
Logical Methods in Computer Science
Vol. 13(4:3)2017, pp. 1–54
https://lmcs.episciences.org/

Submitted Jun. 20, 2007
Published Oct. 26, 2017

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS

MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

Warsaw University
e-mail address: bojan@mimuw.edu.pl

Cnrs/Liafa/Université Paris Diderot, Paris 7
e-mail address: thomas.colcombet@liafa.jussieu.fr

Abstract. We define a new class of languages of ω-words, strictly extending ω-regular
languages.

One way to present this new class is by a type of regular expressions. The new ex-
pressions are an extension of ω-regular expressions where two new variants of the Kleene
star L∗ are added: LB and LS . These new exponents are used to say that parts of the
input word have bounded size, and that parts of the input can have arbitrarily large sizes,
respectively. For instance, the expression (aBb)ω represents the language of infinite words
over the letters a, b where there is a common bound on the number of consecutive letters a.
The expression (aSb)ω represents a similar language, but this time the distance between
consecutive b’s is required to tend toward the infinite.

We develop a theory for these languages, with a focus on decidability and closure.
We define an equivalent automaton model, extending Büchi automata. The main techni-
cal result is a complementation lemma that works for languages where only one type of
exponent—either LB or LS—is used.

We use the closure and decidability results to obtain partial decidability results for
the logic MSOLB, a logic obtained by extending monadic second-order logic with new
quantifiers that speak about the size of sets.

1. Introduction

In this paper we introduce a new class of languages of infinite words. The new languages of
this kind—called ωBS-regular languages—are defined using an extended form of ω-regular
expressions. The extended expressions can define properties such as “words of the form
(a∗b)ω for which there is an upper bound on the number of consecutive letters a”. Note that
this bound depends upon the word, and for this reason the language is not ω-regular. This
witnesses that ωBS-regular languages are a proper extension of ω-regular languages.

The expressions for ωBS-regular languages are obtained by extending the usual ω-
regular expressions with two new variants of the Kleene star L∗. These are called the
bounded exponent LB and the strongly unbounded exponent LS. The idea behind B is
that the language L in the expression LB must be iterated a bounded number of times,

Work supported by the EU-TNR network GAMES. The first author is also supported by Polish govern-
ment grant no. N206 008 32/0810.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:3)2017

c© Miko laj Bojańczyk and Thomas Colcombet
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

the bound being fixed for the whole word. For instance, the language given in the first
paragraph is described by the expression (aBb)ω. The idea behind S is that the number of
iterated concatenations of the language L must tend toward infinity (i.e., have no bounded
subsequence).

This paper is devoted to developing a theory for the new languages. There are different
motivations for such a study. The first one is the interest of the model itself: it extends
naturally the standard framework of ω-regular languages, while retaining some closure and
decidability properties. We also show that, just as ω-regular expressions define the same
languages of infinite words as the ones definable in monadic second-order logic, the class
of ωBS-regular languages also admits a logical counterpart. The relevance of the model is
also quite natural: the use of bounding arguments in proofs is very common, and the family
of ωBS-regular languages provides a unified framework for developing such arguments. A
notable example is the famous star-height problem, to which we will return later in the
introduction. Another application of our results, which is presented in this paper, is an
algorithm deciding if an ω-automatic graph has bounded out-degree. We believe that more
problems are related to this notion of regularity with bounds. In this paper, we concentrate
on a basic theoretical study of the model.

The first step in this study is the introduction of a new family of automata over infinite
words, extending Büchi automata, which we call bounding automata. Bounding automata
have the same expressive power as ωBS-regular expressions. (However, the translations
between bounding automata and ωBS-regular expressions are more involved than in the
case of ω-regular languages.) A bounding automaton is a finite automaton equipped with
a finite number of counters. During a run, these counters can be incremented and reset,
but not read. The counter values are used in the acceptance condition, which depends
on their asymptotic values (whether counter values are bounded or tend toward infinity).
Thanks to the equivalence between automata and expressions, and using simple automata
constructions, we obtain the closure of ωBS-regular languages under union, intersection
and projection.

Unfortunately, ωBS-regular automata cannot be determinized. Even more problematic,
ωBS-regular languages are not closed under complement. However, we are able to identify
two fragments of ωBS-regular languages that complement each other. We show that the
complement of a language that only talks about bounded sequences is a language that only
talks about sequences tending toward infinity; and vice versa. The difficult proof of this
complementation result is the technical core of the paper.

Finally, we present a logic that captures exactly the ωBS-regular languages, i.e. is equiv-
alent to both the ωBS-regular expressions and automata. As it is well known, languages
defined by ω-regular expressions are exactly the ones definable in monadic second-order logic.
What extension of this logic corresponds to ωBS-regular expressions? Our approach is to
add a new quantifier, called the existential unbounding quantifier U. A formula UX.φ(X) is
true if it is possible to find sets satisfying φ(X) of arbitrarily large size. Every ωBS-regular
language can be defined in monadic second-order logic extended with U. However, due to
the failure of the closure under complementation, the converse does not hold. By restricting
the quantification patterns, we identify fragments of the logic that correspond to the various
types of ωBS-regular expressions introduced in this paper.

