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Abstract. Dendric words are infinite words that are defined in terms
of extension graphs. These are bipartite graphs that describe the left
and right extensions of factors. Dendric words are such that all their
extension graphs are trees. They are also called tree words. This class of
words includes classical families of words such as Sturmian words, cod-
ings of interval exchanges, or else, Arnoux-Rauzy words. We investigate
here the properties of substitutive dendric words and prove some rigid-
ity properties, that is, algebraic properties on the set of substitutions
that fix a dendric word. We also prove that aperiodic minimal dendric
subshifts (generated by dendric words) cannot have rational topological
eigenvalues, and thus, cannot be generated by constant length substitu-
tions.
Keywords: Dendric word; Rigidity; Substitution; S-adic word; Topo-
logical eigenvalue.

1. Introduction

Dendric words are infinite words defined in terms of extension graphs that
describe the left and right extensions of their factors. Extension graphs are
bipartite graphs that can be roughly described as follows: given an infinite
word x, and given a finite factor w of x, one puts an edge between left and
right copies of letters a and b such that awb is a factor of x. Dendric words
are such that all their extension graphs are trees. For precise definitions,
see Sections 2.1 and 2.2. This class of words with linear factor complexity
includes classical families of words such as Sturmian words, codings of inter-
val exchanges, or else, Arnoux-Rauzy words. Dendric words have striking
combinatorial, ergodic and algebraic properties. This includes in particular
algebraic properties of their return words [7], and of maximal bifix codes
defined with respect to their languages [2, 8, 9]. They have been introduced
in [7] and studied in several papers (as, for instance, [8, 9]), under the name
of tree words. We have chosen to call them here dendric words, and the
subshifts they generate dendric subshifts, in order to avoid any ambiguity
with respect to the notion of tree shift that refers to shifts defined on trees,
and not on words (see e.g. [1]).

We investigate here the properties of substitutive dendric words and prove
some rigidity properties. Rigidity has to do with the algebraic properties
of the monoid of substitutions that fix a dendric word: an infinite word
generated by a substitution is rigid if all the substitutions which fix this word
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are powers of a unique substitution. In the present paper, we concentrate
on the iterative stabilizer according to the terminology of [25]: we focus
on non-erasing morphisms and on infinite words generated by iterating a
substitution.

There exist numerous results on the two-letter case concerning rigidity
(see [37, 38] and also [4]). It is indeed well known that Sturmian words
generated by substitutions are rigid [37, 38]. The situation is more con-
trasted as soon as the size of the alphabet increases. For instance, over a
ternary alphabet, the monoid of morphisms generating a given infinite word
by iteration can be infinitely generated, even when the word is generated by
iterating an invertible primitive morphism (see [12, 25]).

Our main results are the following. We provide a characterization of sub-
stitutive primitive dendric words in terms of S-adic expansions and tame
substitutions (Theorem 3.3). An S-adic expansion corresponds to the limit
of compositions of substitutions of the form σ1 ◦ · · · ◦σn, and tame substitu-
tions are elementary substitutions that extend to free group automorphisms
(see Section 2.3 for definitions). We prove that if an infinite dendric word
x is fixed by two primitive substitutions σ, τ , then these substitutions co-
incide up to powers, i.e., there exist positive integers i, j such that σi = τ j ;
moreover, there exists a substitution θ such that all primitive substitutions
of the stabilizer of x are conjugate up to powers to θ (Theorem 4.1). We also
prove that aperiodic minimal dendric subshifts cannot have rational topo-
logical eigenvalues (Theorem 5.1), and thus, they cannot be generated by
constant length substitutions (Corollary 5.1). Our proofs rely on the notion
of return words and on the so-called Return Theorem [7] that states that for
every infinite dendric word defined over the alphabet A, the set of (right)
return words is a basis of the free group generated by the alphabet A.

Let us briefly sketch the content of this paper. We recall in Section 2
the first basic definitions that are required, such as the notions of extension
graphs and dendric words, return words, stabilizers, etc. We provide in Sec-
tion 3 a characterization of substitutive dendric words in terms of derived
sequences and S-adic expansions. Rigidity properties are considered in Sec-
tion 4. Lastly, we prove in Section 5 that recurrent dendric words cannot
have rational topological eigenvalues. We conclude this paper with several
questions in Section 3.2.

