Πk) when first and second-order quantifications
are not distinguished then the first-order formula Tradx,X,δ(F) is Σ6+k (resp. Π6+k).

Proof:
The Trad maps are defined by induction on F .
Case x = y. Then δ is empty and Tradx,y,∅(F) is λ1 = λ2.
Case x = yz. Then δ is empty and Tradx,y,∅(F) is Conc(λ1, λ2, λ3).
Case x ∈ X . Then δ ∈ {∅, {X}} and we use Theorem 5.6{

Tradx,X,∅(x ∈ X) is λ1 6= {ε} ∧ IsIn(λ1, λ2)

Tradx,X,{X}(x ∈ X) is λ1 = {ε} ∨ IsIn(λ1, λ2)

Case F (x,X) = ¬G(x,X). Then Tradx,X,δ(F) is ¬Tradx,X,δ(G).
Case F (x,y, z,X,Y,Z) = G(x,y,X,Y) ∧H(x, z,X,Z). Then

Tradx,y,z,X,Y,Z,δ(F) is Tradx,y,X,Y,δ1(G) ∧ Tradx,z,X,Z,δ2(H)

where δ1 = δ �X,Y and δ2 = δ �X,Z.
Case F (x,X) = ∃yG(y,x,X). If Trady,x,X,δ(G) is H(λ, λ1, . . . , λn+p) then

Tradx,X,δ(F) is ∃λ (Word(λ) ∧H(λ, λ1, . . . , λn+p))

Case F (x,X) = ∃Y G(x,X, Y). Let δ ⊆ X. If

Tradx,X,Y,δ(G) is H0(λ1, . . . , λn+p, λ)

Tradx,X,Y,δ∪{Y }(G) is H1(λ1, . . . , λn+p, λ)

then Tradx,X,δ(F) is ∃λ (H0(λ, λ1, . . . , λn+p)) ∨H1(λ, λ1, . . . , λn+p)).

To conclude, observe that if F is an atomic second-order formula then Tradx,X,δ(F) simply involves
equality or the predicate Conc or the predicates IsIn and the constant set {ε}. Thus, if F is atomic then
Tradx,X,δ(F) can be taken Σ7 and can be taken Π7. In particular, if we existentially quantify such an
atomic F then the associated Trad formula can be taken Σ7 if we replace each positive (resp. negative)
occurrence of an atomic subformula by a Σ7 (resp. Π7) formula. Similarly, if we universally quantify
such an atomic F then the associated Trad formula can be taken Π7.

Since the inductive construction of Tradx,X,δ(F) respects the quantification pattern of F we see
that if F is Σk (resp. Πk) – where first and second-order quantifications are not distinguished – then
Tradx,X,δ(F) can be taken Σ6+k (resp. Π6+k). ut

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1017

5.6. Undecidability

The following two results essentially date back to Quine, 1946 [9], cf. also [11], 1935, and [2], 1938.

Proposition 5.8. Let F (1)
arith and F (1)

conc be the families of closed first-order formulas in the language
{+,×,=} of arithmetic and in the language {·,=} of concatenation. Let F (2)

arith and F (2)
conc be the analo-

gous families of second-order formulas.
For i = 1, 2, let Truth(i)

arith be the set of formulas of F (i)
arith true in the structure 〈N; =,+,×〉.

For A a finite or infinite countable alphabet with at least two letters, let Truth(i)
A-words be the set of

formulas of F (i)
conc true in the structure 〈A∗; =, ·〉.

There exist computable bijections F (1)
conc

ϕA
1−→ F (1)

arith and F (2)
conc

ϕA
2−→ F (2)

arith such that

Truth
(i)
A-words = (ϕAi)−1

(
Truth

(i)
arith

)
for i = 1, 2.

In other words, the first-order (resp. second-order) theory of 〈A∗; =, ·〉 is computably isomorphic with
the first-order (resp. second-order) theory of arithmetic, In particular, both are undecidable.

Proof:
By interpreting each one of these two structures into the other, one gets computable injective maps
reducing one truth set to the other. Using Myhill’s isomorphism theorem (i.e. the computable analog
of Cantor-Bernstein’s theorem in set theory, cf. [10] Theorem VI page 85, or [8] Theorem III.7.13 page
325), one gets the wanted computable bijective map. ut

Proposition 5.9. (Marchenkov, 1982)
The Π2 fragment of the first-order theory of 〈A∗; =, ·〉 is undecidable

Remark 5.10. The decidability of the Σ1 fragment of the first-order theory of 〈A∗; =, ·〉 is a corollary
of the decidability of diophantine equations in words, a very difficult result due to Makanin, cf. [6].

