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Abstract

We consider a new operation on the family of binary relations on integers called
Hadamard star. View a binary relation R ⊆ N × N as a mapping of N into
the power set of N and let R(n) denote the subset of integers m such that
(n,m) ∈ R. Then the Hadamard star of R is the relation which assigns to each
integer n the Kleene star of R(n). This is reminiscent of the Hadamard inverse
of series with coefficients in a field.

We characterize the rational relations whose Hadamard star is also rational
and show that this property is decidable.

Keywords: Finite automata, binary rational relations on integers, rational
series, Hadamard product, Hadamard star, decidability.

1. Introduction

In 2013 I worked with Bruno Guillon on binary relations defined by unary
two-way transducers which are finite state devices provided with one read-only
two-way input tape and one write only one-way output tape. Input and output
alphabets are unary. The difference with one-way transducers relies essentially
upon the fact that along with the current state of the automaton one needs to
record the position on the input word. In the one-way case, the computation is
governed by determinants of matrices, whose dimension is independent of the
length of the input. In the two-way case the dimension depends on the length
of the input. Nevertheless, even in this case these matrices display a certain
uniformity because they are tridiagonal block matrices where the blocks depend
on the letters but have a fixed dimension independent of the length of the word.

I discussed the problem in June 2013 with Alberto at his place. He told
me he had faced the same type of issue with Marcella Anselmo when working
on two-way probabilistic automata. In a later work with Maria Paola Bianchi
and Flavio d’Alessandro, [4] he used a clever result due L. G. Molinari: the
varying dimension can be overcome by resorting to so-called transfer matrices
which allow to work with matrices of a fixed dimension, [9]. The difficulty
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to apply the result is that we were working on a semiring Rat(N) of rational
subsets of N and not on a ring, much less a field! We tried to work out a
version which would suit better our poorer structure, unsuccessfully. Our final
result was therefore obtained via completely different methods, but surprisingly
the statement is formally pretty much the same. In the case of probabilistic
automata, the probability of acceptance is given by the Hadamard quotient of
two rational series with coefficients in the field of reals. More precisely, if w
is the input, the probability of acceptance is equal to p(w)/q(w), where p(w)
and q(w) are the real coefficients of the term w in two R-rational series. In our
case the output of a two-way unary transducer is a finite sum of expressions
of the form p(w)q(w)∗, where p(w) and q(w) are the coefficients of w in two
Rat(N)-rational series. There are some differences between the two cases. For
probabilistic automata, the input alphabet is finite but arbitrary. However, some
assumptions of nonsingularity of the matrices are necessary. For transducers the
result holds with the restriction that the input alphabet is unary, but makes no
other assumption on the state transitions which is the equivalent of matrices in
this case.

In order to state my result, I need some preliminaries. I will not recall the
background on unary two-way transducers which is irrelevant in the present
context. I assume the reader is familiar with the notion of rational subset of a
monoid, here the additive monoid N× N. A binary relation R ⊆ N× N can be
viewed as a partial function from N into the powerset P(N) which allows us to
write R(n) = {m ∈ N | (n,m) ∈ R} for all n ∈ N. On the set of binary relations
consider the operation which assigns R⊗ to R by setting R⊗(n) = R(n)∗ (this
operation was introduced in [5] along with family of Hadamard relations). This
paper inquires the condition under which a relation R⊗ is rational whenever R
is rational. The main result is the following

Theorem 1.1. Let R ⊆ N × N be a rational relation. The relation R⊗ is not
rational if and only if there exist two integers a ∈ N, b ∈ N \ {0} and 2p rational
numbers α1, . . . , αp ∈ Q, β1, . . . , βp ∈ Q+ \ {0} such that the following holds

R(n) =

p⋃
i=1

(αi + βin) for all n ∈ a+ bN.

Furthermore, given a rational relation R it is decidable whether or not the rela-
tion R⊗ is rational.

For example, consider the rational relation R = {(n, n) ∈ N × N | n ∈ N}
which is the graph of the identity on N. Then the relation R⊗ = {(n,m) ∈
N × N | n divides m} is not rational (this can be seen by observing that a
rational relation is definable in the arithmetic with the addition only). A more
elaborate example showing that it is necessary to allow rational and not only
integer coefficients, is the following. Let R be defined for all n ∈ 2 + 2N as

R(n) = {−1 +
1

2
n,−1 + n}
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(every input has two outputs). Then R is rational (a rational expression is
R = (2, 0) + (2, 1)∗ ∪ (2, 1) + (2, 2)∗) but R⊗ is not (a consequence of Corollary
4.3). Observe that the coefficients are rational numbers as in the statement of
the Theorem.

I now relate the previous problem to a general problem on rational series. A
K-series on a variable x over a semiring K is a formal sum s =

∑
n≥0 s(n)xn. I

assume the reader knows what it means for a series to be K-rational. Consider
a unary operation ω on K and extend it to the family of series by assigning to
s the series sω defined by the condition sω(n) = ω(s(n)). If s is K-rational, is
it always the case that sω is also K-rational? If the answer is no, determine
under which condition it is or provide an algorithm to decide it. For example,
Benzaghou characterized the rational series that are invertible in the Hadamard
product, which is the special case where K is the field of reals and where ω is
the operation of taking the multiplicative inverse in K, see [2] or [10] for the
same result with weaker hypotheses.

Now Theorem 1.1 can be interpreted in this general setting. Indeed, denote
by Rat(N) the semiring of the rational subsets of N where the addition and the
product of the semiring are respectively the set union and the set addition. It
can be proved that a binary relation R ⊆ N × N is rational if and only if the
Rat(N)-series

s =
∑
n≥0

R(n)xn

is a Rat(N)-rational series. Define on Rat(N) the operation that assigns ω(X) =
X∗ to X ∈ Rat(N). Then the question I deal with can be translated as asking
under which condition, for a Rat(N)-rational series s, the Rat(N)-series sω is
also Rat(N)-rational.