Related work. This work tries to continue the long lasting tradition of logic/automata
correspondences initiated by Büchi [3, 4] and continued by Rabin [12], only to mention the

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 3

most famous names (see [14] for a survey). We believe that bounding properties extend
the standard notion of regularity in a meaningful way, and that languages defined by our
extended expressions have every right to be called regular, even though they are not captured
by Büchi automata. For instance, every ωBS-regular language L has a finite number of
quotients w−1L and Lw−1. (Moreover, the right quotients Lw−1 are regular languages of
finite words.) Unfortunately, we do not have a full complementation result.

The quantifier U in the logic that describes ωBS-regular languages was already intro-
duced in [1]. More precisely, the quantifier studied in [1] is B: a formula BX.φ expresses
that there is a bound on the size of sets X satisfying property φ. This formula is semanti-
cally equivalent to ¬(UX.φ). Although [1] went beyond words and considered infinite trees,
the proposed satisfiability algorithm worked for a very restricted fragment of the logic with
no (not even partial) complementation. Furthermore, no notion of automata or regular
expression was proposed.

Boundedness properties have been considered in model-checking. For instance, [2] con-
sidered systems described by pushdown automata whose stack size is unbounded.

Our work on bounds can also be related to cardinality restrictions. In [11], Klaedtke
and Ruess considered an extension of monadic second-order logic, which allowed cardinality
constraints of the form

|X1|+ · · · + |Xn| ≤ |Y1|+ · · · + |Ym| .
In general, such cardinality constraints (even |X| = |Y |) lead to undecidability of the
satisfiability problem. Even though cardinality constraints can express all ωBS-regular
languages, the decidable fragments considered in [11] are insufficient for our purposes: those
fragments capture only a small fragment of ωBS-regular languages.

Finally, the objects we manipulate are related to the (restricted) star-height problem.
This problem is, given a natural number k and a regular language of finite words L, to
decide if L can be defined by a regular expression where the nesting depth of Kleene-stars
is at most k. This problem, first raised by Eggan in 1963 [7], has a central role in the
theory of regular languages. It has been first shown decidable by Hashiguchi [8] via a
difficult proof. The correctness of this proof is still unclear. A new proof, due to Kirsten
[10], reduces the star-height problem to the limitedness problem for nested distance desert
automata. The latter are finite state automata, which assign a natural number to each
word. The limitedness problem is the question whether there is a bound on the numbers
produced by a given automaton. Nested distance desert automata—we were not aware
of their existence when developing the theory of ωBS-regular languages—happen to be
syntactically equivalent to the hierarchical B-automata that we use as an intermediate
object in the present work. The semantics of the two models are also tightly connected,
and it is possible to derive from the result of our paper the decidability of the limitedness
problem for nested distance desert automata (though using our more general results, we
obtain a non-elementary complexity, which is far beyond the optimal PSPACE algorithm
of Kirsten).

Structure of the paper. In Section 2, we formally define the ωBS-regular expressions
that are the subject of this paper. We introduce two restricted types of expressions (where
the B and S exponents are prohibited, respectively) and give an overview of the closure
properties of the respective expressions. In Section 3, we introduce our automata models and
show that they are equivalent to the ωBS-regular expressions. In Section 4, we show how
our results can be applied to obtain a decision procedure for satisfiability in an extension

4 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

of monadic second-order logic. The main technical result, which concerns closure under
complementation, is given at the end of the paper, in Section 5.

We would like to thank the anonymous referees, who contributed enormously to this
paper, through their many thoughtful and helpful comments.

2. Regular Expressions with Bounds

In this section we define ωBS-regular expressions. The expressions are the first of three
means of defining languages with bounds. The other two—automata and logic—are pre-
sented in the next sections.

2.1. Definition. In a nutshell, to the standard operations used in ω-regular expressions,
we add two variants of the Kleene star ∗: the B and S exponents. These are used to
constrain the number of iterations, or more precisely the asymptotic behavior of the number
of iterations (this makes sense since the new exponents are used in the context of an ω

exponent. When the B exponent is used, the number of iterations has to be bounded by
a bound which depends on the word. When the S exponent is used, it has to tend toward
infinity. For instance, the expression (aBb)ω represents the words in (a∗b)ω where the size
of sequences of consecutive a’s is bounded. Similarly, the expression (aSb)ω requires the size
of (maximal) sequences of consecutive a’s to tend toward infinity. These new expressions
are called ωBS-regular expressions. A more detailed definition is presented below.

Just as an ω-regular expression uses regular expressions of finite words as building
blocks, for ωBS-regular expressions one also needs first to define a finitary variant, called
BS-regular expressions. Subsection 2.1.1 presents this finitary variant, while Subsection 2.1.2
introduces ωBS-regular expressions.

