
4. GAMES ON GRAPHS. 181Suppose that for some i < n, a0a1 � � �a2n 62 Ui and ti = 0, 
ontradi
ting rule(3) of G0. This means that there is some U 0i su
h that� 0(a0; a1; : : : ; a2i+1; U 0i) = (1; a0a1 � � �a2n):We 
an then 
hange Ui for U 0i . This will 
hange some further moves in G0 as wefollow the strategy � 0, but none of the moves (a0; a1; : : : ; a2n) by the de�nitionof G0. Playing in this way, Player II will keep all his 
ommitments be
ause hisstrategy is a winning one and win G0, thus winning G.One may note that the proof above is not e�e
tive in any sense, be
ause ofthe un
ountably many 
hoi
es required by the simulation on the game G0. Con-sequently, the previous proof gives a general existen
e result on determina
y butit does not address the problem of the 
omputational 
omplexity of a solution.4 Games on graphs.We now 
onsider games played on graphs, in whi
h ea
h player 
hooses in turna vertex adja
ent to the 
urrent vertex. The abstra
t games G(X) 
onsidereduntil now 
an be 
onsidered as games on the Cayley graph of A�. But a
tually,a game G(X) su
h that X is an !-rational set 
an also be 
onsidered as a gameon a �nite graph by playing the game on an automaton re
ognizing X. Thus thenotion of a game played on a graph will give us more 
exibility by allowing usto 
hoose the more appropriate graph to play the game. As a 
ounterpart, theproperties of the game graph obtained by playing the game on an automatonwill the depend on the automaton 
hosen to re
ognize the winning set.Let us de�ne formally a game on a graph. A graph G = (V;E) on a 
ountableset of verti
es V is 
alled an arena or game graph if(1) it is bipartite, i.e. its vertex set V is partitionned into V1 and V2 and theedges 
onne
t verti
es belonging to di�erent subsets.(2) there is at least one edge starting from every vertex (i.e. there are no deadends).If G is an arena, a game on G is given by a set X of winning paths. We shallalways suppose that the set of winning paths does not depend on the startingvertex, i.e. that the set X is suÆx-
losed. All the parti
ular winning sets
onsidered later have this property.We 
onsider that Player I plays on verti
es in V1 and Player II on verti
es inV2. A play is thus an in�nite path in G. Thus, if the �rst vertex is in V1, thenPlayer I plays �rst and otherwise, Player II plays �rst. Player I wins the play ifit is a winning path, i.e. belongs to X. Otherwise, Player II wins the play.Thus a game on a graph is essentially a parti
ular 
ase of the notion of gamede�ned in Se
tion 2, the alphabet being the set of verti
es of the graph. Theonly di�eren
e is that the �rst player is not always Player I. This de�nes thenotion of a strategy and of a winning strategy for ea
h player as a fun
tion fromthe set of paths of even (or odd length) into the set V of verti
es.Example 4.1 Let G be the graph of Figure 4.1. We use simple 
ir
les for thepositions of Player I and double ones for those of Player II. Thus V1 = f1; 3gand V2 = f2g.