The paper is organized as follows. Section 2 recalls the notion of series over
a semiring, which extends that of series over a field along with the important
family of rational series. The less classical notion of rational binary relations
over the additive monoid of the nonnegative integers is also briefly reviewed.
It is shown how relations and series may be thought of as one and the same
object when properly interpreted. In particular the notion of Hadamard product
is interpreted for binary relations (actually I speak of Hadamard sum rather
than Hadamard product since the binary relations are additive structures) and
we introduce the notion of Hadamard star, which is to Kleene star what the
Hadamard product is to the product.

In Section 3 are concentrated the most technical aspects of this work. The
idea is to obtain for an arbitrary subset of N, an expression for the Kleene star in
terms of the parameters defining the subset, as precisely as possible. However we
do not deal with a single rational subset but more generally with the collection
of subsets R(n) when n ranges over the domain of definition of R. The objective
is thus to compute the star uniformly, i.e., as a function of n. This is achieved
thanks to a general formula giving an upper bound on the Frobenius number
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of a finite or infinite arithmetic progression of integers. Another ingredient is
Eilenberg and Schützenberger’s improvement, independently proved in [8], on
previous results of Ginsburg and Spanier: indeed, the rational relations are
disjoint unions (not merely unions) of “simple” rational relations. In Section
4 we apply their result and give a classification of these simple relations. It
happens that these simple relations have Hadamard stars which we are able to
compute explicitly in Section 5. This allows us to give a proof of the theorem
and to deliver a decision procedure.

2. Preliminaries

2.1. Rational series with coefficients in a semiring

Let K be a semiring provided with two binary operations of addition and
product, respectively denoted + and ×. The addition has a neutral element 0
and the multiplication has an identity element 1. It is assumed that all, possibly
infinite, sums of elements of K are well-defined. In particular we assume that
the unary operation k → k∗ =

∑
n≥0 k

n is well-defined.
A series is a function s : N → K. (This is equivalent to the more classical

definition as a formal sum of the form
∑
n≥0 s(n)xn where x in an unknown).

The elements of K are called scalars and s(n) is the coefficient of n for the series
s. The family of series over K, denoted K(N) is provided with the following
operations where s, t represent two series and k a scalar:

• multiplication by a scalar (s, k)→ ks: (ks)(n) = k × s(n),

• sum of series (s, t)→ s+ t: (s+ t)(n) = s(n) + t(n),

• (Cauchy) product (s, t)→ s× t: (s× t)(n) =
∑

n=n1+n2

s(n1)× t(n2),

• Kleene star : s→ s∗: (s∗)(n) =
∑

n=n1+···+np,p≥0

s(n1)× · · · × s(np),

• Hadamard product (or H-product) (s, t)→ s� t: (s� t)(n) = s(n)× t(n),

• Hadamard star (or H-star): s→ s
⊗

: s
⊗

(n) = (s(n))∗.

The family of K-rational series is the smallest family which contains the
series having finite support (all but finitely many images equal to zero) and
closed under scalar multiplication, sum, Cauchy product and Kleene star, see
for example [3]. Furthermore, when the semiring is commutative the family of
K-rational series is closed under Hadamard product, e.g., [11, Thm III.3.1].

Proposition 2.1. If K is commutative, the family of K-rational series is closed
under Hadamard product.
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2.2. Rational relations in an arbitrary monoid

The family of rational subsets of a monoid M denoted Rat(M), is the
smallest family of subsets containing the finite subsets and closed under union,
set product and Kleene star. Here we are mainly interested in the additive
monoids (N,+, 0) and (N × N,+, (0, 0)). It is convenient to view elements of
this latter structure as vectors. The operation is defined componentwise, i.e.,
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2). For obvious reasons, we comply to
the usual terminology and prefer to speak of addition than product on these
commutative structures.

We use the term binary relation or simply a relation for an arbitrary subset
of the monoid (N × N,+, (0, 0)). Given two relations R and S we define the
following operations which mimic those for the series.

• restriction to a subset X ⊆ N: RX = R ∩ (X × N);

• union: R,S → R ∪ S;

• sum: R,S → R+ S = {(u1 + v1, u2 + v2) | (u1, u2) ∈ R, (v1, v2) ∈ S};

• Kleene star:

R→ R∗ = {(u1 + · · ·+ un, v1 + · · ·+ vn) | n ≥ 0, (ui, vi) ∈ R};

• Hadamard sum abbreviated H-sum (because the operation on the monoid
is commutative I prefer to speak of Hadamard sum rather than Hadamard
product): R,S → R� S = {(u, v + w), | (u, v) ∈ R, (u,w) ∈ S};

• Hadamard star (or H-star): R→ R⊗ = {(u, v1+ · · ·+vn) | n ≥ 0, (u, vi) ∈
R}.

I refer to the literature for a thorough exposition of the theory, e.g., [6] and
[11]. I content myself with recalling the basics. The family of rational subsets
of an arbitrary monoid can be complex. For the monoid N × N, it is a simple
exercise to prove that they are precisely the relations which can be expressed
as finite unions of linear relations, which are relations of the form

v0 + v1N + · · ·+ vpN (1)

for some p ∈ N and where the vi’s belong to N × N. Given a vector v = (x, y)
the notation vN represent the set {(nx, ny) | n ∈ N}. Observe that vN is an
alternative to the notation v∗ showing thus these sets are indeed rational.

Example 2.2. We have {(n,m) ∈ N×N | 0 ≤ n ≤ m} = (1, 1)N + (0, 1)N and
{(n,m) ∈ N× N | n = 2m} = (2, 1)N.

