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Abstract: Burrows and Sulston have introduced conditional block en-
tropies Hn from information theory in order to give a quantitative measure of
disorder for sequences and, if possible, a characterization of quasi-crystalline
sequences. We give here some properties concerning these block entropies
and give an explicit formula for the sequences (Hn)n∈IN corresponding to
the Thue-Morse sequence, to the Rudin-Shapiro sequence and to the paper-
folding sequence. We deduce from these computations that this measure
of disorder cannot allow us to distinguish between deterministic sequences
even if they have different spectral properties.

1 Introduction

Burrows and Sulston have introduced a measure from information theory
in [9]. Their purpose was to give a quantitative measure of disorder for
sequences and to find a characterization of quasi-periodic sequences, or in
other words, of unidimensional models of quasi-crystalline atomical struc-
tures.

This measure corresponds to a sequence of conditional block entropies
Hn which is associated with a sequence u with values in a finite alphabet:
the sequence (Hn) converges towards the metrical entropy of the dynamical
symbolical system associated to the initial sequence u and the values Hn are
defined in terms of conditional frequencies. More precisely, the conditional
entropy Hn is a measure of the uncertainty about the next symbol, when the
preceding letters are known. Thus it measures in some sense the properties
of predictability of the initial sequence u.
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By computing the first and second order entropies H1 and H2 for the
Thue-Morse sequence and for some generalizations of the Fibonacci se-
quence, Burrows and Sulston have obtained the following comparison of
their “disorder”: among the sequences they study, the sequences which are
quasi-periodic (or more generally, of discrete spectrum) have entropy of first
and second order lower than those which have continuous component in their
spectrum.

But it is easily seen that these entropies H1 and H2 are not sufficient to
distinguish, for instance, between the Rudin-Shapiro sequence and a normal
sequence, i.e. a sequence such that all blocks of the same length have the
same frequency. Thus, it is interesting to obtain entropies of all orders and
to compare them.

The aim of this paper is to compute and to compare the conditional block
entropies of all orders for some automatic sequences which have distinct
spectral types. The sequences we study here are the Thue-Morse sequence,
which has continuous singular spectrum, the Rudin-Shapiro sequence and
some generalizations, which have Lebesgue spectrum and the paperfolding
sequence, which has discrete spectrum.

The Thue-Morse sequence (vT
n )n∈IN gives the parity of the sum of the

binary digits of the integers: if n =
∑

εi2
i, where εi = 0 or 1, then

vT
n =

∑

εi mod 2. The Rudin-Shapiro sequence (vR
n )n∈IN counts, also mod-

ulo 2, the number of occurrences of 11 in the binary representation of the
integers, with overlaps: vR

n =
∑

εiεi+1 mod 2. The paperfolding sequence
is obtained the following way: let us fold a sheet of paper always the same
way, for instance, right half over left. Let us code the “valleys” and the
“mountains” that we see when the sheet is being unfolded. This process
gives rise to the the paperfolding sequence (see for instance, [12]).

These sequences are automatic sequences, so we will use here the under-
lying substitution in order to compute the block frequencies, as in [9].

Let HT , HR and HP be respectively the sequences of conditional block
entropies for the Prouhet-Thue-Morse, the Rudin-Shapiro and the paper-
folding sequences. We expect the following inequality between HT , HR and
HP :

HP
n ≤ HT

n ≤ HR
n , for every n, (1)

or in other words, we expect, for instance, the paperfolding sequence to
show more order than the Prouhet-Thue-Morse sequence with respect to
this particular measure of disorder.
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But in fact, after computation of the conditional block entropies of all
orders for these particular automatic sequences, we notice that there is no
ordering between HR, HP and HT , such as (1). In particular, we prove
that these three sequences of conditional block entropies converge with the
same rate towards 0. Namely, let us recall that these three automatic se-
quences are deterministic, that is to say of zero entropy, so the sequence
(Hn) converges towards 0 for each of theses sequences.

We conclude from this that this measure of disorder cannot allow us
to distinguish between deterministic sequences even if they have different
spectral properties.

