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Suppose that for some ¢ < n, agay -~ a2, € U; and ¢t; = 0, contradicting rule
(3) of (’. This means that there is some U] such that

T/(Clo,al, .. .,Cle_l,UZ'/) = (1,&0&1 . 'Clzn).

We can then change U; for U/. This will change some further moves in G’ as we
follow the strategy 7/, but none of the moves (ag, ay, ..., as,) by the definition
of . Playing in this way, Player II will keep all his commitments because his
strategy is a winning one and win G’, thus winning G. O

One may note that the proof above is not effective in any sense, because of
the uncountably many choices required by the simulation on the game G’. Con-
sequently, the previous proof gives a general existence result on determinacy but
it does not address the problem of the computational complexity of a solution.

4 Games on graphs.

We now consider games played on graphs, in which each player chooses in turn
a vertex adjacent to the current vertex. The abstract games G/(X) considered
until now can be considered as games on the Cayley graph of A*. But actually,
a game G(X) such that X is an w-rational set can also be considered as a game
on a finite graph by playing the game on an automaton recognizing X . Thus the
notion of a game played on a graph will give us more flexibility by allowing us
to choose the more appropriate graph to play the game. As a counterpart, the
properties of the game graph obtained by playing the game on an automaton
will the depend on the automaton chosen to recognize the winning set.

Let us define formally a game on a graph. A graph GG = (V, F) on a countable
set of vertices V is called an arena or game graph if

(1) it is bipartite, i.e. its vertex set V' is partitionned into V; and V2 and the
edges connect vertices belonging to different subsets.

(2) there is at least one edge starting from every vertex (i.e. there are no dead

ends).

If G is an arena, a game on G is given by a set X of winning paths. We shall
always suppose that the set of winning paths does not depend on the starting
vertex, 1.e. that the set X is suffix-closed. All the particular winning sets
considered later have this property.

We consider that Player I plays on vertices in V; and Player II on vertices in
Va. A play is thus an infinite path in . Thus, if the first vertex is in V1, then
Player I plays first and otherwise, Player II plays first. Player I wins the play if
it 1s a winning path, i.e. belongs to X. Otherwise, Player II wins the play.

Thus a game on a graph is essentially a particular case of the notion of game
defined in Section 2, the alphabet being the set of vertices of the graph. The
only difference is that the first player is not always Player 1. This defines the
notion of a strategy and of a winning strategy for each player as a function from
the set of paths of even (or odd length) into the set V' of vertices.

Example 4.1 Let G be the graph of Figure 4.1. We use simple circles for the
positions of Player T and double ones for those of Player II. Thus V} = {1,3}
and Vo = {2}.
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Figure 4.1. A game graph.

If X is the set of paths passing infinitely often by 1, Player II wins the game by
always choosing vertex 3.

Let (G be a game graph. A memoryless strategy, say for Player 1, 1s a strategy
which depends only on the last vertex of the path. When it is moreover a winning
strategy, we will speak of a memoryless winning strategy. Actually, a memoryless
strategy can be considered as a subgraph since it consists in selecting one edge
for each vertex on which Player I makes a move.

Formally, we say that a pair (P, F') consisting of a set P C V of vertices and
a subset F'C EN (P x P) is a winning policy for Player T if

(a) for each ¢ € PNV, there is exactly one edge in F' starting at g.
(b) for each ¢ € P N V4, all edges starting at ¢ are in F.
(c) all paths in (P, F') are winning for Player I.

The corresponding notion for Player II is symmetrical. It is clear that each
player has a memoryless winning strategy from vertex p if and only if he or she
has a winning policy (P, F') such that p € P (we use here the hypothesis that
the set of winning paths is suffix-closed).

We say that a player has a winning policy on a set W if he or she has a
winning policy of the form (W, F).

Example 4.2 In the game of Example 4.1, Player IT has a memoryless winning
strategy from every vertex.

The following auxiliary result allows one to merge different memoryless win-
ning strategies into one winning policy. It shows that there is a maximal set on
which a player has a winning policy.

Proposition 4.1 Fach player has a winning policy on the set of all vertices
from which he or she has a memoryless winning strategy.