Given a relation R ⊆ N×N we denote by R the mapping of N into the power
set P(N) defined for all integers n ∈ N by

R(n) = {m | (n,m) ∈ R}.
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We denote by Dom(R) the domain of R which is the set of integers n such that
R(n) 6= ∅. When R is a rational relation then R(n) ∈ Rat(N) and thus R is a
Rat(N)-series. However a stronger property holds since the family Rat(N × N)
and the family of Rat(N)-rational series can be identified [11, Proposition IV.
3.5.].

Proposition 2.3. The mapping R 7→ R defines a one-to-one correspondence
between the family of rational relations and the family of Rat(N)-rational series.
Furthermore we have

• R ∪ S = R+ S,

• R+ S = R× S,

• R∗ = R
∗
,

• R� S = R� S,

• R⊗ = R
⊗

.

There is an important consequence of the above identification and of Propo-
sition 2.1.

Proposition 2.4. The family Rat(N× N) is closed under Hadamard sum.

Consequently, deciding the closure of Rat(N×N) under the Hadamard star
for binary relations, is equivalent to deciding the closure of the Rat(N)-rational
series under the Hadamard star for Rat(N)-rational series.

Because of the above identification, from now on we will write R(n) for R(n).

3. Kleene stars in Rat(N)

Due to the definition of the Hadamard star of a relation R : N → P(N)
that associates with every input the star of its image, it is natural to study as
precisely as possible the star of a rational subset of N. I start with the interplay
between the three operations of Kleene star, set union and set sum. These
properties rely heavily on the commutativity of the structure.

3.1. Elementary identities

Proposition 3.1. With respect to the operation precedence: ∗ > + > ∪ we
have the following elementary identities for arbitrary subsets of N:

A∗ +B∗ = (A ∪B)∗ (2)

(A+B)∗ = A∗ +B∗ if 0 ∈ A ∩B (3)

(A+B∗)∗ = {0} ∪A+A∗ +B∗ if 0 /∈ A (4)
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Proof. Indeed, let us prove equality (2). The inclusion A ⊆ A ∪ B implies
A∗ ⊆ (A ∪ B)∗. Similarly, we have B∗ ⊆ (A ∪ B)∗ and since (A ∪ B)∗ is a
submonoid, we get A∗+B∗ ⊆ (A∪B)∗. The inclusion from right to left is proved
as follows. An element in (A ∪ B)∗ is of the form

∑
0<i≤n ci for some integer

n ≥ 0 where ci ∈ A∪B. By decomposing the subset [0, n] into the index values
for which ci ∈ A and those for which ci ∈ B, and by taking advantage of the
commutation, the element can be written as

∑
0<i≤p ai +

∑
0<j≤q bi ∈ A∗ +B∗

with ai ∈ A and bj ∈ B and p+ q = n.
Consider equality (3). Because 0 ∈ B we have A ⊆ A + B and thus A∗ ⊆

(A+B)∗. Similarly, we have B∗ ⊆ (A+B)∗ and since (A+B)∗ is a submonoid
this yields A∗+B∗ ⊆ (A+B)∗. For the opposite direction it suffices to observe
that an element in (A+B)∗ is of the form∑

0<i≤n

(ai + bi) =
∑

0<i≤n

ai +
∑

0<i≤n

bi ∈ A∗ +B∗.

It remains to verify equality (4). The inclusion from left to right is a direct
consequence of the expression of an arbitrary nonzero element in (A + B∗)∗,
namely ∑

0<i≤n

(ai + bi) =
∑

0<i≤n

ai +
∑

0<i≤n

bi = a1 +
∑

1<i≤n

ai +
∑

0<i≤n

bi,

where ai ∈ A and bi ∈ B∗. Now we prove the other inclusion. Since 0 ∈ B∗
we have A ⊆ A + B∗ and thus A∗ ⊆ (A + B∗)∗. Now 0 ∈ (A + B∗)∗ and
A+B∗ ⊆ (A+B∗)∗. Because (A+B∗)∗ is a submomoid we have

{0} ∪A∗ + (A+B∗) ⊆ (A+B∗)∗.

Observe that if 0 /∈ A ∪ B holds there is no interesting simplification of the
expression.

3.2. Kleene star of an arithmetic progression

Here the purpose is, given a finite or infinite subset of positive integers to
determine its Kleene star as exactly as possible. It is well-known that in N
all infinite rational subsets have the finite power property, i.e., the star of an

infinite rational subset X ⊆ N is the union of subsets of the form

k operands︷ ︸︸ ︷
X + · · ·+X

over all integers k less than some given integer n, but it happens that in the
case under study, we can explicitly give an upper bound for the number n as
a function of the parameters defining the subset. The computation is tedious
and based on a precise evaluation of the Frobenius number associated with an
arithmetic progression.

Given a subset I ⊆ N of positive integers whose greatest common divisor
equals 1, G(I) denotes the greatest integer which does not belong to the sub-
monoid generated by I, for instance G({3, 5}) = 7. In the very special case of the
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arithmetic progression with gcd(n, d) = 1 the closed formula can be simplified
as follows, [1, p. 3 ]

G(n, n+ d, . . . , n+ sd) = bn− 2

s
cn+ d(n− 1). (5)

Let assume more generally that gcd(n, d) = p and observe that

G(n, n+ d, . . . , n+ sd) = pG(
n

p
,
n+ d

p
, . . . ,

n+ sd

p
)

holds. Then by the definition of G we get:

{n, n+ d, . . . , n+ sd}∗ ∩ [G(n, n+ d, . . . , n+ sd) + d,∞[= p∗ \A,

where A is a subset of the interval [0, G(n, n+ d, . . . , n+ sd)].

Beyond the technical assertion of the next proposition, the point that should
be remembered is the following: let n be the first element of an arithmetic
progression with θ(n) elements. Then the Frobenius number is of order θ(n). It
is clearly not the case when the progression has two elements (the classical case
of the Frobenius number) and more generally when the number of elements is
bounded, as can be shown using expression (5).