182 CHAPTER IV. GAMES AND STRATEGIES1 2 3Figure 4.1. A game graph.If X is the set of paths passing in�nitely often by 1, Player II wins the game byalways 
hoosing vertex 3.Let G be a game graph. A memoryless strategy, say for Player I, is a strategywhi
h depends only on the last vertex of the path. When it is moreover a winningstrategy, we will speak of amemoryless winning strategy. A
tually, a memorylessstrategy 
an be 
onsidered as a subgraph sin
e it 
onsists in sele
ting one edgefor ea
h vertex on whi
h Player I makes a move.Formally, we say that a pair (P; F ) 
onsisting of a set P � V of verti
es anda subset F � E \ (P � P ) is a winning poli
y for Player I if(a) for ea
h q 2 P \ V1, there is exa
tly one edge in F starting at q.(b) for ea
h q 2 P \ V2, all edges starting at q are in F .(
) all paths in (P; F ) are winning for Player I.The 
orresponding notion for Player II is symmetri
al. It is 
lear that ea
hplayer has a memoryless winning strategy from vertex p if and only if he or shehas a winning poli
y (P; F ) su
h that p 2 P (we use here the hypothesis thatthe set of winning paths is suÆx-
losed).We say that a player has a winning poli
y on a set W if he or she has awinning poli
y of the form (W;F ).Example 4.2 In the game of Example 4.1, Player II has a memoryless winningstrategy from every vertex.The following auxiliary result allows one to merge di�erent memoryless win-ning strategies into one winning poli
y. It shows that there is a maximal set onwhi
h a player has a winning poli
y.Proposition 4.1 Ea
h player has a winning poli
y on the set of all verti
esfrom whi
h he or she has a memoryless winning strategy.Proof. Let W be the set of all verti
es from whi
h Player I has a memorylesswinning strategy. Thus, for ea
h p 2W we 
an 
hoose a winning poli
y (Pp; Fp)for Player I su
h that p 2 Pp (note that this requires the axiom of 
hoi
e). Sin
ethe setW , as a subset of V , is 
ountable, we may index the set of these strategiesby integers. For ea
h vertex p 2 W \ V1, we sele
t the pair (Px; Fx) su
h thatp 2 Px whi
h has minimal index. This de�nes a unique edge going out of p. LetF be the set formed by all edges of this type and by those in (W \ V2) �W .Then the pair (W;F ) is a winning poli
y on W for Player I.The same result is of 
ourse true for Player II.For a vertex set U , we de�ne the attra
tor ofU for player I, denoted A1(G;U ),or simply A1(U ), as the set of verti
es from whi
h Player I 
an for
e a visit inU . The 
omplement W of A1(U ) is a set whi
h is a trap for Player I: Player II
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an for
e Player I to remain inside W . This implies that for ea
h vertex of W ,there is at least one edge leading to a vertex inW . Thus the subgraph restri
tedto W is again a game graph, sometimes 
alled a subgame.The attra
tor of U for Player II, denoted by A2(U ), is de�ned in the sameway. In the same way, a trap for Player II is a set X of verti
es su
h that PlayerI 
an for
e Player II to remain inside X. The 
omplement of A2(U ) is a trapfor Player II.4.1 Simple games.It is interesting to 
ome ba
k with these new de�nitions to the simple gamesde�ned by open or �2-sets that we have treated before.Let us �rst 
onsider open games. Su
h a game 
an always be obtained as agame on a graph G in whi
h the set of winning paths is formed by the pathswhi
h pass through a given set F � V of verti
es. Let us denote by (G;F ) su
ha game.Proposition 4.2 In an open game (G;F ), Player I has a memoryless winningstrategy on the attra
tor A1(F ) and Player II on the 
omplement.Proof. The winning strategies of Players I and II 
an be 
omputed using rankfun
tions de�ned dire
tly using de�nitions similar to those of Se
tion 3.1. In-deed, the rank of a vertex q 
an be de�ned as the smallest integer i su
h thatq 2 Wi where Wi is an in
reasing sequen
e of subsets of Q de�ned by W0 = Fand indu
tivelyWi+1 =Wi [ fp 2 Q1 j q 2Wi for some (p; q) 2 Eg[ fp 2 Q2 j q 2Wi for every (p; q) 2 Eg:The attra
tor of F is [k�0Wk.The strategy of Player I on this set 
onsists in de
reasing the rank. Thestrategy of Player II on the 
omplement 
onsists in keeping o� the positions ofA1(F ). Both strategies are memoryless strategies.The 
ase of �2-games 
orresponds to games on a graph G in whi
h thewinning paths are those whi
h pass in�nitely often through F . Let us 
onsiderhere the 
ase where the graph G is �nite. For a set W of verti
es, we denoteby R(W ) the set of verti
es from whi
h Player I 
an for
e a visit to W after apath of length � 1. The set R(W ) is 
lose to the attra
tor A1(W ) and 
an be
omputed in a similar way. We then 
onsider the de
reasing sequen
e of setsde�ned by W1 = F and Wi+1 = R(F \Wi)Sin
e the set Q of verti
es is �nite, the sequen
e Wi is stationnary. Let k be su
hthat Wk = Wk+1. Then Player I has a memoryless winning strategy from theset U = Wk 
onsisting in rea
hing a vertex of F \U . Player II has a memorylesswinning strategy on the other verti
es. It 
onsists in avoiding U .Example 4.3 Let G be the graph represented in Figure 4.2 where 2; 4 arepositions of Player I and 1; 3; 5 are positions of Player II. Player I wins if vertex1 is visited in�nitely often. Player I 
an for
e an in�nity of visits of 1 from 1