We compute also in [5] or [6] block frequencies and give an explicit for-
mula of conditional entropies Hn for Sturmian sequences. A Sturmian se-
quence has exactly n+1 factors of length n. In particular, the Fibonacci se-
quence is Sturmian. The Sturmian sequences are generally not substitutive,
hence the method used is different: we can compute the block frequencies,
either by studying the Rauzy graph of factors [15] or by considering Stur-
mian sequences as rotations. Namely, a Sturmian sequence is the itinerary
of the orbit of a point of the unit circle under a rotation of irrational angle
α, with respect to disjoint intervals of the unit circle of length α and 1−α.

2 The sequence of block entropies

The purpose of this section is to introduce the block entropies for sequences
with values in a finite alphabet. These entropies have been first introduced
by Shannon [16] in 1948 in information theory; he wanted in particular, to
give a measure of the entropy of the English language.

The frequency P (B) of a block B is defined as follows: it is the limit, if
it exists, of the number of occurrences of this block in the first n letters of
the sequence divided by n.

Let u be a sequence with values in the alphabet A = {1, · · · , d}. We
suppose that all the block frequencies exist for u.

Let P (x|x1 · · · xn) = P (x1···xnx)
P (x1···xn) , where x1 · · · xn is a block of non-zero

probability and x a letter. The intuitive meaning of P (x|x1 · · · xn) is that it
is the conditional “probability” that the letter x follows the block x1 · · · xn

in the sequence u.
We are going to associate to the sequence u two sequences of block

entropies (Hn)n∈IN and (Vn)n∈IN. Let us first recall that the entropy is
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defined in information theory as a measure both of the information yielded
by the happening of an experiment and of the uncertainty about the outcome
of an experiment.

We call factor of the infinite sequence u a finite block of consecutive
letters, say w = un+1 · · · un+d; d is called the length of w and is denoted
by l(w). Note that this is the European terminology and that a subword
consists of non-necessarily consecutive letters. In the American terminology,
the terms subword and factors are synonymous.

The entropy Vn is defined as the entropy of the choice of a factor of
length n of the sequence. We thus put, for all n ≥ 1:

Vn =
∑

L(P (x1 · · · xn)),

where the sum is over all the factors of length n and with L(x) = −x logd(x),
for all x 6= 0 and L(0) = 0.

Now, let Hn be the conditional entropy of the choice of the next symbol
when we know the (n − 1) preceding symbols. We have:

Hn = Hc(F/En) =
∑′

P (x1 · · · xn)H(x1 · · · xn), (2)

where the sum is over all the factors of length n of non-zero probability and

H(x1 · · · xn) =
∑

x∈A

L(P (x/x1 · · · xn)).

Let H0 be the entropy of the choice of a letter:

H0 =
∑

x∈A

L(P (x)).

Obviously, we have H0 ≤ 1. From the concavity of the function L, we deduce
that: 0 ≤ Hn ≤ H0 ≤ 1.

Furthermore, we clearly have

Hn = Vn+1 − Vn,

for all n, by putting V0 = 0. This equality means that the conditional entropy
of the choice of the next letter, when the n preceding letters are known is
equal to the entropy of the choice of a factor of length (n + 1) minus the
entropy of the choice of a factor of length n. This is a classical result in
information theory (see for instance [16]).
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Thus, H is the discrete derivative of V . Note that (Vn)n∈IN is an increas-
ing sequence, since Hn ≥ 0, for all n.

It is easily shown that (Hn)n∈IN is a monotonic decreasing sequence of n
(see for instance [7]). The intuitive meaning of this is that the uncertainty
about the choice of the next symbol decreases when the number of known
preceding symbols increases; in other words, conditional entropy decreases
when the conditioning increases. We deduce from this the existence of the
limit lim

n→+∞
Hn. We have Vn = Hn+1 − Hn. Thus, by taking Cesàro means,

we obtain: lim
n→+∞

Hn = lim
n→+∞

Vn

n
. In fact, this limit which we denote by

H(u), is equal to the measure-theoretic entropy hµ(T ) of the one-sided shift
T on O(u), with respect to the measure µ, where O(u) is the orbit closure
of u in AN and µ is the T -invariant measure defined by assigning to each
cylinder the frequency of the defining factor. For more details, the reader is
referred to [14], for instance.