Proposition 3.2. Let a, b, d, p ∈ N \ {0}, c ∈ Z, p ∈ N and s =
⌊
bn+c
a

⌋
. For

some computable integer N , for all n ≥ N and gcd(n, d) = p, it holds:

G(n, n+ d, . . . , n+ sd) ≤ n(d+
⌊a
b

⌋
+ 1)− d. (6)

Let k be the unique integer satisfying k ≥ d+
⌊
a
b

⌋
+ 1 > k − 1. Then

{n, n+ d, . . . , n+ sd}∗ =
⋃

0≤i≤k

{n, n+ d, . . . , n+ sd}i ∪ nk + pN. (7)

Proof. The function G(n, n + d, . . . , n + sd) is nonincreasing in the variable
s. The idea of the proof is to provide an upper bound for bn−2s c in (5). We
abbreviate G(n, n+ d, . . . , n+ sd) as G.

Suppose a is a multiple of b, say a = λb, i.e., λ = a
b =

⌊
a
b

⌋
. Then s =⌊

bn+c
a

⌋
=
⌊
n
λ + c

a

⌋
. Setting n = kλ+ r with 0 ≤ r < λ we get s = k +

⌊
c
a

⌋
+ εn

with εn ∈ {0,+1}. Assuming k ≥ − c
a + 1 so that s > 0 we obtain

n− 2

s
=

λk + r − 2

k +
⌊
c
a

⌋
+ εn

.

Because of

0 <
λk + r − 2

k +
⌊
c
a

⌋
+ εn

≤ λk + λ− 1

k +
⌊
c
a

⌋ ,

for k ≥ λ− 1− (λ+ 1)
⌊
c
a

⌋
we have

λk + λ− 1 ≤ (λ+ 1)(k + b c
a
c),
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thus

0 <

⌊
n− 2

s

⌋
≤

⌊
λk + λ− 1

k +
⌊
c
a

⌋ ⌋
≤ λk + λ− 1

k +
⌊
c
a

⌋ ≤ λ+ 1.

Consequently, in this case we obtain

G ≤ n(d+
⌊a
b

⌋
+ 1)− d.

Assume now a is not a multiple of b, set n = ak + r with 0 ≤ r < a and let

k > −1

b

⌊ c
a

⌋
.

We have
bn+ c = b(ak + r) + c ≥ bak + c ≥ bak + a

⌊ c
a

⌋
> 0,

which implies bn+ c > 0. Furthermore we get

bn+ c

a
≥ bk +

⌊ c
a

⌋
and thus s =

⌊
bn+ c

a

⌋
≥ bk +

⌊ c
a

⌋
.

Since r < a this yields
n− 2

s
≤ ak + a− 2

bk +
⌊
c
a

⌋ .
We distinguish two cases. First, a < b. Then we have

ak + a− 2

bk +
⌊
c
a

⌋ < 1

whenever k ≥ a−2−b cac
b−a and therefore

⌊
n−2
s

⌋
= 0. This implies

G ≤ (n− 1)d = n(d+
⌊a
b

⌋
)− d

which satifies condition . In the second case, we have a > b, i.e., a = ub+ v for
some 0 < v < b. A simple computation shows that we have

n− 2

s
< u+ 1 (=

⌊a
b

⌋
+ 1),

as soon as

k ≥
a− 1− (u+ 1)

⌊
c
a

⌋
b− v

holds, which yields

G ≤ n(
⌊a
b

⌋
+ d).

Therefore condition 3.2 is satisfied if furthermore n ≥ d.

It remains to prove claim (7). By definition of G the left handside contains
nk + pN. Because n is the least element in {n, n + d, . . . , n + sd} and because
k ≥ d+

⌊
a
b

⌋
, all elements of the star less than or equal to kn are a sum of less

than k elements in {n, n+ d, . . . , n+ sd}.
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By a suitable change of variable we have the following result, which is a
special case of the Hadamard star of a rational relation.

Corollary 3.3. Let a, b, d, p, λ, ν ∈ N \ {0}, c ∈ Z, µ ∈ N and s =
⌊
bn+c
a

⌋
.

Consider the following rational subset of N

K = {n | λn+ µ ∈ νN and gcd
(λn+ µ

ν
, d
)

= p}.

Let k be the unique integer satisfying k ≥ d+baλν c > k−1. For some computable
integer N and for all n ∈ K, with n ≥ N we have

{λn+ µ

ν
,
λn+ µ

ν
+ d, . . . ,

λn+ µ

ν
+ sd}∗

=
⋃

0≤i≤k

{λn+ µ

ν
,
λn+ µ

ν
+ d, . . . ,

λn+ µ

ν
+ sd}i ∪ λn+ µ

ν
k + pN.

(8)

4. Rational relations

The following computations lead to natural expressions which do not com-
pletely respect the definition of linear sets as given in (1) but which may be
proven equivalent. We explain this on an example. Consider the following
expression

(−5

2
, 0) + (1,

1

3
)N + (

1

2
, 1)N = {(−5

2
+ x+

1

2
y,

1

3
x+ y) | x, y ∈ N} (9)

and assume that we are interested in the subset of vectors with nonnegative
integer components. On this example I use modular arithmetic but I will not
do it explicitly in the sequel. Indeed, if an element of the above set has integer
components then x = 0 mod 3, y = 1 mod 2. Consider the change of variable:
x = 3x′ and y = 1 + 2y′. We obtain the set

{(−1 + 3x′ + y′, x′ + 2y′) | x′, y′ ∈ N}.