184 CHAPTER IV. GAMES AND STRATEGIESand 2 but not from 3; 4 or 5. Thus Player I has a memoryless strategy on f1; 2gand Player II on f3; 4; 5g.1 2 3 4 5Figure 4.2. A game graph.4.2 Winning 
onditions.We shall 
onsider games on graphs in whi
h the winning set is de�ned througha �nite set of 
olors in the following way. Let G = (V;E) be a game graph andlet 
 : V ! Q be a map from the set of verti
es into a �nite set Q of 
olors. Ifx is an in�nite path on G, we denote by Inf
(x) = Inf(
(x)) the set of in�nitelyrepeated 
olors in x.We 
hoose a parti
ular 
olle
tion F of subsets of Q and we de�ne the setX of winning paths as those paths in G su
h that Inf
(x) belongs to F . Inthis se
tion, we study parti
ular 
lasses F of sets of states used to de�ne thewinning paths. This game will be denoted by (G;F).We shall denote by F
 the 
omplement of F in P(Q), that is, the set ofsubsets of Q whi
h are not in F . We de�ne the split tree of F as follows. It isa tree T whose verti
es are pairs (1; X) for X 2 F or (2; X) for X 62 F . Theroot of T is (�;Q) with � = 1 or 2 a

ording to Q 2 F or not. Indu
tively, ifx = (1; X) is a vertex of T , then(1) if X 
ontains subsets whi
h do not belong to F , then the 
hildren of x areall the (2; Y )'s where Y is a maximal subset of X whi
h do not belong toF .(2) otherwise, x is a leaf of T .A symmetri
al 
ondition holds if x = (2; X)(1) if X 
ontains subsets whi
h belong to F , then the 
hildren of x are all the(1; Y ) where Y is a maximal subset of X whi
h is in F .(2) otherwise, x is a leaf of T .Sin
e the 
olle
tion F is �nite, the split tree of F has a �nite heigth.Example 4.4 Let G be the graph of Figure 4.1 with F = ff1; 2; 3gg. The
orresponding split tree is represented in Figure 4.3. If F = ff1; 2; 3g; f1gg, thesplit tree is represented in Figure 4.4.