Another consequence of the decreasing behaviour of (Hn)n∈N is the fol-
lowing inequality:

nHn ≤
n−1
∑

k=0

Hk = Vn =
∑

L(P (x1 · · · xn)).

Let p(n) denote the complexity of the sequence, i.e. the function which
counts the number of factors of a sequence of given length. By concavity of
the function L, we have, for all n ≥ 1: Vn ≤ logd p(n). Thus, we deduce the
following inequality:

Hn ≤
logd(p(n))

n
,

for all n ≥ 1. The limit Htop(u) of the sequence logd(p(n))
n

, which is easily
seen to exist, is called topological entropy.

In particular, we have:

lim
n→+∞

Hn = lim
n→+∞

Vn

n
= H(u) ≤ Htop(u) = lim

n→+∞

logd(p(n))

n
.

This inequality is a particular case of a basic relationship between topological
entropy and measure-theoretic entropy called the variational principle.

The notion of metrical entropy for a sequence seems consequently to be
more precise. But in the cases we deal with here, we consider deterministic
sequences, i.e. sequences with zero entropy. Thus neither metrical nor
topological entropy can distinguish between these sequences. That is why it
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is interesting to consider the rate of convergence of the sequence Hn towards
its limit (the metrical entropy) and not only this limit.

3 Ultimately periodic and “random” sequences

Consider first the following two extreme cases: the case of minimal disorder,
i.e. the case of ultimately periodic sequences and the case of maximal dis-
order, i.e. the case of “random” sequences. Let us note that it is the same
thing, in terms of frequencies, to consider ultimately periodic sequences and
purely periodic sequences.

The following result can easily be shown.

Proposition 1 Let u be a ultimately periodic sequence of period Ω. We
have: Hk = 0, for all k ≥ Ω.

Namely, there is no uncertainty at all in the choice of the next letter. The
converse is not true. Suppose, for instance, that the frequencies of the letters
are equal to 0 or 1. Then, we have H0 = 0. The sequence (Hn)n∈IN being a
decreasing sequence, we obtain Hn = 0, for all n.

But if the sequence is minimal, i.e. if all its factors appear infinitely
often and with bounded gaps, we obtain the following property.

Proposition 2 Let u be a minimal sequence such that Hk0
= 0 for some

integer k0. Then u is a periodic sequence of period p(k0), where p(k0) denotes
the complexity of order k0.

The proof of this statement comes from the fact that the frequencies are
strictly positive in a minimal sequence.

Consider now a “random” sequence or in other words, a normal sequence:
all the blocks of given length have the same frequency. Hence the conditional
probabilities P (x/B) are equal and Hn = 1, for all n ≥ 0. It can easily be
shown, by using (2) that the converse is true. Thus, we have the following
proposition.

Proposition 3 We have Hn = 1 for all n, if and only if the sequence u is
a normal sequence.

Therefore, in these two extreme cases, the sequence (Hn)n∈IN gives a char-
acterization of the ultimately periodic and of the “random” sequences.
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4 Substitutions

Now, let us recall some definitions about substitutive sequences.

4.1 Some definitions

We consider here fixed points of substitutions.
For instance, the Thue-Morse sequence is the fixed point (i.e. the infinite

iteration (σT )∞(0)) of the substitution σT , defined on the alphabet {0, 1}
by:

σT (0) = 01 and σT (1) = 10;

its first terms are:
0110100110010110 · · ·

Similarly, the Fibonacci sequence is the fixed point of the substitution:

σF (0) = 01 and σF (1) = 0.

A substitution is called uniform or of constant length if all the images of
the letters have the same length. For instance, the Thue-Morse substitution
is uniform whereas the Fibonacci substitution is not of constant length.

A sequence is called automatic if it is the image by a letter to letter
projection of the fixed point of a substitution of constant length. The word
automatic comes from the fact that an automatic sequence is generated by
a finite automaton. For more details, the reader is referred to [10].