2. Basic definitions

2.1. Words, extensions and subshifts. Let A be a finite non-empty al-
phabet. All words considered below, unless stated explicitly, are supposed
to be on the alphabet A. We denote by ε the empty word of the free monoid
A∗, by A+ the free semigroup and by AN the set of infinite words over A.
The Parikh vector of a word w ∈ A∗ is the vector in NA whose coordinates
are equal to the number of occurrences of letters in w, i.e., its i-th entry is
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equal to |w|i, where |w|i stands for the number of occurrences of the letter
i in w. The notation |w| stands for the length of w.

We say that a word u is a factor of a word w if there exist words p, s such
that w = pus. If p = ε (resp., s = ε) we say that u is a prefix (resp., suffix)
of w.

Let F be a set of words on the alphabet A. For w ∈ F , we denote

L(w) = {a ∈ A | aw ∈ F}, `(w) = Card(L(w)),
R(w) = {a ∈ A | wa ∈ F}, r(w) = Card(R(w)),
B(w) = {(a, b) ∈ A×A | awb ∈ F}, b(w) = Card(B(w)).

Let F be a set of words. For a word w ∈ F , we consider an undirected
bipartite graph E(w) called its extension graph in F and defined as follows:
its set of vertices is the disjoint union of L(w) and R(w), and its edges are
the pairs (a, b) ∈ L(w)×R(w) such that (a, b) ∈ B(w). For an illustration,
see Example 2.1 below.

Example 2.1. Let F be a set of words on the alphabet {a, b} having as
factors of length less then 4 the set {ε, a, b, aa, ab, ba, aab, aba, baa, bab}. The
extension graphs of the empty word and of the two letters are represented in
Figure 1.
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a a

Figure 1. The extension graphs of ε (on the left), a (on the
center) and b (on the right) are trees.

A set of words F is factorial if it contains the factors of all its elements.
It is biextendable if it is factorial and if for all w ∈ F , one has r(w) ≥ 1 and
`(w) ≥ 1. It is recurrent if for every u, v ∈ F there exists a word w ∈ F such
that uwv ∈ F . It is uniformly recurrent if it is biextendable and for any
word u ∈ F , there exists an integer n ≥ 1 such that u is a factor of every
word of F of length n. Every uniformly recurrent set is recurrent while the
opposite is in general not true.

A word w ∈ F is called right-special if r(w) ≥ 2. It is called left-special
if `(w) ≥ 2. It is called bispecial if it is both right- and left-special. For a
word w ∈ F , let

m(w) = b(w)− `(w)− r(w) + 1.

We say that w is neutral (resp., weak, resp., strong) if m(w) = 0 (resp
m(w) < 0, resp., m(w) > 0). A factorial set F is said to be neutral (resp.,
weak, resp., strong) if any word of F is neutral (resp., neutral or weak, resp.,
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neutral or strong). Note that our definition of neutral set corresponds to the
one of neutral set of characteristic 1 in [14]. We will work here with a subclass
of the family of neutral sets, namely dendric sets, introduced in Section 2.2.
But before defining them, we also introduce notions corresponding to infinite
words and subshifts.

An infinite word in AN is said to be uniformly recurrent if the set of
its factors is uniformly recurrent. In other words, an infinite word x =
(xn)n∈N = x0x1 · · · is uniformly recurrent if every word occurring in x occurs
in an infinite number of positions with bounded gaps, that is, if for every
factor w, there exists a positive integer s such that for every n, w is a factor
of xn . . . xn+s−1. The set of factors F (x) of an infinite word x is called its
language.

The mapping S acting on sets of infinite words is the (one-sided) shift S
acting on AN:

S ((xn)n∈N) = (xn+1)n∈N.

A subshift is a pair (X,S) where X is a closed shift-invariant subset of some
AN. A subshift is said to be minimal if it admits no non-trivial closed and
shift-invariant subset. A subshift X is minimal if and only if every infinite
word x ∈ X is uniformly recurrent. If X is a subshift, then its language
F (X) is defined as the set of factors of elements of X. Given a biextendable
set of words F ⊂ A∗, there exists a unique subshift X such that F (X) = F .
We say that a minimal subshift is periodic whenever it is finite. Otherwise
it is said to be aperiodic.

2.2. Dendric sets. The following notion has been introduced in [7], under
the terminology of tree set. We say that a set of words F is a dendric set
if it is biextendable and if for every word w ∈ F , the graph E(w) is a tree.
Note that a biextendable set F is a dendric set if and only if the graph E(w)
is a tree for every bispecial word w. Indeed the extension graph associated
with every non-bispecial word is trivially a tree.

If the extension graph E(w) of w is a tree, then m(w) = 0. Thus w is
neutral. Note that if E(w) is acyclic, one has m(w) = 1 − c, where c is
the number of connected components of the graph E(w). Sturmian sets and
regular interval exchange sets are examples of dendric sets (see [7]).