2.1.1. BS-regular expressions. In the following we will write that an infinite sequence of
natural numbers g ∈ Nω is bounded if there exists a global bound on the g(i)’s, i.e.,
if lim supi g(i) < +∞. This behavior is denoted by the letter B. The infinite sequence
is strongly unbounded if it tends toward infinity, i.e., lim inf i g(i) = +∞. This behavior
is denoted by the letter S. Let us remark that an infinite sequence is bounded iff it has
no strongly unbounded infinite subsequence, and that an infinite sequence is strongly un-
bounded iff it has no bounded infinite subsequence.

A natural number sequence g is a finite or infinite sequence of natural numbers that
we write in a functional way: g(0), g(1), . . . Its length is |g|, which may possibly be ∞.
We denote by N∞ the set of sequences of natural numbers, both finite and infinite. A
sequence of natural numbers g is non-decreasing if g(i) ≤ g(j) holds for all i ≤ j < |g|. We
write g ≤ n to say that g(i) ≤ n holds for all i < |g|. For g a non-decreasing sequence of
natural numbers, we define g′ to be g′(i) = g(i + 1) − g(i) for all i such that i + 1 < |g|.
The sequence g is of bounded difference if g′ is either finite or bounded; it is of strongly
unbounded difference if the sequence g′ is either finite or strongly unbounded.

A word sequence ~u over an alphabet Σ is a finite or infinite sequence of finite words
over Σ, i.e., an element of (Σ∗)∞. The components of the word sequence ~u are the finite
words u0, u1, . . . ; we also write ~u = 〈u0, u1, . . . 〉. We denote by ε the finite word of length 0,
which is different from the word sequence of length 0 denoted 〈〉. We denote by |~u| the
length of the word sequence ~u.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 5

A language of word sequences is a set of word sequences. The finitary variant of ωBS-
regular expressions will describe languages of word sequences. Note that the finiteness
concerns only the individual words in the sequences, while the sequences themselves will
sometimes be infinitely long.

We define the following operations, which take as parameters languages of word se-
quences K,L.
The concatenation of K and L is defined by

K · L = {〈u0v0, u1v1 . . . 〉 : ~u ∈ K, ~v ∈ L, |~u| = |~v|} .

The mix of K and L (which is not the union) is defined by

K + L = {~w : ~u ∈ K, ~v ∈ L, ∀i < max(|~w|, |~u|).wi ∈ {ui} ∪ {vi}} ,

with the convention that {ui} (respectively, {vi}) is ∅ if i≥|~u| (respectively, if i≥|~v|).
The ∗ exponent of L is defined by grouping words into blocks:

L∗ = {〈u0 . . . ug(0)−1, ug(0) . . . ug(1)−1, . . . 〉 : ~u ∈ L, g ∈ N∞, g ≤ |u|, g non-decreasing} .
The bounded exponent LB is defined similarly:

LB = {〈u0 . . . ug(0)−1, ug(0) . . . ug(1)−1, . . . 〉 :

~u ∈ L, g ∈ N∞, g ≤ |u|, g non-decreasing of bounded difference} .

And the strongly unbounded exponent LS is defined by:

LS = {〈u0 . . . ug(0)−1, ug(0) . . . ug(1)−1, . . . 〉 :

~u ∈ L, g ∈ N∞, g ≤ |u|, g non-decreasing of strongly unbounded difference} .

We now define BS-regular expressions using the above operators.

Definition 2.1. A BS-regular expression has the following syntax (a being some letter of
the given finite alphabet Σ):

e = ∅ | ε | ε̄ | a | e · e | e+ e | e∗ | eB | eS .

As usual, we often omit the · symbols in expressions.
The semantic [[e]] of a BS-regular expression e is the language of word sequences defined

inductively by the following rules:

• [[∅]] = {〈〉}.
• [[ε̄]] = {〈〉, 〈ε〉, 〈ε, ε〉, . . . }, i.e., all finite word sequences built with ε.
• [[ε]] = [[ε̄]] ∪ {〈ε, ε, . . . 〉}, i.e., all word sequences built with ε.
• [[a]] = {〈〉, 〈a〉, 〈a, a〉, . . . } ∪ {〈a, a, . . . 〉}, i.e., all word sequences built with a.

• [[e · f]] = [[e]] · [[f]], [[e+ f]] = [[e]] + [[f]], [[e∗]] = [[e]]∗, [[eB]] = [[e]]B , and [[eS]] = [[e]]S .

A language of word sequences is called BS-regular if it is obtained by evaluating a BS-
regular expression. The B-regular (respectively, S-regular) languages correspond to the
particular case where the expression does not use the exponent S (respectively, B).

Example 2.2. The B-regular expression aB represents the finite or infinite word sequences
that consist of words from a∗ where the number of a’s is bounded:

[[aB]] = {〈af(0), af(1), . . .〉 : f ∈ N∞ is bounded} .

6 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

The language of word sequences [[aB ·(b ·aB)S]] consists of word sequences where the number
of consecutive a’s is bounded, while the number of b’s in each word of the word sequence is
strongly unbounded.