Since this set contains elements whose components are negative, we must impose
x′ ≥ 1 or y′ ≥ 1. The latter condition leads to the change of variable x′ = x′′+1
and to the expression

(2, 1) + (3, 1)N + (1, 2)N (10)

and the former condition leads to the change of variables y′ = y′′+ 1 and to the
expression

(0, 2) + (3, 1)N + (1, 2)N. (11)

Consequently, expression (9) is equivalent on N×N to the union of expressions
(10) and (11).
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4.1. Decomposition of rational relations

In order to simplify the computations we use a more precise definition than
that given in (1), which is independently due to [6] and to [8], see also [11]
for example. Indeed, call simple a subset of N × N defined as in (1) with
the additional condition that the vi’s are linearly independent which implies in
particular p ≤ 2. Then the family of rational relations is exactly the family of
finite unions of disjoint simple relations. I state the result for binary relations
but it holds for relations of arbitrary arity.

Theorem 4.1 ([6]). A binary rational relation in N × N is a finite disjoint
union of relations which are the nonnegative solutions in the variables n and t
of systems of the following form

n = a1 + b1x+ c1y
t = a2 + b2x+ c2y

}
a1, b1, c1, a2, b2, c2 ∈ N (12)

when x and y run over N, subject to the condition that the vectors (b1, b2) and
(c1, c2) are linearly independent.

Eilenberg and Schützenberger use the term simple for the relations satisfying
(12). This improvement on the definition given in (1) facilitates the computa-
tions greatly.

So from now on and unless otherwise stated, we deal with relations defined
by systems of the form 12. When working with general results, i.e., with finite
unions of the latter relations, we will say it explicitly.

4.2. Simple rational relations

The purpose is to eliminate the parameters x and y in (12) in order to express
t as a function of n. We first investigate the case where the relation R is defined
by a unique system (12). Observe that the condition on the vectors (b1, b2) and
(c1, c2) is equivalent to

b1c2 − b2c1 = 0⇒ b1 = b2 = 0 or c1 = c2 = 0. (13)

Proposition 4.2. There are five different types of simple relations determined
by the solutions of the system (12). The domain of definition and an expression
are given below for each type of relation.

Type 1: b1 = c1 = 0. Then R = (a1, a2) + (0, b2)N + (0, c2)N, i.e., for all
n ∈ Dom(R) = {a1} it holds

R(n) = a2 + b2N + c2N. (14)

Type 2: b1 6= 0, b2 = c1 = 0. Then R = (a1, a2) + (b1, 0)N + (0, c2)N, i.e., for
all n ∈ Dom(R) = a1 + b1N it holds

R(n) = a2 + c2N. (15)

11



Type 3: b1, b2 6= 0, c1 = c2 = 0. Then R = (a1, a2) + (b1, b2)N, i.e., for all
n ∈ Dom(R) = a1 + b1N it holds

R(n) = a2 + b2
n− a1
b1

. (16)

Type 4: b1, b2, c2 6= 0, c1 = 0. Then R = (a1, a2) + (b1, b2)N + (0, c2)N, i.e., for
all n ∈ Dom(R) = a1 + b1N it holds

R(n) = a2 + b2
n− a1
b1

+ c2N. (17)

Type 5: b1, b2, c1, c2 6= 0, and thus b1c2 − b2c1 6= 0 by condition 13. Define

• the values
A = a2b1 − a1b2, B = c2b1 − c1b2, (18)

• the predicate

P (α, β) ≡ α− a1 − c1β = 0 mod b1 and 0 ≤ α, β < b1. (19)

For all 0 ≤ α < b1 consider the rational subset Kα = α + b1N ∩ (a1 + N)

and denote by Rα the restriction of R to Kα. Then Dom(R) =
⋃

0≤α<b1

Kα.

Furthermore, we have Rα =
⋃

P (α,β)

Rα,β where for an effectively computable

Nα,β and for all integers n ≥ Nα,β we have

Rα,β(n) =
(A+ b2n+ βB)

b1
+B{0, . . . ,

⌊
n− a1 − βc1

b1c1

⌋
}. (20)

Proof. We omit the verification of the first four types which is routine. For
the last type, by substituting n−a1−c1y

b1
for x in the expression of t we get the

following conditions on the solutions

b1t = A+ b2n+By,
n− a1 − c1y ≥ 0.

(21)

Since x is an integer we have the other condition

n− a1 − c1y = 0 mod b1. (22)

We fix a value modulo b1 for the variables n and y, resp. α and β which
must satisfy the predicate (19).

We proceed to a case study depending on the signs of the parameters A and
B. Observe that under our assumption on α and β the value of t in (21) is
always an integer.

12



Case 1: A ≥ 0, B ≥ 0. The solutions for t are positive whatever the value of n
and the only remaining condition (21) can be rewritten as

0 ≤ y ≤ n− a1
c1

. (23)

Case 2: A < 0, B ≥ 0. The condition on y under which t is nonnegative is

max{0, −A− b2n
B

} ≤ y ≤ n− a1
c1

.

For n ≥ −A
b2

the maximum term to the left is 0 and the condition reduces to
(23). Whatever the value of n, the number of possible values for y is finite.

Case 3: A ≥ 0, B < 0. The condition on y under which t is nonnegative is

0 ≤ y ≤ min{−A− b2n
B

,
n− a1
c1
}.

If n > a1c2−a2c1
c2

holds, we have n−a1
c1
≤ −A−b2n

B and therefore the condition
reduces to (23). Whatever the value of n, the number of possible values for y is
finite.

Case 4: A < 0, B < 0. The conditions on y under which t is nonnegative is

0 ≤ y ≤ min{−A− b2n
B

,
n− a1
c1
}.

For n ≥ a1c2−a2c1
c2

the minimum of the right expression of the condition is
n−a1
c1

and the condition reduces to (23). Whatever the value of n, the number
of possible values for y is finite.

Consequently, in all these four cases, provided n is sufficiently large, in-
equality (23) is the unique condition on y. Now we assumed y = β mod b1, i.e.,
y = β + kb1 for some integer k. The condition (23) is thus equivalent to

y = β + kb1, with k = 0, . . . , bn− a1 − βc1
b1c1

c

which provides expression (20).