The sequence (pn)n≥0 with pn = Card(F ∩ An) is called the factor com-
plexity of F . Set k = Card(F ∩ A)− 1. The factor complexity of a neutral
set F is equal to kn+ 1 (see [7]). Since a dendric set is neutral, we deduce
that the factor complexity of a dendric set is also kn+ 1 (see [7]).

The following result shows that in neutral sets (and thus in dendric sets)
the notion of recurrence and uniformly recurrence coincide.

Proposition 2.1 (Corollary 5.3 [14]). A recurrent neutral set is uniformly
recurrent.
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We similarly define a dendric word as an infinite word x such that its
language F (x) is a dendric set, and a dendric subshift as a subshift (X,S)
such that F (X) is a dendric set.

2.3. Matrices and free groups. A morphism σ : A∗ → B∗ is a monoid
morphism from A∗ into B∗. We consider here exclusively non-erasing mor-
phisms, that is, morphisms such that the image of every element in A+

belongs to B+. When B = A, such a morphism is a substitution. If there
exists a letter a ∈ A such that the word σ(a) begins with a and if |σn(a)|
tends to infinity with n, there exists a unique infinite word denoted σω(a)
which has all words σn(a) as prefixes. Such an infinite word is called a fixed
point of the substitution σ.

A substitution σ : A∗ → A∗ is called primitive if there is a positive integer
k such that for all a, b ∈ A, the letter b appears in σk(a). If σ is a primitive
substitution, there exists a power σk that admits a fixed point, and the set of
factors of any fixed point of σ (or of some power of σ) is uniformly recurrent
(see for example Proposition 1.2.3 in [22]). Furthermore, all these fixed
points have the same language that we call the language of the substitution.

An infinite word x over the alphabet A is said to be substitutive if there
exist a substitution σ over an alphabet B with a fixed point y = σω(b), for
some b ∈ B, and a morphism τ : B∗ → A∗, such that τ(y) = x. It is said
substitutive primitive when σ is primitive.

The incidence matrix (also called substitution matrix) of a substitution σ
defined over the alphabet A is the A × A-matrix whose entry (i, j) counts
the number |σ(j)|i of occurrences of the letter i in σ(j).

The subshift (Xσ, S) generated by a primitive substitution σ over A is
the set of infinite words x such that any word w in the language F (x) is a
factor of some σn(a), for some a ∈ A and some positive integer n. Such a
subshift is minimal.

Example 2.2. Let σF be the Fibonacci morphism defined over the al-
phabet {a, b} by σF (a) = ab and σF (b) = a. The morphism σF is a
primitive subtistitution and the uniformly recurrent infinite word σωF (a) =
abaababaabaab · · · is called the Fibonacci word. The incidence matrix of σF
is (

1 1
1 0

)
.

The set of factors of the Fibonacci word, called the Fibonacci set, is a dendric
set (see, e.g., [7]) and the extensions graphs of ε, a and b are shown in
Figure 1.

We denote by FA the free group on the alphabet A. It is the set of all
words on the alphabet A∪A−1 which are reduced, in the sense that they do
not have any factor aa−1 or a−1a for a ∈ A. A morphism σ from A∗ to A∗ can
be extended to a morphism from FA to FA by defining σ(a−1) = (σ(a))−1 for
all a ∈ A∪A−1. A morphism σ of the free monoid is said to be invertible if,
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when extended to a morphism of the free group it is an automorphism, that
is, there exists a morphism τ from FA to FA such that σ ◦ τ = τ ◦σ = Id. In
particular, if σ is such that there exists n such that σn is an automorphism,
then σ is itself an automorphism.

An automorphism α of the free group on A is positive if α(a) belongs to
A+ for every a ∈ A. We say that a positive automorphism of the free group
on A is tame if it belongs to the submonoid generated by the permutations
of A and the automorphisms αa,b, α̃a,b defined for a, b ∈ A, with a 6= b, by

αa,b(c) =

{
ab if c = a,

c otherwise
and α̃a,b(c) =

{
ba if c = a,

c otherwise.

Thus αa,b places a letter b after each a and α̃a,b places a letter b before each
a, without modifying the other letters. The above automorphisms and the
permutations of A are called the elementary positive automorphisms on A.
We let Se denote the set of elementary positive automorphisms. This is a
subset of the set of Nielsen’s transformations (see, e.g., [30]). A substitution
that extends as a positive automorphism that is tame is said to be a tame
substitution.