4. GAMES ON GRAPHS. 185(1; f1; 2; 3g)(2; f1; 2g) (2; f2; 3g) (2; f1; 3g)Figure 4.3. A split tree.(1; f1; 2; 3g)(2; f1; 2g)(1; f1g) (2; f2; 3g) (2; f1; 3g)(1; f1g)Figure 4.4. Another split tree.The following proposition shows that the 
olle
tion F 
an be 
omputed fromits split tree T .Proposition 4.3 A set X is in F if and only if there is a vertex x = (1; Y )su
h that X � Y and X 6� Z for every 
hild (2; Z) of x.Proof. If X satis�es the 
ondition, then X has to be in F sin
e otherwise therewould be a 
hild (2; Z) of x with X � Z. Thus X 2 F .Conversely, let x = (1; Y ) be a node of T as low as possible su
h that X � Y .Su
h a node exists sin
e the root satis�es this 
ondition. No 
hild z = (2; Z) ofx 
an satisfy X � Z sin
e otherwise z would have a 
hild (1;W ) with X � W ,a 
ontradi
tion with the 
hoi
e of x. Thus the property holds for x.Example 4.5 Let F � Q and let F = fX � Q j X \F 6= ;g. The split tree ofF has two verti
es: the root (1; Q) with one 
hild (2; Q n F ).Let P = (Li; Ri)i2I be a family of pairs of subsets of a set Q. A subset X ofa set Q is said to satisfy Streett 
ondition S(P) if for every i 2 I, Li \X 6= ; orRi \X = ;. Thus a Streett 
ondition is just the negation of a Rabin 
ondition(see Chapter I). A 
olle
tion F of subsets of Q is said to be expressible by aStreett 
ondition if there is a set P of pairs su
h that X 2 F if and only if Xsatis�es S(P).
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olle
tion F of nonempty subsets of a �nite set Q is ex-pressible by a Streett 
ondition if and only if it is 
losed under union.Proof. If X and Y satisfy the Streett 
ondition S(P), then so does X [ Y .Indeed, if P = (Li; Ri)i2I , then for every i, either one of X;Y meets Li and sodoes X [ Y , or none of them meets Ui and neither does X [ Y .Conversely, let F be a 
olle
tion of nonempty subsets of Q 
losed underunion and let T be the split tree of F
. Let I be the set of all subsets U ofQ su
h that (1; U ) is a node of T (thus none of the U 's are in F). Ea
h node(1; U ) 
an have at most one 
hild sin
e F is 
losed under union. Let VU be thelabel of this 
hild if there is one and let VU be the empty set otherwise.Then, by Proposition 4.3, X 2 F
 if and only if, for some U , X � U andX 6� VU . Let LU = U 
 and RU = V 
U . Then X 2 F
 if and only if for someU , one has X \RU 6= ; and X \ LU = ;. Thus X 2 F if and only if for ea
hU 2 I, one has X \ LU 6= ; or X \RU = ;. It follows that X is de�ned by theStreett 
ondition S(P) with P = (LU ; RU)U2I .Let C be an in
reasing sequen
e of subsets of QC : E1 � F1 � E2 � F2 � : : : � En � FnA subset P of Q is said to satisfy the Rabin 
hain 
ondition C if there is anindex k su
h that P \Ek = ; and P \ Fk 6= ;.There is an alternative formulation of Rabin 
hain 
ondition using a parity
ondition. Given a fun
tion � : Q ! N, we say that X satis�es the parity
ondition � if and only if min f �(q) j q 2 X g is oddThis formulation of the 
hain 
ondition makes it extremely easy to use sin
e itentails a very 
ompa
t representation.We say that a 
olle
tion F of subsets of Q is expressible by a Rabin 
hain
ondition, (resp. by a parity 
ondition �) if there exists a 
hain C su
h thatX 2 F if and only if X satis�es C (resp. �).Proposition 4.5 Let F be a 
olle
tion of �nite nonempty subsets of a set Q.The following 
onditions are equivalent:(1) F and F
 are 
losed under union.(2) F 
an be de�ned by a Rabin 
hain 
ondition.(3) F 
an be de�ned by a parity 
ondition.Proof. (1) implies (2). Let T be the split tree of the 
olle
tion F . Sin
e F andF
 are 
losed under union, ea
h vertex of T has at most one 
hild. It followsthat T has exa
tly one leaf. We may suppose that Q 2 F
, so that the root ofT is (2; Q). Let ((2; V0); (1; U1); (2; V1); : : :) be the unique path from the root tothe leaf. For i � 0, let Fi = U 
i and Ei = V 
i . Then the sequen
e C formed byE1 � F1 � � � � is in
reasing and, by Proposition 4.3, one has X 2 F if and onlyif X satis�es C. Thus F 
an be de�ned by a Rabin 
hain 
ondition.(2) implies (3). LetE1 � F1 � E2 � F2 � : : : � En � Fn
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reasing sequen
e of subsets of Q de�ning a Rabin 
hain 
ondition. Letus de�ne a fun
tion � : Q! N by setting, for 1 � k � n,�(q) = 8>>><>>>:0 if q 2 E12k � 2 if q 2 Ek n Fk�1 and k > 12k � 1 if q 2 Fk nEk2n if q =2 FnThen a set X satis�es C if and only if �(X) is odd. Thus X is de�ned by aparity 
ondition.(3) implies (1). If F is de�ned by a parity 
ondition, then F and F
 are
learly 
losed under union.4.3 Parity games.We now 
onsider games on graphs, 
alled parity games, in whi
h the winningset is de�ned by a parity or Rabin 
hain 
ondition de�ned by a 
hain CE1 � F1 � : : : � En � Fn:More pre
isely, let G = (V;E) be a game graph and let 
 : V ! Q be a 
oloring.The parity game de�ned by C is the game (G;F), where F is the 
olle
tionof subsets of Q de�ned by the Rabin 
hain 
ondition C. Therefore, the setX of winning paths 
onsists of the paths x su
h that Inf
(x) \ Ek = ; andInf
(x) \ Fk 6= ; for some k 2 f1; : : : ; ng.Observe that any play visiting in�nitely often E1-
olored verti
es is winningfor Player II. Indeed, let x be a path in G and let P = Inf
(x). If P\E1 6= ;, anyof the sets Ek is met in�nitely often and thus there 
an be no index k satisfyingthe 
ondition P \Ek = ;.Theorem 4.6 In a parity game, one of the players has a memoryless winningstrategy from ea
h vertex.Proof. We shall prove by indu
tion on the length of the 
hain C that there is apartition Q = W1[W2 on the set of verti
es su
h that Player I has a memorylesswinning strategy on W1 and Player II has one on W2. We make the assumptionthat E1 6= ;. Otherwise, we would ex
hange the roles of Players I and II in theforth
oming dis
ussion. Thus, whenever we �nd a game with a 
hain of lengthn and E1 = ;, we 
an invoke the indu
tion hypothesis.If n = 0, then Player II wins anyway.Let W be the set of verti
es from whi
h Player I has a memoryless winningstrategy. By Proposition 4.1, Player I has a winning poli
y on the set W . Wewant to prove that Player II has a memoryless winning strategy from everyvertex in L = W 
.