4.3. A necessary condition for rationality for binary relations

We recall that an infinite subset X ⊆ N is rational if and only if there
exist two integers t, p and two subsets A ⊆ [0, t[, B ⊆ [0, p[ such that X =
A∪ t+B+pN holds. The integers p, t and the subset B can be made unique (in
that case p is called the ultimate period of X) but I will not need this refinement.
The next result states a necessary condition for a binary relation to be rational.
Intuitively it says that for all inputs with a finite image, the maximum element

13



in the image is linearly bounded by the input, and for all inputs with an infinite
image the above integer t is linearly bounded by the input and the integer p
is one of finitely many different values. E.g., with these criteria, the following
relations are not rational

R1(n) = nN, R2(n) = n2 + N.

Lemma 4.3. If R is a binary rational relation there exists a finite subset P ⊆ N
such that for all integers n we have:

• if R(n) is finite then maxR(n) = O(n);

• if R(n) is infinite then it is of the form A(n)∪ t(n) +B+ pN with A(n) ⊆
[0, t(n)[, B ⊆ [0, p[, t(n) = O(n) and p ∈ P .

Proof. The claim holds for simple relations. Indeed, this is obvious for type 1,
2, 3 and 4 because of the expressions (14), (15), (16) and (17). For type 5,
expression (20) holds for all possible values α and β satifying (19) and for all
sufficiently large n. For all other (finitely many) values of n, the image is finite.

Assume now that we have a finite union of such simple relations, say R =
R1 ∪ · · · ∪ Rk. The coarsest refinement of their domain of definition is a finite
disjoint union of rational subsets of N. It suffices to consider the restrictions
of the relations on one of these relations. In other words, there is no loss of
generality to assume that the relations have the same domain of definition.
If R(n) is finite so is every Ri(n) for i = 1, . . . , k. Now maxRi = O(n) for
i = 1, . . . , k implies maxR = max(R1 ∪ · · · ∪Rk) = O(n).

Assume now the set I of indices i ∈ {1, . . . , k} such that Ri(n) is infinite is
nonempty. For each i ∈ I, we have

Ri(n) = Ai(n) ∪ (ti(n) +Bi + piN)

with Ai(n) ⊆ [0, ti(n)[, ti(n) = O(n), Bi ⊆ [0, pi[ and pi ∈ Pi. Observe that
for all t(n) ≥ ti(n) there exist A′i(n) ⊆ [0, t(n)[ and B′i ⊆ [0, pi[ such that the
following holds

Ai(n) ∪ (ti(n) +Bi + piN) = A′i(n) ∪ (t(n) +B′i + piN), (24)

with ti(n)+Bi = t(n)+B′i mod pi where B′i depends on the value of t(n) modulo
pi. It suffices to prove that for a fixed value of n modulo pi, i ∈ I the expression
of R(n) is of the right form. Pose τ(n) = max{ti(n) | i ∈ I} and observe that
τ(n) = O(n). Take the union of the Ri’s for i ∈ I and apply (24). We get

R(n) = A(n) ∪
⋃
i∈I

(τ(n) +B′i + piN) = A(n) ∪ τ(n) +
⋃
i∈I

(B′i + piN)

with A(n) ⊆ [0, τ(n)[ and B′i ⊆ [0, pi[. The subset
⋃
i∈I(B

′
i+piN) is rational and

its ultimate period p divides the least common multiple of the pi’s. Therefore
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for some integer s, some A′ ⊆ [0, s[ and some B ⊆ [0, p[ we have
⋃
i∈I

(B′i+piN) =

A′(n) ∪ s+B + pN. Finally, we have

R(n) = (A(n) ∪ τ(n) +A′(n)) ∪ τ(n) + s+B + pN

i.e., R(n) = C(n) ∪ θ(n) + B + pN with θ(n) = τ(n) + s and C(n) = A(n) ∪
τ(n) +A′(n).

Observe also that the condition is not sufficient: consider the characteristic
function of any non recursive function from N to N.

5. Hadamard star of rational relations

5.1. A particular case of the Hadamard sum

The following result plays a crucial role in the correctness proof of the pro-
cedure. It states a general result under which the Hadamard sum of a rational
and a nonrational relation is rational. Intuitively, the reason is that the rational
relation “covers” or “hides” almost all of the nonrational relation. In the next
result recall the discussion at the beginning of Section 4 concerning the use of
rational, noninteger coefficients.

Lemma 5.1. Let X be a rational subset of N and let R1, R2 ⊆ N × N satisfy
the following conditions for all n ∈ X

R1(n) = A(n) + cN c ∈ N \ {0}, A(n) a finite subset of N,
R2(n) = (a+ bn)N a ∈ Q, b ∈ Q+.

If R1 is rational, so is the restriction of R1 �R2 to X.

Proof. Equality N =
⋃

0≤i<c

cN + i holds. Furthermore by applying the identity

A(B +C1 ∪B +C2) = AB + (AC1 ∪AC2) where A,B,C1, C2 are subsets of N,
the set (a+ bn)N is equal to

(a+ bn)
( ⋃
0≤i<c

cN + i
)

= (a+ bn)cN +
⋃

0≤i<c

(a+ bn)i.

Since a+ bn is an integer whenever it belongs to X we have

(a+ bn)cN = c((a+ bn)N) ⊆ cN.

Finally we get

R1(n) +R2(n) = A(n) + cN + {0, a+ bn, . . . , (a+ bn)(c− 1)}.
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The relation S defined by S(n) = a + bn for all n ∈ X is clearly rational and

so are all Hadamard sums of the form S(i) = S

i operands︷ ︸︸ ︷
� · · ·� S with the convention

S(0)(n) = {0}. For all n ∈ X we have

(R1 +R2)(n) =
⋃

0≤i<c

(R1(n) + S(i)(n))

and we may conclude by the closure properties of rational relations under union
and Hadamard sum.