The monoid of tame substitutions strictly contains the monoid of epis-
turmian morphisms, also called Arnoux-Rauzy substitutions. Note that the
case of a two-letter alphabet corresponds to the Stumian case. The monoid
of episturmian morphisms has been thoroughly investigated, e.g., in [36]. It
is generated by the permutations together with the set of automorphisms
ψa, ψ̃a, defined for a ∈ A by

ψa(c) =

{
ac if c 6= a,

a if c = a.
and ψ̃a(c) =

{
ca if c 6= a,

a if c = a.

The submonoid of the monoid of episturmian morphisms generated by the
permutations together with the set of automorphisms ψa, defined for a ∈ A
(that is, no ψ̃b is allowed) is called the monoid of epistandard morphisms.

Note also that the monoid of tame automorphisms is strictly included in
the monoid of positive automorphisms. This is a consequence of the fact
that the monoid of positive automorphisms on an alphabet containing at
least three letters is not finitely generated [36, 39, 41]. However, invertible
substitutions over a binary alphabet are exactly the Sturmian substitutions
(see, e.g., [31, 40]), and the monoid of all invertible substitutions (i.e., the
Sturmian monoid) is finitely generated.

Tame substitutions are closely related to dendric words such as shown in
Section 3 where a characterization of substitutive dendric words is provided.
But, not every tame substitution admits as a fixed point a dendric word
(see Example 5.25 in [8]). The situation is thus more contrasted than in
the Sturmian case where every Sturmian substitution generates a Sturmian
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word (see, e.g., [29]). Note however that it is decidable whether the language
of a primitive aperiodic substitution1 is a dendric set (see [13]).

2.4. Stabilizers. The stabilizer of an infinite word x ∈ AN, denoted by
Stab (x), is the monoid of substitutions σ defined on the alphabet A that
satisfy σ(x) = x. Words that have a cyclic stabilizer are called rigid2.

Note that we concentrate here on the iterative stabilizer according to the
terminology of [25]. Results on the possible growth of elements of the stabi-
lizer are provided in [12] and [20]. It is shown in particular that polynomial
and exponential growth cannot co-exist in the stabilizer for aperiodic words.

Words generated by Sturmian substitutions are rigid (see [38]). It is
proved in [25] that Arnoux-Rauzy words that are fixed points of epistandard
morphisms are rigid.

Note also that the question of the existence of non-negative integers n, p
such that σn = τp is decidable [35].

2.5. Return words. Let F ⊂ A∗ be a set of words. For w ∈ F , let

ΓF (w) = {x ∈ F | wx ∈ F∩A+w} and Γ′F (w) = {x ∈ F | xw ∈ F∩wA+}.
If F is recurrent, the sets ΓF (w) and Γ′F (w) are non-empty. Let

RF (w) = ΓF (w) \ ΓF (w)A+ and R′F (w) = Γ′F (w) \A+Γ′F (w)

be respectively the set of right return words and the set of left return words
to w. In other words, a right return word to w is a word x such that wx is in
F , w is a suffix of wx and wx contains exactly two occurrences of w, and a
left return word to w is a word x such that xw is in F , w is a prefix of xw and
xw contains exactly two occurrences of w. Note that wRF (w) = R′F (w)w.
Note also that a recurrent set S is uniformly recurrent if and only if the set
RS(w) is finite for any w ∈ S.

Return words will play a crucial role in the following. The following
theorem is proved in [7] and it is referred as the Return Theorem.

Theorem 2.1 (Theorem 4.5 [7]). Let F be a recurrent dendric set containing
the alphabet A. Then, for any w ∈ S, the set RF (w) is a basis of the free
group FA on A. Similarly, for any w ∈ S, the set R′F (w) is a basis of the
free group on A.

3. Substitutive dendric words

We first recall some basic definitions concerning S-adic representations in
terms of return words. For more on S-adic words see, e.g., [3, 21, 26, 27, 28].

An infinite word x ∈ AN is said to be S-adic if there is a sequence of al-
phabets (An)n∈N, a sequence of morphisms s = (σn : A∗n+1 → A∗n)n∈N and a
sequence of letters a = (an ∈ An)n∈N such that x = lim

n→+∞
σ0σ1 · · ·σn(an+1).