Except for the two extra exponents B and S and the constant ε̄, these expressions co-
incide syntactically with the standard regular expressions. Therefore, one may ask, how do
our expressions correspond to standard regular expressions on their common syntactic frag-
ment, which includes the Kleene star ∗, concatenation · and union +? The new expressions
are a conservative extension of standard regular expressions in the following sense. If one
takes a standard regular expression e defining a language of finite words L and evaluates
it as a BS-regular expression, the resulting language of word sequences is the set of word
sequences where every component belongs to L, i.e. [[e]] = {~u : ∀i<|u|. ui ∈ L}.

In the fact below we present two important closure properties of languages defined by
BS-regular expressions. We will often use this fact, sometimes without explicitly invoking
it.

Fact 2.3. For every BS-regular language L, the following properties hold:

(1) L+ L = L,
(2) L = {〈uf(0), uf(1), . . . 〉 : ~u ∈ L, f ∈ N∞, f ≤ |u|, f strongly unbounded}.
Proof. A straightforward structural induction.

Item 2 implies that BS-regular languages are closed under taking subsequences. That is,
every BS-regular language of word sequences is closed under removing, possibly infinitely
many, component words from the sequence. In particular every BS-regular language is
closed under taking the prefixes of word sequences.

2.1.2. ωBS-regular expressions. We are now ready to introduce the ωBS-regular expres-
sions. These describe languages of ω-words. From a word sequence we can construct an
ω-word by concatenating all the words in the word sequence:

〈u0, u1, . . . 〉ω = u0u1 . . .

This operation—called the ω-power—is only defined if the word sequence has nonempty
words on infinitely many coordinates. The ω-power is naturally extended to languages of
word sequences by taking the ω-power of every word sequence in the language (where it is
defined).

Definition 2.4. An ωBS-regular expression is an expression of the form:

e =
n
∑

i=1

ei · fω
i

in which each ei is a regular expression, and each fi is a BS-regular expression. The
expression is called ωB-regular (respectively, ωS-regular) if all the expressions fi are B-
regular (respectively, S-regular).

The semantic interpretation [[e]] is the language of ω-words
⋃

i=1...n

[[ei]]F · [[fi]]ω,

in which [[·]]F denotes the standard semantic of regular expressions, and · denotes the con-
catenation of a language of finite words with a language of ω-words. Following a similar

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 7

tradition for regular expressions, we will often identify an expression with its semantic
interpretation, writing, for instance, w ∈ (aBb)ω instead of w ∈ [[(aBb)ω]].

A language of ω-words is called ωBS-regular (respectively, ωB-regular, ωS-regular) if
it is equal to [[e]] for some ωBS-regular expression e (respectively, ωB-regular expression e,
ωS-regular expression e).

In ωBS-regular expressions, the language of finite words can be {ε}; to avoid clutter
we omit the language of finite words in such a situation, e.g., we write aω for {ε} · aω.

This definition differs from the definition of ω-regular expressions only in that the ω

exponent is applied to BS-regular languages of word sequences instead of regular word
languages. As one may expect, the standard class of ω-regular languages corresponds to
the case of ωBS-regular languages where neither B nor S is used (the presence of ε̄ does
not make any difference here).

Example 2.5. The expression (aBb)ω defines the language of ω-words containing an infinite
number of b’s where the possible number of consecutive a’s is bounded. The language (aSb)ω

corresponds to the case where the lengths of maximal consecutive sequences of a’s tend
toward infinity. The language (a+ b)∗aω +((a∗b)∗aSb)ω is more involved. It corresponds to
the language of words where either there are finitely many b’s (left argument of the sum), or
the number of consecutive a’s is unbounded but not necessarily strongly unbounded (right
argument of the sum). This is the complement of the language (aBb)ω.

Fact 2.6. Emptiness is decidable for ωBS-regular languages.

Proof. An ωBS-regular language is nonempty if and only if one of the languages M · Lω

in the union defining the language is such that the regular language M is nonempty and
the BS-regular language L contains a word sequence with infinitely many nonempty words.
Therefore the problem boils down to checking if a BS-regular language contains a word
sequence with infinitely many nonempty words. Let N be the set of BS-regular languages
with this property, and let I be the set of BS-regular languages that contain at least one
infinite word sequence (possibly with finitely many nonempty words). The following rules
determine which languages belong to I and N .

• K + L ∈ I iff K ∈ I or L ∈ I.
• K · L ∈ I iff K ∈ I and L ∈ I.
• L∗ and LB always belong to I.
• LS ∈ I iff L ∈ I.
• K + L ∈ N iff K ∈ N or L ∈ N .
• K · L ∈ N iff either K ∈ I and L ∈ N , or K ∈ N and L ∈ I.
• L∗, LB and LS belong to N iff L ∈ N .

The constant ε̄ will turn out to be a convenient technical device. In practice, ε̄·L restricts
a language of word sequences L to its finite sequences. We denote by L̄ the language of word
sequences ε̄ ·L. This construction will be used for instance when dealing with intersections:
as an example, the equality LB ∩ LS = L̄∗ holds when L does not contain ε. It turns out
that ε̄ is just syntactic sugar, as stated by:

Proposition 2.7. Every ωBS-regular expression (respectively, ωB-regular and ωS-regular
ones) is equivalent to one without the ε̄ constant.