Proposition 5.2. Let R be a simple relation. Then for all n 6∈ Dom(R) we have
R⊗(n) = {0}. For all n ∈ Dom(R), the following determines their image in the
Hadamard star for the five types of relations in the classification of Proposition
4.2. For all except type 3, the Hadamard star is rational.

Type 1: b1 = c1 = 0. For all n ∈ Dom(R) we have

R⊗(n) = {0} ∪ a2 + a2N + b2N + c2N.

Type 2: b1 6= 0, b2 = c1 = 0. For all n ∈ Dom(R) we have

R⊗(n) = {0} ∪ a2 + a2N + c2N.

Type 3: b1, b2 6= 0, c1 = c2 = 0. For all n ∈ Dom(R) we have

R⊗(n) = (a2 + b2
n− a1
b1

)∗. (25)

Type 4: b1, b2, c2 6= 0, c1 = 0. For all n ∈ Dom(R) we have

R⊗(n) = {0} ∪
⋃

0≤r<c2

(a2 +
n− a1
b1

b2)(r + 1) + c2N. (26)

Type 5: b1, c1, b2, c2 6= 0. Let α, β satisfy condition 19 in Proposition 4.2 and
observe that the values are less than or equal to b1. Let pβ be the greatest

common divisor of (A+b2n+βB)
b1

and B. Observe that it depends on α and not
on n. Then for some computable kβ and for all integers n ≥ Nα,β we have

R⊗α,β(n) =
⋃

0≤i<kβ

{ (A+ b2n+ βB)

b1
+B{0, . . . ,

⌊
n− a1 − βc1

|B|

⌋
}i

∪ (
(A+ b2n+ βB)

b1
kβ + pβN.

(27)
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Proof. The verification of the expression of the Hadamard star for the first four
types is routine. It is clear that for the first two types this expression is rational.
Type 3 is not rational because of Lemma 4.3. The expression and the rationality
for type 4 are direct consequences of Lemma 5.1.The assertion concerning type
5 is a consequence of the following claim.

Claim. With the same hypotheses as Corollary 3.3 the Hadamard star of the
rational relation

{(n, {λn+ µ

ν
,
λn+ µ

ν
+ d, . . . ,

λn+ µ

ν
+ sd}) | n ∈ K}

is rational.
Indeed, for sufficiently large n, we apply Corollary 3.3. The first term of the

union is a finite union of powers of the rational relation

{(n, {λn+ µ

ν
,
λn+ µ

ν
+ d, . . . ,

λn+ µ

ν
+ sd}) | n ∈ K}.

The second term of the union is the restriction to K of the relation

1

ν
[(ν, λ)∗ + (0, µ)] +K × pN.

5.2. Hadamard star of general rational relations

The first result is an immediate consequence of Equation 2.

Lemma 5.3. For all relations (Ri)i=1,...,k we have

( k⋃
i=1

Ri
)⊗

=

k∑
i=1

R⊗i . (28)

Each rational relation is a finite union of simple relations of type 1 up to 5.
If none of these relations is of type 3, by Lemma 5.3 the Hadamard star of the
union is rational.

Corollary 5.4. Let (Ri)i=1,...,k be a family of simple relations of type 1,2,4 or

5. Then
(⋃k

i=1Ri
)⊗

is rational

Now we investigate the case where all of the simple relations are of type 3.

Lemma 5.5. Let (Ri)i=1,...,k be a family of type 3 simple relations with the

same infinite domain of definition. Then
(⋃k

i=1Ri
)⊗

is not rational.

Proof. There exists an infinite rational subset X of the form α + βN for some
α ∈ N and β ∈ N \ {0} in the common domain of definition of the relations. We
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consider the restrictions of the relations to X. Each relation is of the form (25).
By reducing them to the same denominator d we have

for all n ∈ X : (R(n))∗ =
1

d

k∑
i=1

(nci + ei)
∗ . (29)

If the vectors (ci, ei) ∈ N×N are collinear then for some vector (c, e) ∈ Q+×Q+

we have (ci, ei) = ki(c, e) with ki ∈ N. Hence,∑
i∈I

(nci + ei)
∗ =

∑
i∈I

(ki(nc+ e))∗ = (nc+ e)
∑
i∈I

k∗i = (nc+ e){k1, . . . , kn})∗.

Let p be the gcd of the ki’s. Then the ultimate period of the images of the
elements in the restriction of R to X is p(nc+ e). Since n ∈ α+ βN holds, the
set of ultimate periods {p(α + βx) + e | x ∈ N} is infinite and the restriction
cannot be rational by Lemma 4.3.

If there are two noncollinear vectors, say without loss of generality (c1, e1)
and (c2, e2), for all integers n the greatest common divisor of nc1 + e1 and
nc2 + e2 divides the integer c1e2 − c2e1. Therefore for a fixed integer n, the
greatest common divisor p of all nci + ei is again a divisor of c1e2 − c2e1 and
thus assumes only finitely many possible values. By [7] cited in [1, Thm 3.6.4]
for all expressions A∪ t+ pN with A ⊆ [0, t[ defining the submonoid 29 we have

t = Ω(n
k
k−1 ), a contradiction with the conclusion of Lemma 4.3.

There remains to consider the case where the union contains a simple relation
of type 3 and some simple relation of a different type.

Lemma 5.6. Let T =

k⋃
i=1

Ri be union of k simple relations having the same

domain of definition. Assume that R1 is of type 1,2,4 or 5 and that for i =
2, . . . , k, Ri is of type 3. Then the restriction of T⊗ to X is rational.

Proof. For all n ∈ X we have

T⊗(n) = R1(n)∗ +

k∑
i=2

Ri(n)∗ =

k∑
i=2

(R1(n)∗ +Ri(n)∗).