The set S in the terminology S-adic refers to the set of morphisms S = {σn |
1A primitive substitution is said to be aperiodic if the subshift it generates is aperiodic.
2Note that rigidity has nothing to do with the ergodic notion of rigidity.
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n ∈ N}. The pair (s,a) is called an S-adic representation of x and the se-
quence s a directive sequence of x. The pair (s,a) is eventually periodic
if there exists a non-negative integer N and a positive integer n such that
(σm+n, am+n) = (σm, am) for all m ≥ N , and it is purely periodic if there
exists a positive integer n such that (σm+n, am+n) = (σm, am) for all m ∈ N.
The pair (s,a) is said to be primitive whenever the directive sequence s is
primitive, i.e., for all r ≥ 0, there exists r′ > r such that all letters of Ar
occur in σrσr+1 · · ·σr′(a) for all a ∈ Ar′+1. Observe that if x has a primitive
S-adic representation, then x is uniformly recurrent (see, e.g., [17]). If X is
a minimal subshift and if x ∈ X admits a primitive S-adic representation
(s,a), then we say that (s,a) is also an S-adic representation of X.

Return words provide S-adic representations of uniformly recurrent words.
Indeed, let x = (xn)n∈N ∈ AN be a uniformly recurrent word. We consider
a factorization in left return words with respect to the first letter x0 of
x (note that such return words starts with x0). Denoting by F the lan-
guage of x, there exists a unique sequence (wn)n∈N ∈ (R′F (x0))N such that
x = w0w1w2 · · · . Let R be the alphabet {1, 2, . . . ,Card(R′F (x0))} and con-
sider the return morphism λ : R∗ → A∗ such that λ(R) = R′F (x0) and λ(i)
is the i-th return word occurring in (wn)n∈N for all i. More precisely, λ
is such that for all i ∈ R and all m ∈ N, if wm /∈ {w0, w1, · · · , wm−1} =
{λ(j) | 1 ≤ j < i}, then λ(i) = wm. The derived sequence of x is the unique
sequence D(x) ∈ RN such that λ(D(x)) = x. We recursively define Dn(x),
λn and Rn by D0(x) = x, R0 = A and Dn(x) = D(Dn−1(x)) ∈ RN

n with
λn : R∗n+1 → R∗n the return morphism of Dn(x).

Let us consider the set of morphisms Λ = {λn | n ∈ N}. We denote
λ = (λn)n∈N and 1 = (1)n≥1 the constant sequence that takes the value 1.
The pair (λ,1) is clearly primitive (see also Proposition 5.22 in [8]). We call
it the Λ-adic representation of x. For all n ≥ 1, we set θn = λ0λ1 · · ·λn−1 :
R∗n → A∗. Thus we have θn(Dn(x)) = x.

The Λ-adic representation allows the following formulation for character-
izing primitive substitutive words.

Theorem 3.1 ([16]). A uniformly recurrent word x ∈ AN is primitive sub-
stitutive if and only if the set of its derived sequence {Dn(x) | n ∈ N} is
finite.

The next result implies that any recurrent dendric word admits a primitive
Se-adic representation (see also Theorem 5.23 in [8]). The main property
used below is that in a recurrent dendric set the set of return words of a
given word forms a basis of the free group (Theorem 4.5 in [7]). We recall
that Se stands for the set of elementary positive automorphisms such as
defined in Section 2.3.

Theorem 3.2. Let x ∈ AN be a recurrent dendric word over the alphabet
A = {1, . . . , d} and let (λ,1) be its Λ-adic representation in return words.

(1) For all n ∈ N, Dn(x) ∈ AN is a recurrent dendric word.
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(2) For all n ∈ N, the morphism λn : A∗ → A∗ extends to a tame
automorphism of FA.

In other words, the Λ-adic representation of x provides an Se-adic represen-
tation of x.

Proof. By Proposition 2.1, x is uniformly recurrent. Item 1 then follows from
Theorem 5.13 in [8]. Item 2 follows from Theorem 4.5 in [7] and Theorem
5.19 in [8]. �

We now can state the main result of this section that provides a char-
acterization of primitive substitutive dendric words. A similar statement is
known to hold for Sturmian words (see, e.g., [5]). In the latter case it can
even be expressed in terms of eventually periodic continued fractions and
Ostrowski expansions.

Theorem 3.3. A recurrent dendric word is primitive substitutive if and
only if it has an eventually periodic primitive Se-adic representation.

Proof. One easily checks that the condition is sufficient. The necessary part
follows from Theorem 3.1: the set {Dn(x) | n ∈ N} being finite, there exists
m,n ∈ N, m < n such that Dm(x) = Dn(x). By construction of λ, this
means that for all k ∈ N, Dm+k(x) = Dn+k(x) and λm+k = λn+k, i.e., (λ,1)
is eventually periodic. We then apply Theorem 3.2. �

Observe that if the Λ-adic representation of a uniformly recurrent dendric
word x is purely periodic, then x is the fixed point of a primitive tame
substitution. The converse is not true, such as illustrated by the following
example.