188 CHAPTER IV. GAMES AND STRATEGIESE LW Y ZFigure 4.5. The memoryless strategies.We �rst noti
e that, for Player I, W is its own attra
tor. Thus L is a trapfor Player I. This implies that the graph indu
ed by G on L is a game graph G0.Let Y be the attra
tor for Player II of the set E1 inside the game G0.Y = A2(G0; L \E1)Let �nally Z be the 
omplement of Y in L. Sin
e Z \ E1 = ;, we may applythe indu
tion hypothesis to the game restri
ted to Z. There 
an be no positionsin Z on whi
h Player I has a winning strategy be
ause Z is disjoint from W .Thus Player II has a memoryless winning strategy on Z (provided the gameremains within Z). Let us 
onsider the strategy for Player II on L 
onsisting infollowing the winning strategy on Z and to rea
h E1 on the verti
es of Y . Thisis 
learly a memoryless strategy. It is a
tually winning be
ause either the playpasses in�nitely often through E1 or it stays out of Y from some moment onand then it stays within Z and is thus winning for Player II.4.4 Parity automata.An m-parity automaton is an automaton A = (Q; i; �) where � is a fun
tionfrom Q into f0; 1; : : :;mg. For a path 
 in A, we de�ne�(
) = maxf�(q) j q o

urs in�nitely often in 
g:By de�nition, a path 
 in A is su

essful if it starts at i and the integer �(
) isodd. As for parity games, an equivalent de�nition is obtained by 
onsidering anin
reasing sequen
e C = E1 � F1 � : : : � En � Fn. A Rabin 
hain automatonis an automaton A = (Q; i; C), with C as above. A path in A is �nal if the set ofin�nitely repeated states satis�es the Rabin 
hain 
ondition C. As a 
onsequen
eof Proposition 4.5, any parity automaton 
an be viewed as a Rabin automatonand vi
e versa.We shall use here a 
onstru
tion that allows one to build a parity automatonfrom a Muller automaton. We shall meet this 
onstru
tion later in Chapter V.It is based on the notion of a memory extension of a �nite automaton.Let A = (Q; i;F) be a Muller automaton. We build a deterministi
 automa-ton B as follows. Let Arr(Q) denote the set of sequen
es of elements of Q, ea
happearing at most on
e (sometimes 
alled arrangements). The set of states ofB is S = f(u; v) j uv 2 Arr(Q)g. An element of S 
an be 
alled last appearan
ere
ord sin
e the transitions are de�ned in su
h a way that the arrangement uv