Note that this proposition does not mean that ε̄ can be eliminated from BS-regular
expressions. It can only be eliminated under the scope of the ω-power in ωBS-regular

8 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

expressions. For instance, ε̄ is necessary to capture the BS-regular language ā. However,
once under the ω exponent, ε̄ becomes redundant; for instance (ā)ω is equivalent to ∅, while
(ā+ b)ω is equivalent to (a+ b)∗bω.

Proposition 2.7 will follow immediately once the following lemma is established:

Lemma 2.8. Let T ∈ {BS,B, S}. For every T -regular expression, there is an equivalent
one of the form M̄ + L where M is a regular expression and L is T -regular and does not
use ε̄.

Proof. By structural induction, we prove that for every BS-regular expression L can be
equivalently expressed as

L = M̄ +K ,

where M is obtained from L by replacing exponents B and S by Kleene stars and replacing
ε̄ by ε, and K is obtained from L by replacing ε̄ by ∅.

Note that Fact 2.3 is used implicitly above.

2.2. Summary: The Diamond. In this section we present Figure 1, which summarizes
the technical contributions of this paper. We call this figure the diamond. Though not all
the material necessary to understand this figure has been provided yet, we give it here as a
reference and guide to what follows.

ωBS-regular expressions
hierarchical ωBS-automata

ωBS-automata

ωS-regular expressions
hierarchical ωS-automata

ωS-automata

ωB-regular expressions
hierarchical ωB-automata

ωB-automata

ω-regular expressions
Büchi automata

()

)(

C

∩,∪, C, π

∪,∩, π ∪,∩, π

∪,∩, π

Figure 1: The diamond

The diamond illustrates the four variants of languages of ω-words that we consider:
ω-regular, ωB-regular, ωS-regular and ωBS-regular languages. The inclusions between the

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 9

four classes give a diamond shape. We show in Section 2.3 below that the inclusions in the
diamond are indeed strict.

To each class of languages corresponds a family of automata. The automata come in
two variants: “normal automata”, and the equally expressive “hierarchical automata”. The
exact definition of these automata as well as the corresponding equivalences are the subject
of Section 3.

All the classes are closed under union, since ωBS-regular expressions have finite union
built into the syntax. It is also easy to show that the classes are closed under projection, i.e.,
images under a letter to letter morphism (the operation denoted by π in the figure), and
more generally images under a homomorphism. From the automata characterizations we
obtain closure under intersection for the four classes; see Corollary 3.4. For closure under
complement, things are not so easy. Indeed, in Section 2.3 we show that ωBS-regular
languages are not closed under complement. However, some complementation results are
still possible. Namely Theorem 5.1 establishes that complementing an ωB-regular language
gives an ωS-regular language, and vice versa. This is the most involved result of the paper,
and Section 5 is dedicated to its proof.

2.3. Limits of the diamond. In this section we show that all the inclusions depicted in
the diamond are strict. Moreover, we show that there exists an ωBS-regular language whose
complement is not ωBS-regular.

Lemma 2.9. Every ωB-regular language over the alphabet {a, b}, which contains a word
with an infinite number of b’s, also contains a word in (aBb)ω.

Proof. Using a straightforward structural induction, one can show that a B-regular language
of word sequences L satisfies the following properties.

• If L contains a sequence in a∗, then it contains a sequence in aB .
• If L contains a sequence in (a∗b)+a∗, then it contains a sequence in (aBb)+aB.

The statement of the lemma follows.

Corollary 2.10. The language (aSb)ω is not ωB-regular. The language (aBb)ω is not ωS-
regular.

Proof. Being ωB-regular for (aSb)ω would contradict Lemma 2.9, since it contains a word
with an infinite number of b’s but does not intersect (aBb)ω.

For the second part, assume that the language (aBb)ω is ωS-regular. Consequently, so
is the language (aBb)ω+(a+b)∗aω. Using Theorem 5.1, its complement ((a∗b)∗aSb)ω would
be ωB-regular. But this is not possible, by the same argument as above. A proof that does
not use complementation—along the same lines as in the first part—can also be given.

We now proceed to show that ωBS-regular languages are not closed under complement.
We start with a lemma similar to Lemma 2.9.

Lemma 2.11. Every ωBS-regular language over the alphabet {a, b} that contains a word
with an infinite number of b’s also contains a word in (aBb+ aSb)ω.

Proof. As in Lemma 2.9, one can show the following properties of a BS-regular language
of word sequences L.

• If L contains a word sequence in a∗, then it contains one in aB + aS .
• If L contains a word sequence in (a∗b)+a∗, then it contains one in (aBb+ aSb)+(aB + aS).

The result directly follows.

10 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

Corollary 2.12. The complement of L = (aBb+ aSb)ω is not ωBS-regular.

Proof. The complement of L contains the word

a1 ba1ba2 ba1ba2ba3 ba1ba2ba3ba4b . . . ,

and consequently, assuming it is ωBS-regular, one can apply Lemma 2.11 to it. It follows
that the complement of L should intersect L, a contradiction.