For instance, the paperfolding and the Rudin-Shapiro sequences are au-
tomatic sequences. Namely, the Rudin-Shapiro sequence is the image of the
fixed point (σR)∞(a) of the substitution σR:



















σR(a) = ab
σR(b) = ac
σR(c) = db
σR(d) = dc

by the projection
{

pR(a) = pR(b) = 0
pR(c) = pR(d) = 1.

Its first terms are
0001001000011101...

We give the substitution and the projection corresponding to the paper-
folding sequence in the section [7].
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4.2 Special factors

We have different means to compute the conditional entropies Hn. By using
Formula (2), we see that we need to know all the block frequencies of factors
of given length and also conditional probabilities. We can also deduce Hn

from Vn+1 and Vn. But, we need therefore to know all the block frequencies
of factors of length n and n + 1. Hence we will see in this section a more
“economical” way of computing Hn.

A factor is called right special if it has at least two right extensions in
the sequence. For instance, it is easily seen that the factor 010 is a right
special factor of the Thue-Morse sequence (the factors 0100 and 0101 are
factors of this sequence), whereas the factor 011 is always followed by the
letter 0. Similarly, a factor with more than one left extension is called a left
special factor.

Let us notice here that the extension of a factor B denotes usually a
factor Bx, where x is a letter which follows the block B in the sequence.
But we call from now extension, by abuse of notation, the letter x itself.

It is now quite easy to compute the conditional block entropies from the
frequencies of the right special factors and of their right extensions. We have
namely the following lemma.

Lemma 1 Let Sn be the set of right special factors of length n. We have:

Hn =
∑

B∈Sn

[
∑

x∈A

L(P (Bx)) − L(P (B))].

Namely, if v is not a right special factor then only one of the probabil-
ities P (vx) is non-zero (and is thus equal to P (v)) and we have therefore:
∑

x∈A L(P (vx)) = L(P (vx)) = L(P (v)).

4.3 Frequencies

M. Queffélec gives in [14] an algorithm to compute the block frequencies
of all orders of a substitutive minimal sequence by using the matrix of the
associate primitive substitution and the Perron-Frobenius Theorem.

Let us recall that the matrix associated to a substitution is the matrix
whose entry (i, j) is the number of occurrences of the letter i in the factor
σ(j). A substitution σ is called primitive when its matrix M is primitive
(a matrix is primitive if there exists an integer k such that Mk has strictly
positive entries). In other words, this property means that there is an integer
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k such that the image by σk of every letter contains all the other letters of
the alphabet on which the substitution is defined.

The idea here is to give recurrence relations between the frequency of a
factor and the frequencies of factors of shorter length.

From the Perron-Frobenius Theorem, it is easy to deduce that the letter
frequencies of a fixed point of the substitution σ are the coordinates of the
unique normalized right eigenvector associated to the largest eigenvalue of
the matrix of the substitution.

In the examples we deal with here, we have a nice property of “recog-
nizability”. Namely, there is a unique unique way of cutting enough long
factors: we put bars such that between two bars there is exactly the im-
age by the substitution σ of a letter of the alphabet. For instance, in the
Thue-Morse sequence, we can cut uniquely the factor 01001 as follows:

0|10|01| = 0|σT (1)|σT (0).

Although the “short” factor 010 can be cut as 01|0 = σT (0)|0 or as
0|10 = 0σT (1).

4.4 Some lemmas

In what follows, the substitution σ will always denote a substitution of length
2. A preimage of a word B is a factor of smallest length such that its image
by the substitution contains B.

We have the following obvious relationship between the length of a factor
and the length of its preimage by σ.

Lemma 2 If B is a factor of even length, with l(B) = 2p, then its preimages
are of length p + 1 or p.

If B is a factor of odd length, with l(B) = 2p + 1, then its preimages are
of length p + 1.

The number of occurrences of a factor in the first 2n letters of the se-
quence is equal to the number of occurrences of its preimages in the first n
letters. We deduce from this remark that, if a factor has a unique preimage,
the frequency of a block is equal to half the frequency of its unique preimage
by the substitution. Thus, we have the following lemma.