4. GAMES ON GRAPHS. 189gives the order of last o

urren
e of ea
h state. The division of uv into a pair(u; v) marks the previous position of the last state. The initial state of B isthe pair ("; i) where i is the initial state of A and where " denotes the emptysequen
e. The transitions are de�ned as follows. Let (u; v) 2 S and a 2 A. Letp be the last element of uv and let q = p� a. Then(u; v)� a = ((x; yq) if uv = xqy(uv; q) if q =2 uvThe automaton B is 
alled the memory extension of A.Example 4.6 The memory extension of the automaton A1 of Figure 4.6 ispi
tured in Figure 4.7. 1 2a bbaFigure 4.6. A Muller automaton.1; 2 "; 21 2; 1"; 12"; 1 b a abb bab aaFigure 4.7. The memory extension of the automaton A1.The fundamental property of the memory extension is the following one. For apath 
 in an automaton, we denote by Inf(
) the set of states o

urring in�nitelyoften in 
. In the following proposition, we use the notation v to denote the setof elements appearing in a sequen
e v.Proposition 4.7 Let A be an automaton and let B be its memory extension.Let 
 be an initial path in A and let 
0 be the 
orresponding path in B. ThenT = Inf(
) if and only if all states (u; v) 2 Inf(
0) satisfy v � T and at least onesatis�es v = T .Proof. Let (q0; q1; : : :) be the sequen
e of states appearing along 
. We �rstobserve that all states of 
0 are ultimately of the form (uv0n; v00n) with u = S andvn = T , where vn = v0nv00n and where S is the set of states appearing �nitelyoften along 
. Next, for ea
h state of this form with v0n 6= ", there is later on



190 CHAPTER IV. GAMES AND STRATEGIESthe path a state of the form (u; vm). Let indeed v0n = qw0 with q 2 Q. Sin
eq 2 T , there is an o

urren
e of q on 
 later on. For the �rst index m > n su
hthat qm = q, we have v0m = ".This shows that the 
ondition is ne
essary and suÆ
ient.We de�ne a 
hain E0 � F0 � � � � � En � Fn � � � � as follows. For i � 0, letEi be the set of states (u; v) of B su
h that either juj < i or juj = i and v 62 F .And let Fi be the union of Ei and the set of states (u; v) su
h that juj = i andv 2 F . This de�nes a 
hain automaton whi
h is 
learly equivalent with A.We have thus proved the following result.Theorem 4.8 For any Muller automaton, there exists an equivalent parity au-tomaton.It would not 
hange anything to use as set of states the pairs (u; v) whereuv is a permutation of Q. In this 
ase, the initial state 
an be 
hosen as anyof the states of the form (u; vi), where i is the initial state. This 
an be usedto redu
e the number of states of the resulting automaton, as in the followingexample.Example 4.7 Let A = (Q; i;F) be the Muller automaton represented in Figure4.8 with i = 2 and F = f1; 2; 3g.1 2 3ab abFigure 4.8. A Muller automaton.It re
ognizes the set of in�nite words in (ab+ ba)! with both an in�nite numberof o

urren
es of ab and ba.The memory extension B of A is represented in Figure 4.9. A
tually, we haverepresented only the states whi
h are permutations of Q. Both states (3; 12) or(1; 32) 
an be used as initial state.