Thus, by the closure property of rational relations under Hadamard sum, it
suffices to consider the special case where k = 2, i.e., R1 is of type 1,2,4 or 5
and R2 is of type 3. The case of type 1 is trivial since under these conditions
X is a singleton. For types 2, 4 and 5 this is a consequence of Lemma 5.1.

5.3. The proof of Theorem 1.1

We now turn to the proof of the theorem and show that it is effective.
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Proof of Theorem 1.1. We are given a rational relation R by a finite number of
systems Σi, i = 1, . . . , k, of the form (12) each defining a relation Ri. Consider

the coarsest refinement of the domains of definition of the Ri’s, say N =
⋃
k

Xk,

which is a union of disjoint rational subsets of N. Now R⊗ is not rational if and
only if there exists some Xk such that the Hadamard star of the restriction of R
to Xk is not rational. By Corollary 5.4 and Lemmas 5.5 and 5.6 this is equivalent
to say that there exists some infinite Xk for which all relations Ri defined on
Xk are of type 3. This is again equivalent to the following: let I be the set of
indices i such that Xk is included in the domain of definition of Ri. Then for
some infinite subset a+ bN ⊆ Xk there exist αi, βi, i ∈ I, αi ∈ Q, βi ∈ Q+ such
that Ri(n) = αi + βin, i.e.,

R(n) =

p⋃
i=1

Ri(n) =
⋃
i∈I

Ri(n) =
⋃
i∈I

αi + βin.

Finally let us observe that the proof can be converted into an algorithm.
Indeed, the above discussion can be reformulated as follows. For each binary
relation Ri defined by the system Σi, its domain of definition along with its type
can be explicitly computed, see Lemma 4.2. Let Y be the union of the domains
of definition of the relations of type 3 and let Z be the union of the domains of
definition of the relations of type different from 3. Then the Hadamard inverse
of R is rational if and only if Y \ Z is finite. Since both Y and Z are rational
subset, this condition is decidable. 2

5.4. Complexity

The complexity of the algorithm deciding whether or not the Hadamard
inverse of a rational relation R is rational depends on the way R is given. We
assume R is defined by k systems of equations as in (12) where all integers are
expressed in binary. Let C be the maximum length of the representations of
the constants such as a1, a2 in (12) and let P be the maximum length of the
representations of the other coefficients such as b1, b2, c1, c2 in (12). We shall
bound the complexity as a function of k,C and P .

We start with an operation whose objective is to reduce the impact of too
large values of constants in the construction of finite automata as alluded above.
This is also why we separated the constants from the other coefficients. Consider
an infinite rational subset of the form

X = A ∪ t+B + pN, A ⊆ [0, t− 1], B ⊆ [0, p− 1],

where p and t are minimal (this is the natural expression associated with the
minimal automaton recognizing X). We assign to X the rational subset

Γ(X) = pN + ((t+B) mod p).
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The notation z mod p, extended to subsets in a natural way, represents the
unique integer in the interval [0, p− 1] which is equal to z modulo p. E.g., with
the set X = {1, 4} ∪ 17 + {1, 3} + 5N we have Γ(X) = {0, 3} + 5N. Observe
that for all x ≥ t we have x ∈ X ⇔ x ∈ Γ(X). Indeed, x ≥ t, x ∈ X implies
x = t+ b+kp for some k ≥ 0 and some b ∈ B. Then dividing t+ b by p leads us
to equality t+ b = `p+ b′ and therefore x = (`+ k)p+ b′ ∈ Γ(X). Conversely,
if x ∈ Γ(X) then x = pu + (t + b) − pv for some b ∈ B and some u, v ∈ N
where pv ≤ t + b < p(v + 1). If x ≥ t we have furthermore u − v ≥ 0, i.e.,
x = t+ b+ (u− v)p ∈ X. The purpose of the notation Γ(X) is to simplify the
coefficients of the rational expression without modifying too much the subset
and to bound the size of the minimal automaton to p. Indeed, with the previous
discussion we have

X \ Y is finite ⇔ Γ(X) \ Γ(Y ) is finite.

Proposition 5.7. Let R be a rational relations given as in the beginning of tis
subsection 5.4.

It is decidable in time O(kC+ 2kP ) whether or not the Hadamard inverse of
R is rational.

Proof. Indeed, by a simple inspection on the coefficients we sort out the k
systems as k′ ≤ k systems defining simple relations of type different from 3, say
R1, . . . , Rk′ and the k − k′ other systems. By the claim at the end of the proof
of Theorem 1.1, it suffices to decide whether or not the subset

k⋃
i=k′+1

Dom(Ri) \
k′⋃
j=1

Dom(Rj) =

k⋃
i=k′+1

Dom(Ri) ∩
k′⋂
j=1

(N \Dom(Rj))

is finite, which is equivalent to decide whether or not the subset

k⋃
i=k′+1

Γ(Dom(Ri)) ∩
k′⋂
j=1

(N \ Γ(Dom(Rj)))

is finite. This is achieved by constructing the finite automaton that is the
direct product of the k minimal automata for all Γ(Dom(Ri)), i = 1, . . . , k. If
Dom(Ri) = a+bN then the minimal automaton for Γ(Dom(Ri)) has b states and
if Dom(Ri) = a+ bN+ cN the minimal automaton for Γ(Dom(Ri)) has gcd(b, c)
states, i.e., in both cases it has O(2P ) states, thus the overall construction has
complexity O((2P )k) = O(2kP ) because computing the greatest common divisor
of two integers is linear in the representations of the integers.

Now we need to determine the type to which each Ri belongs. This is
done by a simple inspection of the coefficients ai, bi, ci, i = 1, . . . , k. Finally, in
order to construct the minimal automata Γ(Dom(Ri)) we consider two cases.
If Dom(Ri) is of the form a + bN it suffices to compute the remainder of the
division of a by b. Otherwise, if it is of the form a + bN + cN it suffices to
compute the remainder of a in the division of a by d = gcd(b, c). These k last
computations have complexity O(kC).
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