Proof. Let W be the set of all vertices from which Player I has a memoryless
winning strategy. Thus, for each p € W we can choose a winning policy (P, Fp)
for Player I such that p € P, (note that this requires the axiom of choice). Since
the set W, as a subset of V| is countable, we may index the set of these strategies
by integers. For each vertex p € W N Vi, we select the pair (Py, F;) such that
p € P, which has minimal index. This defines a unique edge going out of p. Let
F be the set formed by all edges of this type and by those in (W N Va2) x W.
Then the pair (W, F') is a winning policy on W for Player I.
The same result is of course true for Player II. O

For a vertex set U, we define the attractor of U for player I, denoted A; (G, U),
or simply A1 (U), as the set of vertices from which Player T can force a visit in
U. The complement W of A;(U) is a set which is a trap for Player I: Player 11
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can force Player I to remain inside W. This implies that for each vertex of W,
there is at least one edge leading to a vertex in W. Thus the subgraph restricted
to W is again a game graph, sometimes called a subgame.

The attractor of U for Player TI, denoted by A2(U7), is defined in the same
way. In the same way, a trap for Player II 1s a set X of vertices such that Player
I can force Player IT to remain inside X. The complement of A5(U) is a trap
for Player II.

4.1 Simple games.

It is interesting to come back with these new definitions to the simple games
defined by open or Ils-sets that we have treated before.

Let us first consider open games. Such a game can always be obtained as a
game on a graph (G in which the set of winning paths is formed by the paths
which pass through a given set I/ C V' of vertices. Let us denote by (G, F') such
a game.

Proposition 4.2 In an open game (G, F), Player I has a memoryless winning
strategy on the attractor A1(F') and Player IT on the complement.

Proof. The winning strategies of Players I and II can be computed using rank
functions defined directly using definitions similar to those of Section 3.1. In-
deed, the rank of a vertex ¢ can be defined as the smallest integer ¢ such that
g € W; where W; is an increasing sequence of subsets of @) defined by Wy = F
and inductively

Wipit =W, U{p€ Qi |qe€W; forsome (p,q) € F'}
U{p € Q2| g€ W, for every (p,q) € E}.

The attractor of F'is Ug>oWi.

The strategy of Player I on this set consists in decreasing the rank. The
strategy of Player I on the complement consists in keeping off the positions of
A1(F). Both strategies are memoryless strategies. O

The case of Ily-games corresponds to games on a graph G in which the
winning paths are those which pass infinitely often through F'. Let us consider
here the case where the graph G is finite. For a set W of vertices, we denote
by R(W) the set of vertices from which Player T can force a visit to W after a
path of length > 1. The set R(V) is close to the attractor A; (1) and can be
computed in a similar way. We then consider the decreasing sequence of sets
defined by W7 = F and

Wipr = R(F O W;)

Since the set @) of vertices is finite, the sequence Wj is stationnary. Let & be such
that Wy = Wi41. Then Player I has a memoryless winning strategy from the
set U = Wy, consisting in reaching a vertex of FNU. Player Il has a memoryless
winning strategy on the other vertices. It consists in avoiding U.

Example 4.3 Let G be the graph represented in Figure 4.2 where 2,4 are
positions of Player I and 1, 3,5 are positions of Player II. Player I wins if vertex
1 1s visited infinitely often. Player I can force an infinity of visits of 1 from 1
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and 2 but not from 3,4 or 5. Thus Player I has a memoryless strategy on {1, 2}
and Player IT on {3,4,5}.

oullsO Wl o Sl O Wlls O

Figure 4.2. A game graph.

4.2 Winning conditions.

We shall consider games on graphs in which the winning set is defined through
a finite set of colors in the following way. Let G = (V| E) be a game graph and
let ¢ : V — @ be a map from the set of vertices into a finite set @ of colors. If
x is an infinite path on G, we denote by Inf.(z) = Inf(c(x)) the set of infinitely
repeated colors in x.

We choose a particular collection F of subsets of @) and we define the set
X of winning paths as those paths in G such that Inf.(z) belongs to F. In
this section, we study particular classes F of sets of states used to define the
winning paths. This game will be denoted by (G, F).