4. GAMES ON GRAPHS. 1913; 21 3; 12 1; 32 1; 23"; 123"; 321ab aba bbaFigure 4.9. The memory extension.The 
hain redu
es to F0 = f("; 123); ("; 321)g sin
e E0 = ; and F1 = F0. ThusB is a
tually a B�u
hi deterministi
 automaton.4.5 Rational winning strategies.Let G be a game graph in whi
h the winning 
ondition is given in Muller form,i.e. by a 
olle
tion F of subsets of Q su
h that Player I wins the play if the setof in�nitely repeated verti
es belongs to F . The following example shows that,in general, there is no memoryless winning strategy.Example 4.8 Let G be the game graph of Figure 4.10 with F = ff1; 2; 3gg.Player I has a winning strategy from ea
h vertex 
onsisting in 
hoosing alter-nately 1 and 3 from vertex 2. However, there is no memoryless strategy sin
eit would for
e Player I to always 
hoose either 1 or 3 after 2, resulting in a loopeither on f1; 2g or on f2; 3g.1 2 3Figure 4.10. Player I has no memoryless strategy.We now 
ome ba
k to abstra
t games given by the winning set X � A! . Arational or �nite memory strategy for Player I is given by a �nite deterministi
automaton S = (M; i; Æ) and a fun
tionf :M ! A:We say that Player I follows the strategy (S; f) in the play a0a1 � � � if for everyn � 0, a2n = f(m) where m = Æ(i; a0 � � �a2n�1).We prove the following result, known as the B�u
hi-Landweber theorem.



192 CHAPTER IV. GAMES AND STRATEGIESTheorem 4.9 In a rational game, one of the players has a rational winningstrategy.Proof. By Theorem 4.8, there is a parity automatonA re
ognizing X. We maysuppose, by dupli
ating the states that the set of states Q is partitionned intoQ = Q1 [ Q2 in su
h a way that the initial state is in Q1 and that the graphof A is bipartite. The game G(X) de�nes a parity game on the graph of A andthis game is equivalent to the original one. By Theorem 4.6, one of the players,say Player I, has a memoryless winning strategy in this game. This player has arational winning strategy in G(X). It uses the automaton A and the followingfun
tion f : Q1 ! A (the value of f on Q2 is irrelevant). For p 2 Q1, there isa state q 2 Q2 given by the memoryless strategy of Player I. Let a be a symbolsu
h that (p; a; q) is a transition of A. Then we de�ne f(p) = a. This is 
learlya rational winning strategy for Player I.Example 4.9 LetX be the set re
ognized by the Muller automaton of Example4.7. The graph of the automaton 
oin
ides with the graph of Example 4.8 andthe winning 
ondition is the same. A

ordingly, Player I wins G(X) by 
hoosingalternately the states 1 and 3, i.e. by playing alternately a and b (or any otherstrategy ensuring to play in�nitely often a and b).A parity automaton re
ognizing X is represented in Figure 4.9. This time,we have a memoryless strategy on the graph of the automaton. It 
onsists inplaying b in (1; 32) and a in (3; 12). It happens to be the same strategy as above,resulting in one of the two possible plays (abba)! or (baab)!.5 Wadge games.Let X � A! and Y � B! . The Wadge game G(X;Y ) is a game on A [ Bde�ned as follows. Player I �rst 
hooses a0 2 A. Then Player II 
hoosesb0 2 B. Player I 
hooses a1 2 A, and so on. Thus a play in this game is asequen
e a0b0a1b1 � � � 2 (A[B)! whi
h is the interleaving of the two sequen
esx = a0a1 � � � and y = b0b1 � � � 2 B! played by ea
h player. Player II wins ifeither (x 2 X and y 2 Y ) or (x 62 X and y 62 Y ).Su
h a game 
an be viewed as a game on the alphabet A [ B with a rulefor
ing Player I to 
hoose a symbol from A and Player II a symbol from B.Observe that, ifX and Y are Borel sets, then so is the winning set Z � (A[B)! .These games are strongly related with the following notion. We say thatX � A! Wadge redu
es or simply redu
es to Y � B! , denoted (X;A!) �W(Y;B!) or simply X �W Y if there exists a 
ontinuous fun
tion f : A! ! B!su
h that X = f�1(Y )The fun
tion f is 
alled a redu
tion. It is important that the de�nition of theredu
tion is relative to the embedding of X in A! (see Example 5.2 below).Obviously, X �W Y if and only if X
 �W Y 
. It is possible to havesimultaneously X �W Y and Y �W X, in whi
h 
ase X and Y are 
alledWadge equivalent, denoted X �W Y . The �W -
lass of X is 
alled the Wadge
lass of X.The 
lass of X
 and the 
lass of X are 
alled dual. The 
lass of X is 
alledself-dual if X �W X
.