Example 3.1. Let us consider the primitive substitution

σ : 0 7→ 010, 1 7→ 10

and its fixed point x = σω(0). One has x = λ0λ1(λ2)ω(0) where

λ0 :

{
1 7→ 01
2 7→ 0

, λ1 :

{
1 7→ 1
2 7→ 12

, and λ2 :

{
1 7→ 12
2 7→ 122

.

Thus, the Λ-adic representation of x is eventually periodic, but not purely
periodic. Let π : 1 7→ 1, 2 7→ 0. Note that λ0 = π ◦ α̃1,2, λ1 = α̃2,1,
λ2 = α1,2α̃2,1.

4. Stabilizers of dendric words

The following theorem states that one has a weak form of rigidity for
dendric words together with a structure theorem for the stabilizer of a den-
dric word. Recall that recurrent dendric words are uniformly recurrent by
Proposition 2.1.

Theorem 4.1. Let x be a dendric word. Primitive substitutions in the
stabilizer Stab (x) of x coincide up to powers. More precisely, if x is a fixed
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point of both σ and τ primitive substitutions, then there exist i, j ≥ 1 such
that τ i = σj.

Let x be a recurrent substitutive dendric word. There is a primitive tame
substitution θ such that any primitive substitution σ ∈ Stab (x) has a power
that is (tamely) conjugate to a power of θ, that is, there exists a positive
tame automorphism τ such that σi = τθjτ−1, for some i, j ≥ 1.

In particular, if x is a dendric word, any primitive substitution in Stab (x)
extends to an automorphism of the free group and is a tame substitution.

Note that the first statement implies that the Perron-Frobenius eigenval-
ues of σ and τ are multiplicatively dependent, which is also a consequence
of Cobham’s Theorem [18].

Proof. The first statement is a direct consequence of Corollary 22 in [19].
Indeed, given any finite word w, the set of Parikh vectors of returns words
to w generates Zd by the Return Theorem (see Theorem 2.1).

Now, let x be a recurrent dendric word. If x is primitive substitutive, then
the set {Dn(x) | n ∈ N} is finite by Theorem 3.1. Let (λ,1) be its Λ-adic
representation, and, k, l ∈ N, k < l, be such that Dk(x) = Dl(x) and all
derived sequences in {Dn(x) | 0 ≤ n < l} are pairwise distinct. Let θ be the
morphism such that θl = θkθ, i.e., θ = λkλk+1 · · ·λl−1. Since ((λn)n≥k,1)
is a primitive Λ-adic representation of Dk(x), θ is a primitive substitution
having Dk(x) as a fixed point.

Let σ be a primitive substitution in Stab (x). There exists a primitive
substitution σk satisfying σθk = θkσk and having Dk(x) for fixed point, by
Proposition 5.1 in [16]. By Theorem 3.2 and by the first statement, we have
σik = θj for some i, j ≥ 1. We thus get σi = θkθ

jθ−1
k , which finishes the

proof of the second statement.
We deduce that if σ is a primitive element of Stab (x), then it is invertible.

By Theorem 5.19 in [8], it is thus a tame substitution. �

5. Dendric subshifts and topological eigenvalues

We prove in this section that aperiodic minimal dendric subshifts cannot
be generated by substitutions of constant length (see Corollary 5.1 below).
We provide here a spectral proof and prove the more general result that
aperiodic minimal dendric subshifts cannot have rational eigenvalues. Let
us start by recalling some definitions.

Let (X,S) be a subshift. We say that (X,S) is totally minimal whenever
(X,Sn) is minimal for all n.

A cyclic partition of (X,S) is a partition X = ∪mi=1Xi in closed subsets
such that Xi+1 = S(Xi), for 1 ≤ i ≤ m − 1, and S(Xm) = X1. Note that
the elements Xi are thus clopen sets.

A topological eigenvalue of (X,S) is a complex number λ such that there
exists a non-zero continuous function f : X → C satisfying f ◦ S = λf .
The function f is called a topological eigenfunction associated with λ. A
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topological eigenvalue of the form exp(2iπk/n), for some n ≥ 2 and some
integer k, is said to be a rational topological eigenvalue.

Example 5.1. Let σTM be the Thue-Morse substitution defined on {a, b}∗
by σTM (a) = ab, and σTM (b) = ba. Let X1 = σTM [a] ∪ σTM [b].