We shall denote by F¢ the complement of F in P((), that is, the set of
subsets of ) which are not in F. We define the split tree of F as follows. It is
a tree T whose vertices are pairs (1, X) for X € F or (2, X) for X & F. The
root of T'is (o, @) with o = 1 or 2 according to @ € F or not. Inductively, if
z=(1,X) is a vertex of T, then

(1) if X contains subsets which do not belong to F, then the children of x are
all the (2,Y)’s where Y is a maximal subset of X which do not belong to
F.

(2) otherwise, x is a leaf of T'.
A symmetrical condition holds if # = (2, X)

(1) if X contains subsets which belong to F, then the children of z are all the
(1,Y) where Y is a maximal subset of X which is in F.

(2) otherwise, x is a leaf of T'.

Since the collection F is finite, the split tree of F has a finite heigth.

Example 4.4 Let ¢ be the graph of Figure 4.1 with F = {{1,2,3}}. The
corresponding split tree is represented in Figure 4.3. If F = {{1,2,3},{1}}, the
split tree is represented in Figure 4.4.
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(1,{1,2,3})

Figure 4.3. A split tree.

(1,{1,2,3})

(1, {1}) (1, {1})

Figure 4.4. Another split tree.

The following proposition shows that the collection F can be computed from
its split tree T

Proposition 4.3 A set X is in F if and only if there is a verter x = (1,Y)
such that X CY and X ¢ 7 for every child (2,7) of x.

Proof. If X satisfies the condition, then X has to be in F since otherwise there
would be a child (2, 7) of « with X C Z. Thus X € F.

Conversely, let x = (1,Y) be anode of T as low as possible such that X C V.
Such a node exists since the root satisfies this condition. No child z = (2, 7) of
x can satisfy X C 7 since otherwise z would have a child (1, W) with X C W,
a contradiction with the choice of . Thus the property holds for x. O

Example 4.5 Let FC Qand let F = {X C Q| X N F # }. The split tree of
F has two vertices: the root (1, Q) with one child (2,@\ F).

Let P = (L;, Ri)ier be a family of pairs of subsets of a set . A subset X of
a set @ is said to satisfly Streett condition S(P) if for every i € I, L, N X # ( or
R; N X = . Thus a Streett condition is just the negation of a Rabin condition
(see Chapter I). A collection F of subsets of @ is said to be expressible by a
Streett condition if there is a set P of pairs such that X € F if and only if X
satisfies S(P).
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Proposition 4.4 A collection F of nonempty subsets of a finite set Q) is ex-
pressible by a Streett condition if and only if it is closed under union.

Proof. If X and Y satisfy the Streett condition S(P), then so does X UY.
Indeed, if P = (L;, Ri)icr, then for every i, either one of X,V meets L; and so
does X UY, or none of them meets U; and neither does X UY.

Conversely, let F be a collection of nonempty subsets of @ closed under
union and let 7" be the split tree of F¢. Let I be the set of all subsets U of
@ such that (1,U) is a node of T (thus none of the U’s are in F). Each node
(1,U) can have at most one child since F is closed under union. Let V7 be the
label of this child if there is one and let Viy be the empty set otherwise.

Then, by Proposition 4.3, X € F¢ if and only if, for some U, X C U and
X ¢ V. Let Ly = U¢ and Ry = Vi5. Then X € F*¢ if and only if for some
U, one has X "Ry # 0 and X N Ly = . Thus X € F if and only if for each
Uel onehas X N Ly #0 or X N Ry = §. Tt follows that X is defined by the
Streett condition S(P) with P = (Ly, Ry)ver. O

Let C be an increasing sequence of subsets of )
C: BhCF CEyCFyC...CE,CF,

A subset P of @ is said to satisfy the Rabin chain condition C if there is an
index k such that PN Ey = 0 and P N Fy # 0.

There 1s an alternative formulation of Rabin chain condition using a parity
condition. Given a function p : @ — N, we say that X satisfies the parity
condition p if and only if

min { p(¢) | ¢ € X }is odd

This formulation of the chain condition makes it extremely easy to use since it
entails a very compact representation.