Lemma 3 Let B be a factor with a unique preimage B′. The frequencies

of B and B′ satisfy: P (B) = P (B′)
2 .
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Let us consider now more particularly right special factors with the lemma
below.

Lemma 4 Let B be a factor with a unique preimage B′. If the factor B is
right special, then B′ is also a right special factor and B is a suffix of σ(B′).
In particular, if B has even length 2p, then B′ has length p.

Proof Let us write B = xσ(B′)y, where x (respectively y) is either the
empty word or a letter. If y were not the empty word, then B would have
as unique right extension the second letter of σ(y). Hence, B is a suffix of
σ(B′). Furthermore, if B′ had a unique right extension, then B would have
as unique right extension the first letter of the image of the unique extension
of B′. Thus, B′ is a right special factor.

5 The Thue-Morse sequence

Let us recall that the Thue-Morse sequence is the fixed point (σT )∞(0) of
the substitution: σT (0) = 01 and σT (1) = 10.

First of all, the main property, which makes everything work here, is the
following one, which can easily be shown (see for instance [14]).

Lemma 5 Each factor of length greater than 4 has a unique preimage.

M. Dekking has shown in [11] the following result:

Theorem 1 The frequencies of the factors of the Thue-Morse sequence of
length n, with 2k + 1 ≤ n ≤ 2k+1 and n ≥ 2, take the following two values:

1

3.2k
,

1

6.2k
.

The factors of length 1 have frequency 1/2.

More precisely, M. Dekking deduces also from the complexity function of
the Thue-Morse sequence the number of blocks of given length having each
of these frequencies.

We deduce from this theorem the following result.

Lemma 6 Let B be a right special factor of length greater than 2. Let k be
such that 2k + 1 ≤ l(B) ≤ 2k+1. Then, B has frequency 1

3.2k and its right

extensions have frequency 1
6.2k .
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Let us note that the frequencies of the right special factors take the
greatest value between the two possible ones. This seems rather natural
because the special factors appear more often, because of their two possible
extensions.

We prove this lemma by induction for factors of length 2k: namely, if
l(B) = 2k+1, then its preimage B′ has length 2k (Lemma 2 and Lemma 4).

For the other factors, this lemma is a direct consequence of Theorem 1:
the sum of the frequencies of the two extensions of a right special factor B
is equal to the frequency of B.

The complexity of the Thue-Morse sequence satisfies the following prop-
erty (see for instance [8] and [13]).

Theorem 2 We have p(1) = 2, p(2) = 4 and p(3) = 6. For the following
values, we have, for k ≥ 1:

• if 2k + 1 ≤ m ≤ 3.2k−1, then p(n + 1) − p(n) = 4,

• if 3.2k−1 + 1 ≤ m ≤ 2k+1, then p(n + 1) − p(n) = 2.

Hence, as an immediate consequence of Lemma 6 and Theorem 2, we obtain
the following expression for the conditional block entropies:

Theorem 3 We have HT
0 = 1, HT

1 = log2 3 − 2/3 and HT
2 = 2/3. For the

following values, we have, for k ≥ 1:

• if 2k + 1 ≤ m ≤ 3.2k−1, then HT
n = 4

3.2k ,

• if 3.2k−1 + 1 ≤ m ≤ 2k+1, then HT
n = 2

3.2k .

The first values are computed “by hand ”, as in [9]. Next, let us recall
that the conditional block entropies are given by:

Hn =
∑

B∈Sn

L(P (B0)) + L(P (B1)) − L(P (B)),

where Sn is the set of right special factors of length n and L(x) = −x log2(x)
(Lemma 1). Furthermore, the cardinal of Sn is given by p(n + 1) − p(n).
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6 The Rudin-Shapiro sequence

The Rudin-Shapiro sequence vR is the image by a projection of the fixed
point uR of a substitution of length 2. Namely, it is the image of the fixed
point uR = (σR)∞(a) of the substitution σR:



















σR(a) = ab
σR(b) = ac
σR(c) = db
σR(d) = dc

by the projection
{

pP (a) = pP (b) = 0
pP (c) = pP (d) = 1.