3. Automata

In this section we introduce a new automaton model for infinite words, which we call ωBS-
automata. We show that these automata have the same expressive power as ωBS-regular
expressions.

We will actually define two models: ωBS-automata, and hierarchical ωBS-automata.
We present them, successively, in Sections 3.1 and 3.2. Theorem 3.3, which shows that both
models have the same expressive power as ωBS-regular expressions, is given in Section 3.3.
Section 3.3 also contains Corollary 3.4, which states that ωBS-regular languages are closed
under intersection. The proof of Theorem 3.3 is presented in Sections 3.5 and 3.6.

3.1. General form of ωBS-automata. An ωBS-automaton is a tuple (Q,Σ, qI ,ΓB ,ΓS , δ),
in which Q is a finite set of states, Σ is the input alphabet, qI ∈ Q is the initial state, and
ΓB and ΓS are two disjoint finite sets of counters. We set Γ = ΓB ∪ ΓS. The mapping δ

associates with each letter a ∈ Σ its transition relation

δa ⊆ Q× {i, r, ǫ}Γ ×Q .

The counters in ΓB are called bounding counters, or B-counters or counters of type B. The
counters in ΓS are called unbounding counters, or S-counters or counters of type S. Given
a counter α and a transition (p, v, q), the transition is called a reset of α if v(α) = r; it is
an increment of α if v(α) = i.

When the automaton only has counters of type B, i.e., if ΓS = ∅ (respectively, of
type S, i.e., if ΓB = ∅), then the automaton is called an ωB-automaton (respectively, an
ωS-automaton).

A run ρ of an ωBS-automaton over a finite or infinite word a1a2 · · · is a sequence of
transitions ρ = t1t2 · · · of same length such that for all i, ti belongs to δai , and the target
state of the transition ti is the same as the source state of the transition ti+1.

Given a counter α, every run ρ can be uniquely decomposed as

ρ = ρ1tn1
ρ2tn2

. . .

in which, for every i, tni
is a transition that does a reset on α, and ρi is a subrun (sequence

of transitions) that does no reset on α. We denote by α(ρ) the sequence of natural numbers,
which on its i-th position has the number of occurrences of increments of α in ρi. This
sequence can be finite if the counter is reset only a finite number of times, otherwise it is
infinite. A run ρ over an ω-word is accepting if the source of its first transition is the initial
state qI , and for every counter α, the sequence α(ρ) is infinite and furthermore, if α is of
type B then α(ρ) is bounded and if α is of type S then α(ρ) is strongly unbounded.

Example 3.1. Consider the following automaton with a single counter (the counter action
is in the parentheses):

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 11

q p

b(ǫ)

b(r)

a(i), b(r) a(ǫ), b(ǫ)

Assume now that the unique counter in this automaton is of type B. We claim that
this automaton recognizes the language L = (aBb(a∗b)∗)ω, i.e., the set of ω-words of the
form an0ban1b . . . such that lim inf i ni < +∞. We only show that the automaton accepts all
words in L, the converse inclusion is shown by using similar arguments. Let w = an0ban1b . . .

be a word in L. There exists an infinite setK ⊆ N and a natural numberN such that nk < N

holds for all k ∈ K. Without loss of generality we assume that 0 ∈ K (by replacing N

by max(n0, N)). We now construct an accepting run of the automaton on the word w. This
run uses state q in each position i ∈ N such that the distance between the last occurrence
of b before position i and the first occurrence of b after position i is at most N . For other
positions the state p is used and the value of the counter is left unchanged. In this way, the
value of the counter will never exceed N . Since furthermore K is infinite, the counter will
be reset infinitely many times. This proves that the run is accepting. If the counter is of
type S, then the automaton recognizes the language (aSb(a∗b)∗)ω.

Although this is not directly included in the definition, an ωBS-automaton can simulate
a Büchi automaton, and this in two ways: by using either unbounding, or bounding coun-
ters (and therefore Büchi automata are captured by both ωS-automata and ωB-automata).
Consider then a Büchi automaton, with final states F . One way to simulate this automaton
is to have an ωB-automaton with the same state space, and one bounding counter, which is
reset every time a state from F is visited, and never incremented. In this case, the accepting
condition for ωBS-automata collapses to visiting F infinitely often, since a bounded value is
assured by the assumption on not doing any increments. Another way to simulate the Büchi
automaton is to use an unbounding counter. Whenever the simulating automaton visits a
state in F , it nondeterministically decides to either increment the unbounding counter, or
to reset it. It is easy to see that the accepting state is seen infinitely often if and only
if there is a policy of incrementing and resetting that satisfies the accepting condition for
unbounding counters.

3.2. Hierarchical automata. Hierarchical ωBS-automata are a special case of ωBS-auto-
mata where a stack-like discipline is imposed on the counter operations.