We say that a collection F of subsets of ) is expressible by a Rabin chain
condition, (resp. by a parity condition ) if there exists a chain C such that
X € F if and only if X satisfies C (resp. p).

Proposition 4.5 Let F be a collection of finite nonempty subsets of a set Q.
The following conditions are equivalent:

(1) F and F¢ are closed under union.

(2) F can be defined by a Rabin chain condition.
(3) F can be defined by a parity condition.

Proof. (1) implies (2). Let T be the split tree of the collection F. Since F and
F¢ are closed under union, each vertex of T" has at most one child. It follows
that 7" has exactly one leaf. We may suppose that @ € F¢, so that the root of
Tis (2,Q). Let ((2, Vo), (1,U1), (2,11),...) be the unique path from the root to
the leaf. For ¢ > 0, let I; = Uf and E; = V,°. Then the sequence C formed by
Ey C Fy C -+ i1sincreasing and, by Proposition 4.3, one has X € F if and only
if X satisfies C. Thus F can be defined by a Rabin chain condition.
(2) implies (3). Let

EECHCE,CF,C...CE,CF,
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be an increasing sequence of subsets of @) defining a Rabin chain condition. Let
us define a function g : @ — I by setting, for 1 <k < n,

0 ifge E
2k—2 ifqg€ Ex\ Fr—q and k> 1
% —1 ifg€ Fi\ By

2n ifg¢ F,

n(q) =

Then a set X satisfies C if and only if p(X) is odd. Thus X is defined by a
parity condition.

(3) implies (1). TIf F is defined by a parity condition, then F and F¢ are
clearly closed under union. 0O

4.3 Parity games.

We now consider games on graphs, called parity games, in which the winning
set 1s defined by a parity or Rabin chain condition defined by a chain C

EiCFC...CE,CF,.

More precisely, let G = (V| E) be a game graph and let ¢ : V' — @Q be a coloring.
The parity game defined by C is the game (G, F), where F is the collection
of subsets of @) defined by the Rabin chain condition C. Therefore, the set
X of winning paths consists of the paths z such that Inf.(z) N E =  and
Inf.(z) N Fy # 0 for some k € {1,...,n}.

Observe that any play visiting infinitely often Fj-colored vertices is winning
for Player II. Indeed, let 2 be a path in G and let P = Inf.(z). If PNE} # (), any
of the sets Ej 1s met infinitely often and thus there can be no index k satisfying
the condition PN Ey, = 0.

Theorem 4.6 In a parity game, one of the players has a memoryless winning
strateqy from each verter.

Proof. We shall prove by induction on the length of the chain C that there is a
partition @ = W1 UW5 on the set of vertices such that Player I has a memoryless
winning strategy on W and Player II has one on W5. We make the assumption
that F; # (). Otherwise, we would exchange the roles of Players I and IT in the
forthcoming discussion. Thus, whenever we find a game with a chain of length
n and E; = (), we can invoke the induction hypothesis.

If n = 0, then Player II wins anyway.

Let W be the set of vertices from which Player I has a memoryless winning
strategy. By Proposition 4.1, Player I has a winning policy on the set W. We
want to prove that Player II has a memoryless winning strategy from every
vertex in L = W*°.
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Figure 4.5. The memoryless strategies.

We first notice that, for Player I, W is its own attractor. Thus L is a trap
for Player I. This implies that the graph induced by G on L is a game graph G’.
Let Y be the attractor for Player IT of the set E; inside the game G.

Y = Ay(G', LN Ey)

Let finally Z be the complement of Y in L. Since Z N F; = 0, we may apply
the induction hypothesis to the game restricted to Z. There can be no positions
in Z on which Player I has a winning strategy because Z is disjoint from W.
Thus Player IT has a memoryless winning strategy on 7 (provided the game
remains within 7). Let us consider the strategy for Player IT on L consisting in
following the winning strategy on Z and to reach E; on the vertices of Y. This
is clearly a memoryless strategy. It is actually winning because either the play
passes infinitely often through F; or it stays out of ¥ from some moment on
and then 1t stays within Z and is thus winning for Player II. O

4.4 Parity automata.

An m-parity automaton is an automaton A = (Q, 4, ) where p is a function
from @ into {0,1,...,m}. For a path ¢ in A, we define

p(e) = max{u(q) | ¢ occurs infinitely often in c}.