The partition (X1, SX1) is a cyclic partition of the subshift XTM gener-
ated by σTM . Indeed, one checks that S2X1 = X1, and moreover that X1 and
SX1 are disjoint, by recognizability of the Thue-Morse substitution [32, 33].

The eigenvalue −1 = exp(iπ) is a topological eigenvalue. Indeed, consider
the function f that maps every element of X1 to the constant value −1, and
every element of SX1 to the constant value 1. One has f(Sx) = −f(x) for
every element x of XTM .

The following result is part of the folklore of topological dynamical sys-
tems (see, e.g., [34]). It shows that these notions are intimately related.

Lemma 5.1. Let (X,S) be a minimal subshift. The following are equivalent.

(1) (X,S) has a cyclic partition X1, . . . , Xn for some n ≥ 2;
(2) exp(2iπ/n) is a topological eigenvalue of (X,S) for some n ≥ 2;
(3) (X,S) is not totally minimal.

Proof. It is clear that (3) is equivalent to (1).
Let us prove that (1) implies (2). Let f be defined as the constant function

taking the value exp(2iπk/n) on Xk. One checks that f is a topological
eigenfunction associated with the eigenvalue exp(2iπ/n).

Conversely, let us prove that (2) implies (1). Let exp(2iπ/n) be a topo-
logical eigenvalue of (X,S), and let f be a topological eigenfunction for
this eigenvalue. One can suppose f(x) = 1 for some x ∈ X. One has
f(Snx) = f(x) = 1. By minimality, every element y of X can be written as
y = limSni(x), for some non-decreasing subsequence (ni)i. There exists k
with 0 ≤ k ≤ n−1 such that infinitely many ni are congruent to k modulo n.
By continuity of f , one has f(y) = exp(2iπk/n)f(x) = exp(2iπk/n). Hence
f(X) = {exp(2iπk/n) | 0 ≤ k ≤ n− 1}. Let Xk = f−1({exp(2iπk/n)}), for
0 ≤ k ≤ n− 1. This defines a cyclic partition. �

We now prove that minimal dendric subshifts are totally minimal. We
use below the fact that the set of factors of a given length over the alphabet
A is a code, as well as the properties of stability of dendric sets by maximal
bifix decoding, and the fact that recurrent dendric sets are in fact uniformly
recurrent. Recall that a set G ⊂ A+ of non-empty words over the alphabet
A is a code if the relation

g1 · · · gn = h1 · · ·hm
with n,m ≥ 1 and g1, . . . , gn, h1, . . . , hm ∈ G implies n = m and gi = hi
for i = 1, . . . , n. A coding morphism for a code G ⊂ A+ is a morphism
f : B∗ → A∗ which maps bijectively B onto G.

In the next proposition we use the fact that the set of factors of a fixed
length of a minimal subshift X is a F (X)-maximal bifix code (see [8]).
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Proposition 5.1. A minimal dendric subshift is totally minimal.

Proof. Let (X,S) be a minimal dendric subshift. Let n ≥ 2. We consider
the code G made of the factors of the language of X of length n, that
is, G = F (X) ∩ An. Let f : B → G be a coding morphism for G. Let
H = f−1(F (X)) and let (Y, T ) be the subshift defined by F (Y ) = H, with
T standing for the shift acting on Y . One thus has Y ⊂ BN, with B being
in bijection with the set G of factors of length n of X. Then f extends
to an isomorphism from (Y, S) onto (X,Sn). Since G is an F (X)-maximal
bifix code, the set H is a recurrent dendric set by [8, Theorem 6.1]. By
Proposition 2.1 (i.e., by Corollary 5.3 in [14]) this implies that (Y, T ) is
minimal, which yields that (X,Sn) is minimal. �

We now can state the main result of this section.

Theorem 5.1. Let (X,S) be an aperiodic minimal dendric subshift. Then
it admits no rational topological eigenvalue.

Proof. This is a direct consequence of Proposition 5.1 together with Lemma 5.1.
�

As a consequence, we deduce that Arnoux-Rauzy subshifts and regular in-
terval exchanges cannot have rational topological eigenvalues. For examples
of interval exchanges having topological eigenvalue, see, e.g., [23], and for
examples of Arnoux-Rauzy subshifts having topological eigenvalue, see [10].

Example 5.2. Consider the Tribonacci substitution σT defined over the
alphabet {a, b, c} by σT (a) = ab, σT (b) = ac and σT (c) = a. Let XT be the
subshift generated by σT . The subshift XT is an aperiodic dendric subshift
by [2]. It thus admits no rational topological eigenvalue.