For the fixed point uR everything works like in the case of the Thue-Morse
sequence. In particular, it is easily seen that each factor of length greater
than 3 has a unique preimage.

But, the Rudin-Shapiro sequence vR is obtained as the image of uR by a
letter to letter projection. Some natural questions arise then: does a factor
have a unique antecedent by the projection? Is the image (respectively,
the antecedent) of a special factor also a special one? The answer to these
questions is no. Namely, let us consider for instance the factor 000100 of
the sequence uR. This factor comes from the two factors abacab (which has
as unique extension in vR the letter d) and babdba (which has as unique
extension in vR the letter b). Thus, this right special factor has two distinct
antecedents which are not special.

But this kind of “perturbation” due to the projection, appears only
for small length factors. Namely, we have the following property (see for
instance [4]).

Theorem 4 For all n ≥ 8, puR(n) = pvR(n) = 8n − 8. In particular, there
is a bijection between the factors of the two sequences of length greater than
8.

For the first values, we have : puR(1) = 4, puR(2) = 8, puR(n) = 8n − 8
for 3 ≤ n ≤ 7 and pvR(1) = 2, pvR(2) = 4, pvR(3) = 8, pvR(4) = 16,
pvR(5) = 24, pvR(6) = 36 and pvR(7) = 46.

Therefore, a right special factor corresponds to a right special factor by this
bijection and two factors in bijection have the same frequency. Thus, we
can show the following result.

12



Theorem 5 The frequencies of the factors of the Rudin-Shapiro sequence
of length n, with 2k + 1 ≤ n ≤ 2k+1 and n ≥ 7, take the following two
values:

1

8.2k
,

1

16.2k
.

The blocks of length 1 have frequency 1/2, the blocks of length 2 have fre-
quency 1/4, the blocks of length 3 have frequency 1/8, the blocks of length 4
have frequency 1/32 or 3/32, the blocks of length 5 have frequency 1/32 or
1/16, the blocks of length 6 have frequency 1/64, 1/32 or 3/64.

Proof The corresponding property for the fixed point uR is the following
one: the blocks of length 1 have frequency 1/4 and the frequencies of the
factors of uR of length n, with 2k + 1 ≤ n ≤ 2k+1 and n ≥ 2, take the
following two values

1

8.2k
,

1

16.2k
.

This theorem is proved by induction. Let us note that this result is true
for blocks of length 1 and 2.

The preimage of a factor of length 2k + 1 is of length 2k−1 + 1. Fur-
thermore, the blocks of length 2 have frequency 1

8 . By using Lemma 3, we
obtain that the blocks of length 2k + 1 have frequency 1

8.2k .

Let us suppose now that the factors whose length is in [2k−1 + 1, 2k]
have frequencies 1

8.2k−1 or 1
16.2k−1 . Consider next a factor of length m ≥ 3,

with 2k + 1 ≤ m ≤ 2k+1. From Lemma 2, we deduce that the length of
its preimage is in the interval [2k−1 + 1, 2k + 1]. Hence its preimage has
frequency 1

8.2k−1 or 1
16.2k−1 , by using the induction hypothesis and the result

above. We conclude here again with the help of Lemma 3.
We deduce Theorem 5 from this result, by using the bijection between

the fixed point uR and the Rudin-Shapiro sequence.
We can also similarly show the following result.

Lemma 7 Let B be a right special factor of length greater than 8. Let k be
such that 2k + 1 ≤ l(B) ≤ 2k+1. Then, B has frequency 1

8.2k and its right

extensions have frequency 1
16.2k .

Hence we deduce the following expression for the conditional block entropies
of the Rudin-Shapiro sequence, by noticing that there are 8 right special
factors of given length n, for n larger than 8.
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Theorem 6 We have HR
0 = 1, HR

1 = 1, HR
2 = 1 , HR

3 = 2 − 3
4 log2 3,

HR
4 = −1/2 + 3

4 log2 3, HR
5 = 7/8 − 3

16 log2 3, HR
6 = 1/16 + 3

16 log2 3 and
HR

7 = 5/16.
We have, for n ≥ 8 and 2k + 1 ≤ n ≤ 2k+1:

HR
n =

1

2k
.