By definition, a path ¢ in A is successful if it starts at ¢ and the integer p(c) is
odd. As for parity games, an equivalent definition is obtained by considering an
increasing sequence C = F1 C Fy C ... C E, C F,. A Rabin chain automaton
is an automaton A = (Q, ¢, C), with C as above. A path in A is final if the set of
infinitely repeated states satisfies the Rabin chain condition C. As a consequence
of Proposition 4.5, any parity automaton can be viewed as a Rabin automaton
and vice versa.

We shall use here a construction that allows one to build a parity automaton
from a Muller automaton. We shall meet this construction later in Chapter V.
It is based on the notion of a memory extension of a finite automaton.

Let A= (Q, i, F) be a Muller automaton. We build a deterministic automa-
ton BB as follows. Let Arr(Q) denote the set of sequences of elements of @, each
appearing at most once (sometimes called arrangements). The set of states of
Bis S ={(u,v) | uv € Arr(Q)}. An element of S can be called last appearance
record since the transitions are defined in such a way that the arrangement uv
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gives the order of last occurrence of each state. The division of uv into a pair
(u,v) marks the previous position of the last state. The initial state of B is
the pair (£,4) where ¢ is the initial state of A and where £ denotes the empty
sequence. The transitions are defined as follows. Let (u,v) € S and a € A. Let
p be the last element of uv and let ¢ = p-a. Then

(u,0)-a = (z,yq) if wv=2qy
’ (uv,q) ifq & uv

The automaton B is called the memory extension of A.

Example 4.6 The memory extension of the automaton .4; of Figure 4.6 is
pictured in Figure 4.7.

a

Figure 4.6. A Muller automaton.

Figure 4.7. The memory extension of the automaton A;.

The fundamental property of the memory extension is the following one. For a
path ¢ in an automaton, we denote by Inf(c) the set of states occurring infinitely
often in ¢. In the following proposition, we use the notation v to denote the set
of elements appearing in a sequence v.

Proposition 4.7 Let A be an automaton and let B be its memory extension.
Let ¢ be an initial path in A and let ¢’ be the corresponding path in B. Then
T = Inf(c) if and only if all states (u,v) € Inf(c') satisfy v C T and at least one
satisfies v =T

Proof. Let (qo,q1,...) be the sequence of states appearing along ¢. We first

observe that all states of ¢’ are ultimately of the form (uv},v))) with u = S and

n'n
vy = T, where v, = vjv}] and where S is the set of states appearing finitely

often along ¢. Next, for each state of this form with v], # &, there is later on
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the path a state of the form (u,v,,). Let indeed v}, = qu’ with ¢ € @. Since
q € T, there 1s an occurrence of ¢ on ¢ later on. For the first index m > n such
that ¢m, = ¢, we have v/, =¢.

This shows that the condition is necessary and sufficient. 0O

We define a chain £y C Fy C ---C E, C F,, C --- as follows. For i > 0, let
F; be the set of states (u,v) of B such that either |u| <ior |[u|=17¢and v & F.
And let F; be the union of F; and the set of states (u,v) such that |u| = ¢ and
v € F. This defines a chain automaton which is clearly equivalent with A.

We have thus proved the following result.

Theorem 4.8 For any Muller automaton, there exists an equivalent parity au-
tomaton.

It would not change anything to use as set of states the pairs (u,v) where
uv 1s a permutation of (). In this case, the initial state can be chosen as any
of the states of the form (u,vi), where ¢ is the initial state. This can be used
to reduce the number of states of the resulting automaton, as in the following
example.

Example 4.7 Let A = (Q, 7, F) be the Muller automaton represented in Figure
4.8 with i = 2 and F = {1,2,3}.

b b

Figure 4.8. A Muller automaton.

Tt recognizes the set of infinite words in (ab+ ba)® with both an infinite number
of occurrences of ab and ba.

The memory extension BB of A is represented in Figure 4.9. Actually, we have
represented only the states which are permutations of @. Both states (3,12) or
(1,32) can be used as initial state.
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Figure 4.9. The memory extension.