Let τ be the substitution defined over the alphabet {a, b, c} by τ(a) = ab,
τ(b) = ac and τ(c) = aa. Let Xτ be the subshift generated by τ . Let X1 =
τ [a]∪τ [b]∪τ [c]. The partition (X1, SX1) is a cyclic partition of Xτ . Indeed,
one checks, as in Example 5.1, that S2X1 = X1, and moreover that X1 and
SX1 are disjoint, by recognizability of this primitive substitution [32, 33].
The subshift (X,S) admits −1 as a rational topological eigenvalue. Thus,
the subshift (X,S) is not a dendric subshift.

We recall that a subshift generated by a primitive constant length substi-
tution admits rational topological eigenvalues (see, e.g., [11]). A subshift X
is said to be Toeplitz if any element x = (xn)n ∈ X satisfies the following:
for all n, there exists a positive integer p such that xn = xn+kp, for all k.
For more on Toeplitz subshifts, see, e.g., [15]. Toeplitz subshifts are also
known to have rational topological eigenvalues.

Corollary 5.1. Let (X,S) be an aperiodic minimal dendric subshift. Then,
it can neither be generated by a primitive constant length substitution, nor
be a Toeplitz subshift.
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6. Concluding questions

Let us recall that Arnoux-Rauzy words that are fixed points of epistan-
dard morphisms are rigid, as proved in [25]. We are not able here to answer
the question asked in [25] on the rigidity of Arnoux-Rauzy words that are
fixed points of episturmian morphisms (that not necessarily epistandard
ones), even if Theorem 4.1 provides some elements of answer. Nevertheless,
we extend this question to the general framework of dendric words. We then
ask the following: are recurrent dendric words or minimal dendric subshifts
rigid?

By analogy with the monoid of epistandard morphisms, we introduce
the monoid of standard tame substitutions as the monoid generated by the
permutations of A and the automorphisms αa,b, for a, b ∈ A with a 6= b, and
the monoid of antistandard tame substitutions as the monoid generated by
the permutations of A and the automorphisms α̃a,b, for a, b ∈ A with a 6= b.
There is a simple characterization of elements of the monoid of standard
tame substitutions which extends Lemma 2.4 in [36]: a tame substitution is
standard (resp., antistandard) if and only if the set of the first (resp., last)
letters of the images of letters in A is equal to A. However, one notable
difference with the episturmian case is that the tame automorphism αa,b is

not rotationally conjugate to α̃a,b, whereas ψ̃a is rotationally conjugate to
ψa. We recall that two substitutions σ and ρ over the finite alphabet A are
said to be rotationally conjugate if σ = γw ◦ ρ for some w ∈ A∗, where γw is
the inner automorphism of FA defined by γw(x) = wxw−1, for all x ∈ FA.
Another difference comes from the fact that not every fixed point of a tame
substitution is a dendric word (see Example 5.25 in [8]).

Several questions occur naturally. Do fixed points of standard tame sub-
stitutions play a role analogous for dendric words as the role played by
fixed points of epistandard morphisms for Arnoux-Rauzy words, in partic-
ular with respect to special factors? Is this notion relevant in the present
context? What can be said on tame substitutions that have the same in-
cidence matrix? What can be said when one exchanges α̃a,b with αa,b in a
decomposition of a tame substitution? Can rotational conjugacy be seen on
the decomposition by elementary morphisms of a substitution that preserves
a dendric word?

Let x be a recurrent dendric word. If x is a fixed point of a substitution,
is this substitution primitive? In other words, is any non-trivial element
of Stab (x) primitive? Moreover, can one characterize in terms of the Se-
directive sequence of a recurrent dendric word x (see Theorem 3.2) the case
where its stabilizer is non-trivial, that is, the case where there exists at least
one non-trivial substitution σ such that σ(x) = x? Can one characterize
among substitutive dendric words the dendric words that are fixed points
of substitutions? For the two-letter Sturmian case, see, e.g., [6], and the
references therein.
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The very fact that the family of dendric subshifts encompasses Arnoux-
Rauzy subshifts shows the diversity of spectral behaviors of minimal den-
dric subshifts. Indeed, by [10], Arnoux-Rauzy subshifts can have topolog-
ical eigenvalues or not; the same holds for measure-theoretic ones. Note
that if we focus on dendric subshifts generated by primitive substitutions,
it is known that measure-theoretical and topological eigenvalues are the
same [24]. One way to tackle spectral questions concerning dendric subshifts
is to interpret their Se-adic representation in terms of continued fractions
and understand the underlying convergence.
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