Remark This method works also for the generalized Rudin-Shapiro se-
quences which count the number of occurrences of the pattern 1 ⋆ · · · ⋆ 1
in the binary expansion of every integer (see [3] and [4]). We obtain, if
d is the length of the pattern ⋆ · · · ⋆, that the conditional block entropies
are ultimately equal to 2d times the corresponding entropies of the classical
Rudin-Shapiro sequence.

7 The paperfolding sequence

The paperfolding sequence vP is the image of the fixed point uP = (σP )∞(a)
of the substitution σP :



















σP (a) = ab
σP (b) = cb
σP (c) = ad
σP (d) = cd

by the projection
{

pR(a) = pR(b) = 1
pR(c) = pR(d) = 0.

We have also a bijection between the factors of length greater than 7 of
the fixed point uP and the factors of the same length of the projection vP

(see [1] or [2]).

Theorem 7 For all n ≥ 7, puP (n) = pvP (n) = 4n.
For the first values, we have: puP (n) = 4n, for 1 ≤ n ≤ 6, and pvP (1) =

2, pvP (2) = 4, pvP (3) = 8, pvP (4) = 12, pvP (5) = 18 and pvP (6) = 23.

There is a slight difference concerning the properties of “recognizability”
of the fixed point: some factors can have two preimages. But we have the
following properties.

Lemma 8 There is a unique way to put the bars for every factor of the
fixed point uP .

14



Namely, the image of every letter begins with a or c and ends with b or d.
Hence we put a bar after a b or a d and a bar before an a or a c.

We deduce from this that a right (respectively a left) special factor of the
fixed point uP has exactly two extensions. Hence, the last (respectively the
first) letters of a right (respectively a left) special factor form also a special
factor with the same extensions. Thus, by considering the extensions of the
special factors of length 2, we obtain the following lemma.

Lemma 9 The right (respectively the left) extensions of the right (respec-
tively the left) special factors of length greater than 2 of the fixed point uP

are b and d. Furthermore, the last letter of a right special factor of length
greater than 4 is a c.

We can characterize now the factors which have only one preimage.

Lemma 10 A factor of uP has a unique preimage if and only if this factor
is not a right special one. Furthermore, a right special factor has exactly
two preimages.

Proof Let us first note that an odd factor with a letter before the first
bar of its cut has only one preimage. Namely, if such a factor B would have
two preimages then they would only differ by their first letter, say x0 and
x′

0, because of Lemma 8 and because of the injectivity of σP on the letters.
Thus, B would have as left extensions the first letter of σP (x0) and σP (x′

0),
i.e. a and c, which is in contradiction with Lemma 9. Hence a factor having
more than one preimage has exactly two preimages and we show similarly
that it is a right special factor.

Conversely, a special factor B of length greater than 4 may be written
as follows (Lemma 9):

B = y|σP (B′)|c,

where y denotes the empty word if B is of odd length, and a letter otherwise.
It is easily seen, by using what precedes, that yσP (B′) has only one

preimage and hence that B has two preimages, which can be written as zB′b
and zB′d, where z is the empty word if B is of odd length. Furthermore one
checks that a right special factor of length 1, 2 or 3 has also two preimages.

We can show now the following result.
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Theorem 8 • Let B be a right special factor of uP . Let k be such that
2k ≤ l(B) ≤ 2k+1 − 1. Then B has frequency 1

4.2k and its right exten-

sions have frequency 1
8.2k .

• More generally the frequencies of the factors of the paperfolding se-
quence vP of length n, with 2k + 1 ≤ n ≤ 2k+1, for n ≥ 7, take the
following two values

1

4.2k
,

1

8.2k
.

The blocks of length 1 have frequency 1/2, the blocks of length 2 have
frequency 1/4, the blocks of length 3 have frequency 1/16 or 3/16, the
blocks of length 4 have frequency 1/16 or 1/8, the blocks of length 5
have frequency 1/32, 1/16 or 3/32, the blocks of length 6 have frequency
1/32 or 1/16.

We prove this theorem by showing here again the corresponding property
for the fixed point uR.