An ωBS-automaton is called hierarchical if its set of counters is Γ = {1, . . . , n} and
whenever a counter i > 1 is incremented or reset, the counters 1, . . . , i− 1 are reset. There-
fore, in a hierarchical automaton, a transition (q, v, r) can be of three forms:

• v(1) = · · · = v(n) = ǫ, i.e., no counter is affected by the transition. In this case we write
ǫ for v.

• v(1) = · · · = v(k) = r and v(k+1) = · · · = v(n) = ǫ, i.e., the maximal affected counter is
k, and it is reset by the transition. In this case we write Rk for v.

• v(1) = · · · = v(k − 1) = r, v(k) = i and v(k + 1) = · · · = v(n) = ǫ., i.e., the maximal
affected counter is k, and it is incremented by the transition. In this case we write Ik for
v.

12 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

It is convenient to define for a hierarchical automaton its counter type, defined as a word
in {B + S}∗. The length of this word is the number of counters; its i-th letter is the type
of counter i.

Example 3.2. Consider the following hierarchical ωBS-automaton:

q

a(I1), b(R1), c(I2), d(R2)

In this picture, we use once more the convention that the resets and increments are in paren-
theses. If this automaton has counter type T1T2 with T1, T2 ∈ {B,S}, then it recognizes
the language

(

(

(aT1b)∗aT1c
)T2 (aT1b)∗aT1d

)ω

.

3.3. Equivalence. The key result concerning the automata is that the hierarchical ones are
equivalent to the non-hierarchical ones, and that both are equivalent to the ωBS-regular
expressions. Furthermore, this equivalence also holds for the fragments where only B-
counters or S-counters are allowed.

Theorem 3.3. Let T ∈ {BS,B, S}. The following are equivalent for a language L ⊆ Σω.

(1) L is ωT -regular.
(2) L is recognized by a hierarchical ωT -automaton.
(3) L is recognized by an ωT -automaton.

Before establishing this result, we mention an important application.

Corollary 3.4. The classes of ωBS-regular, ωB-regular and ωS-regular languages are
closed under intersection.

Proof. The corresponding automata (in their non-hierarchical form) are closed under inter-
section using the standard product construction.

The implication from (1) to (2) is straightforward since hierarchical automata are a
special case of general automata. In the following sections, we show the two difficult impli-
cations in Theorem 3.3: that expressions are captured by hierarchical automata (Section 3.5)
and that automata are captured by expressions (Section 3.6). First, we introduce in Sec-
tion 3.4 the notion of word sequence automata.

3.4. Word sequence automata. In proving the equivalence of hierarchical ωBS-automata
and ωBS-regular languages, we will use a form of automaton that runs over word sequences.
A word sequence BS-automaton A is defined as an ωBS-automaton, except that we add a
set of accepting states, i.e., it is a tuple (Q,Σ, qI , F,ΓB ,ΓS , δ) in which Q,Σ, qI ,ΓB ,ΓS , δ

are as for ωBS-automata, and F ⊆ Q is a set of accepting states.
A word sequence BS-automaton A accepts an infinite sequence of finite words ~u if there

is a sequence ~ρ of finite runs of A such that:

• for all i ∈ N, the run ρi is a run over the word ui that begins in the initial state and ends
in an accepting state;

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 13

• for every counter α of type B, the sequence of natural numbers

max(α(ρ0)),max(α(ρ1)), . . .

(in which max is applied to a finite sequence of natural numbers with the obvious meaning)
is bounded;

• for every counter α of type S, the sequence of natural numbers

min(α(ρ0)),min(α(ρ1)), . . .

(in which min is applied to a sequence of natural numbers with the obvious meaning) is
strongly unbounded.

The variants of word sequence B-automata and word sequence S-automata are defined as
expected. The same goes for the hierarchical automata.

An equivalent way for describing the acceptance of a word sequence by a BS-auto-
maton A is as follows. Consider the ωBS-automaton A′ obtained from A by a) removing
the set of accepting states F , b) adding a new symbol � to the alphabet, and c) setting δ�
to contain the transitions (q,R, qI) for q ∈ F with R(α) = r for every counter α. Then A
accepts the word sequence 〈v0, v1, . . . 〉 iff A′ accepts the ω-word v0�v1� . . .

3.5. From expressions to hierarchical automata. This section is devoted to showing
one of the implications in Theorem 3.3:

Lemma 3.5. Every ωBS-regular (respectively, ωB-regular, ωS-regular) language can be
recognized by a hierarchical ωBS-automaton (respectively, ωB-regular, ωS-regular).

There are two main difficulties:

• Our word sequence automata do not have ε-transitions, which are used in the proof for
finite words. Instead of introducing a notion of ε-transition and establishing that such
transitions can be eliminated from automata, we directly work on word sequence automata
without ε-transitions.

• When taking the mix or the concatenation of two languages L,K defined by hierarchical
word sequence automata, there are technical difficulties with combining the counter types
of the automata for L and K.