As a corollary of Theorem 5.7 and Proposition 5.8, we get the following result in which formulas in
F (1)

conc (first-order formulas of concatenation) are considered for the monoid of languages and those in
F (2)

conc (second-order formulas of concatenation) are considered for the monoid of words.

Theorem 5.11. For A a finite or infinite countable alphabet with at least two letters, let Truth(i)
A-languages

be the set of formulas of F (i)
conc true in the structure 〈P(A∗); ·,=〉. There exists computable bijections

F (1)
conc

ψA−→ F (2)
arith and F (1)

conc
θA−→ F (2)

conc such that

Truth
(1)
A-languages = (ψA)−1

(
Truth

(2)
arith

)
= (θA)−1

(
Truth

(2)
A-words

)
Thus, the first-order theory of 〈P(A∗); ·,=〉 is computably isomorphic with the second-order theory of
arithmetic and with the second-order theory of concatenation on A∗. In particular, it is undecidable.

As a corollary of Theorem 5.7 and Proposition 5.9, we get

1018 C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages

Theorem 5.12. Let A be a finite or infinite alphabet with at least two letters. The Π8 fragment of the
first-order theory of 〈P(A∗); ·,=〉 is undecidable.

Remark 5.13. In the hierarchy of undecidable sets, Truth(1)
A-languages is very high. In fact,

• The halting problem for Turing machines is Σ0
1.

• Truth(1)
arith and Truth

(1)
A-words are ∆1

1 and are not Σ0
n for any n ∈ N.

• Truth(2)
arith and Truth

(2)
A-words hence also Truth

(1)
A-languages are ∆2

1 and not Σ1
n for any n ∈ N.

5.7. Definable relations on sets containing ε

As another corollary of Theorem 5.7, we get

Theorem 5.14. Let R ⊆ Xε∈ × · · · × Xε∈ be a family of n-tuples of subsets of A∗ which are either
empty or contain the empty word. Then R is first-order definable in 〈P(A∗); ·,=〉 if and only if it is
second-order definable in 〈A∗; ·,=〉.

6. Conclusion

Concerning the decision problem in the monoid 〈P(A∗); ·,=〉, we have proved the undecidability of the
Π8 fragment of the first-order theory. We leave open the decision problem for smallest fragments.

As for the question “What is definable in the monoid 〈P(A∗); ·,=〉 ?”, we have proved that, for
relations involving only the empty set and sets containing the empty word, first-order definability in the
monoid of languages coincides with second-order definability in the monoid of words.

The empty word appears as a stumbling block for definability. In the case of the additive monoid
〈N; +,=〉 we were able in [1] to prove that many relations involving sets not containing 0 are not defin-
able. However, the used technique does not extend to the noncommutative case.

References

[1] Christian Choffrut and Serge Grigorieff. Logical theory of the additive monoid of subsets of the set of inte-
gers. In Automata, Universality, Computation. Tribute to Maurice Margenstern (Andrew Adamatsky editor).
Emergence, Complexity and Computation, vol. 12, Springer, 2014.

[2] Hans Hermes. Semiotik. Eine Theorie der Zeichengestalten als Grundlage fur Untersuchungen von formal-
isierten Sprachen. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, new series, n. 5,
22 pp., Leipzig, 1938.

[3] John M. Howie. Fundamentals of Semigroup Theory. Clarendon Press, 1995.

[4] Artur J̇ez and Alexander Okhotin. Equations over sets of natural numbers with addition only. In STACS,
577–588, 2009.

[5] Michal Kunc. The power of commuting with finite sets of words, in 22nd Annu. Symp. Theoretical Aspects of
Computer Science, STACS 2005, LNCS 3404, 569-580, Springer, 2005.

[6] M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983.

C. Choffrut, S. Grigorieff / Logical theory of the monoid of languages 1019

[7] S.S. Marchenkov. Undecidability of the ∀∃-positive theory of a free semigroup (in Russian). Sibirskii Matem-
aticheskii Zhurnal, 23:196–198, 1982.

[8] Piergiorgio Odifreddi. Classical recursion theory. Vol. 1: The theory of functions and sets of natural integers.
North Holland, 1989.

[9] Willard V. Quine. Concatenation as a basis of arithmetic, Journal of Symbolic Logic, 11(4):105–114, 1946

[10] Hartley Rogers. Theory of recursive functions and effective computability. McGraw Hill, 1967.

[11] Alfred Tarski. Der Wahrheitebegriff in den formalisierten Sprachen, Studia philosophica (Lwow), 1:261–405,
1935. English translation: The concept of truth in formalized languages, in: Alfred Tarski, Logic, Semantics,
Metamathematics, Clarendon Press, 1956, 152278.