Let us prove the first assertion of Theorem 8. It is easily shown that this
result is true for right special factors of uR of length 1,2,3. Let us suppose
now that it is true for right special factors of length in [2k−1, 2k − 1].

Let k, greater than 2, be such that 2k ≤ l(B) ≤ 2k+1 − 1, where B is a
right special factor of uP . Let us write B as:

B = y|σP (B′)|c,

where y denotes the empty word if B is of odd length, and a letter otherwise
(Lemma 9). We have seen that the two preimages of B are xB′b and xB′d,
where x is the empty word if B is of odd length.

The factor xB′ is thus a right special factor of length the integral part
of l(B)/2, which belongs to the interval [2k−1, 2k − 1]. From the induction
hypothesis, we have:

P (xB′) =
1

4.2k−1
= 2P (xB′b) = 2P (xB′d).

The frequencies of B, xB′, xB′b and xB′d satisfy the following relationships:

P (B) =
P (xB′b) + P (xB′d)

2
=

P (xB′)

2
=

1

8.2k−1
,

i.e.

P (B) =
1

8.2k
.

16



Furthermore, Bb (respectively Bd) has as unique preimage xB′b (respec-
tively xB′d), thus we have, as expected:

P (Bb) =
P (B′b)

2
=

1

8.2k
= P (Bd).

Let us consider now factors of uP of length greater than 4 which are
not right special. We know that these factors have a unique preimage; we
thus have the usual equality between the frequencies: if B a factor of unique

preimage B′, then P (B) = P (B′)
2 .

The idea is here to show first that the blocks of length 2k have only one
frequency, i.e. 1

4.2k . It is easily shown, by induction, that the frequencies of

the factors of length 2k and 2k +1 take the two values 1
4.2k and 1

8.2k . We can

conclude then by considering the complexity: we have p(2k) = 4.2k factors
of length 2k (see Theorem 7); hence only one frequency is possible, namely

1
4.2k .

The rest of the proof works exactly as the one of Theorem 5.

We can deduce now from the results above the expression of the condi-
tional block entropies, by noticing that there are 4 right special factors of
given length greater than 7.

Theorem 9 We have HP
0 = 1, HP

1 = 1, HP
2 = 2 − 3

4 log2 3,
HP

3 = −1/2 + 3
4 log2 3, HP

4 = 7/8 − 3
16 log2 3, HP

5 = 1/16 + 3
16 log2 3 and

HP
6 = 5/16.

We have, for n ≥ 7 and 2k ≤ n ≤ 2k+1 − 1:

HP
n =

1

2k
.

Remark Let us note the following relationship between HR
n and HP

n .

Proposition 4 We have HP
n = HR

n+1, for all n.

8 Conclusion

Let us come back to the initial question of the comparison of conditional
block entropies for these sequences. We have : HP ≤ HT ≤ HR, for n ≤ 8.
But, for n ≥ 9, this ordering does not hold. In particular, we have:

HR
9 = HP

9 = 1/8 < HT
9 = 1/6.
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In fact, we see that there is no relation of order between HR, HP and HT .
From Proposition 4, we deduce that HP

n ≤ HR
n and that for almost n, this

inequality becomes an equality. More precisely,

• for n = 2k, we have HP
n = HR

n

2 ,

• but for n 6= 2k, we have HP
n = HR

n .

Furthermore, we see that there is a kind of shuffle between the values of
HR (and consequently of HP ) and the values of HT :

• for 2k + 1 ≤ n ≤ 3.2k−1, we have: HT
n = 4

3HR
n = 4

3HP
n ,

• and for 3.2k−1 + 1 ≤ n < 2k+1, we have: HT
n = 2

3HR
n = 2

3HP
n .
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[12] F. M. DEKKING, M. MENDÈS FRANCE and A. J. van der
POORTEN FOLDS!, Math. Intell. 4 (1982), 130–138, 173–181, 190–
195.

[13] A. de LUCA and S. VARRICHIO Some combinatorial properties of the
Thue-Morse sequence, Theoret. Comput. Sci. 63 (1989), 333–348.
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