The chain reduces to Fy = {(£,123), (¢,321)} since Fy = §§ and Fy = Fy. Thus
B is actually a Buchi deterministic automaton.

4.5 Rational winning strategies.

Let G be a game graph in which the winning condition is given in Muller form,
i.e. by a collection F of subsets of () such that Player I wins the play if the set
of infinitely repeated vertices belongs to F. The following example shows that,
in general, there 1s no memoryless winning strategy.

Example 4.8 Let GG be the game graph of Figure 4.10 with F = {{1,2,3}}.
Player I has a winning strategy from each vertex consisting in choosing alter-
nately 1 and 3 from vertex 2. However, there is no memoryless strategy since
1t would force Player I to always choose either 1 or 3 after 2, resulting in a loop

either on {1,2} or on {2,3}.

OWlilso Wl O

Figure 4.10. Player | has no memoryless strategy.

We now come back to abstract games given by the winning set X C A¥. A
rational or finite memory strategy for Player I is given by a finite deterministic
automaton § = (M, ,d) and a function

f:M—=A
We say that Player I follows the strategy (S, f) in the play aga; - - - if for every

n >0, azp = f(m) where m = 6(4,ap -+ - aan_1).
We prove the following result, known as the Buchi-Landweber theorem.
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Theorem 4.9 In a rational game, one of the players has a rational winning
strateqy.

Proof. By Theorem 4.8, there is a parity automaton A recognizing X. We may
suppose, by duplicating the states that the set of states @) 1s partitionned into
@ = Q1 UQ; in such a way that the initial state is in 1 and that the graph
of A is bipartite. The game G(X) defines a parity game on the graph of A and
this game is equivalent to the original one. By Theorem 4.6, one of the players,
say Player I, has a memoryless winning strategy in this game. This player has a
rational winning strategy in G(X). Tt uses the automaton A and the following
function f: @1 — A (the value of f on @5 is irrelevant). For p € @1, there is
a state ¢ € ()2 given by the memoryless strategy of Player 1. Let a be a symbol
such that (p,a,q) is a transition of .A. Then we define f(p) = a. This is clearly
a rational winning strategy for Player I. O

Example 4.9 Let X be the set recognized by the Muller automaton of Example
4.7. The graph of the automaton coincides with the graph of Example 4.8 and
the winning condition is the same. Accordingly, Player T wins G(X) by choosing
alternately the states 1 and 3, i.e. by playing alternately a and b (or any other
strategy ensuring to play infinitely often a and b).

A parity automaton recognizing X is represented in Figure 4.9. This time,
we have a memoryless strategy on the graph of the automaton. It consists in
playing b in (1,32) and a in (3, 12). Tt happens to be the same strategy as above,
resulting in one of the two possible plays (abba)® or (baab)®.

5 Wadge games.

Let X C AY and Y C BY. The Wadge game G(X,Y) is a game on AU B
defined as follows. Player I first chooses ay € A. Then Player II chooses
by € B. Player I chooses a; € A, and so on. Thus a play in this game is a
sequence agbgaiby - - € (AU B)* which is the interleaving of the two sequences
x = agai--- and y = boby --- € BY played by each player. Player II wins if
either (r€ X andyeY)or (x ¢ X and y ¢ V).

Such a game can be viewed as a game on the alphabet AU B with a rule
forcing Player I to choose a symbol from A and Player II a symbol from B.
Observe that, if X and Y are Borel sets, then so is the winning set 7 C (AUB)“.

These games are strongly related with the following notion. We say that
X C AY Wadge reduces or simply reduces to Y C BY, denoted (X, A¥) <y
(Y, B¥) or simply X <y Y if there exists a continuous function f : A — B¥
such that

X=/r71)
The function f 1s called a reduction. It is important that the definition of the
reduction is relative to the embedding of X in A¥ (see Example 5.2 below).

Obviously, X <y Y if and only if X° <y Y°. It is possible to have
simultaneously X <y Y and Y <y X, in which case X and Y are called
Wadge equivalent, denoted X =w Y. The =y -class of X is called the Wadge
class of X.

The class of X¢ and the class of X are called dual. The class of X is called
self-dual if X =y X°.