We overcome these difficulties by first rewriting an expression into normal form before
compiling it into a hierarchical word sequence automaton. The basic idea is that we move
the mix + to the top level of the expression, and also remove empty words and empty
iterations. To enforce that no empty words occur, we use the exponents L+, LS+ and LB+

which correspond to L · L∗, L · LS and L · LB , respectively.
We say that a BS-regular expression is pure if it is constructed solely with the single

letter constants a and ā, concatenation ·, and the exponents +, B+ and S+. We say a
BS-regular expression is in normal form if it is a mix e1 + · · · + en of pure BS-regular
expressions e1, . . . , en. An ωBS-regular expression is in normal form if all the BS-regular
expressions in it are in normal form.

In Section 3.5.1, we show that every BS-regular language (with no occurrence of ε) can
be described by a BS-regular expression in normal form. Then, in Section 3.5.2, we show
that every ωBS-regular expression in normal form can be compiled into a hierarchical word
sequence automaton.

14 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

3.5.1. Converting an expression into normal form. Given a BS-regular language L, let us
define clean(L) to be the set of word sequences in L that have nonempty words on all
coordinates. Remark that, thanks to Fact 2.3, Lω is the same as (clean(L))ω . Therefore, we
only need to work on sequence languages of the form clean(L). Using Fact 2.3 one obtains
without difficulty:

Fact 3.6. For every BS-regular language L, either L = clean(L), L = ε̄ + clean(L), or
L = ε+ clean(L).

The following lemma concludes the conversion into normal form:

Lemma 3.7. For every BS-regular language L, clean(L) can be rewritten as L1 + · · ·+Ln,
where each Li is pure.

The proof of this lemma has a similar flavor as the proof of the analogous result for finite
words, which says that union can be shifted to the topmost level in a regular expression.

Proof. The proof is by induction on the structure.

• For L = ∅, ε, ε̄, a, the claim is obvious.
• Case L = K ·M . There are nine subcases (according to Fact 3.6):
– If K is clean(K) and M is clean(M) then

clean(K ·M) = clean(K) · clean(M) .

We then use the induction assumption on clean(K) and clean(M), and concatenate the
two unions of pure expressions. This concatenation is also a union of pure expressions,
since

∑

i

Ki ·
∑

j

Mj =
∑

i,j

Ki ·Mj .

– If K is clean(K) and M is ε̄+ clean(M) then

clean(K ·M) = clean(K) + clean(K) · clean(M) .

In the above, the language clean(K) consists of finite prefixes of sequences in clean(K).
A pure expression for this language is obtained from clean(K) by replacing every ex-
ponent with + and every letter a with ā.

– If K is clean(K) and M is ε+ clean(M) then

clean(K ·M) = clean(K) + clean(K) · clean(M) .

– The six other cases are similar.
• Case L = K +M . We have clean(K +M) = clean(K) + clean(M).
• Case L = K∗. We have clean(K∗) = (clean(K))+. By induction hypothesis, this becomes
(L1 + · · ·+Ln)

+, for pure expressions Li. We need to show how the mix + can be moved
to the top level. For n = 2, we use:

(L1 + L2)
+ =L+

1 + (L+
2 · L+

1)
+ + (L+

2 · L+
1)

+ · L+
2 +

+ (L+
1 · L+

2)
+ + (L+

1 · L+
2)

+ · L+
1 + L+

2 .

The general case is obtained by an inductive use of this equivalence.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 15

• Case L = KS. This time, we use clean(KS) = (clean(K))S+, and get by induction an
expression of the form (L1 + · · ·+Ln)

S+, for pure expressions Li. We only do the case of
n = 2, the general case is obtained by induction on n:

(L1 + L2)
S+ = (L1 + L2)

∗ · LS+
1 · (L1 + L2)

∗

+ (L1 + L2)
∗ · LS+

2 · (L1 + L2)
∗

+ L∗
2 · (L+

1 · L+
2)

S+ · L∗
1 .

The right side of the equation is not yet in the correct form, i.e., it is not a mix of pure
expressions, but it can be made so using the mix, the concatenation and the ∗ exponent
cases described above (resulting in a mix of 102 pure expressions).

• Case L = KB. Same as for case K∗, in which the exponent ∗ is replaced by B and the
exponent + is replaced by B+.

3.5.2. From normal form to automata. Here we show that every expression in normal form
can be compiled into a hierarchical automaton. Furthermore, if the expression is ωB-regular
(respectively, ωS-regular), then the automaton has the appropriate counter type.

We begin by showing how to expand counter types:

Lemma 3.8. A hierarchical BS-automaton of counter type tt′ ∈ {B,S}∗ can be transformed
into an equivalent one of counter type tBt′. A hierarchical BS-automaton of counter type
tSt′ ∈ {B,S}∗ can be transformed into an equivalent one of counter type tSSt′.

Proof. Let A be the automaton. For the first construction, we insert a new counter of
type B at the correct position, i.e., between counter |t| and |t|+ 1, and reset it as often as
possible, i.e., we construct a new automaton A′ of counter type tBt′ which is similar to A
in all respects but every transition (p, v, q) of A becomes a transition (p, v′, q) in A′ with:

v′ =















































R1 if v = ǫ and |t| = 0

ǫ if v = ǫ and |t| > 0

Ik if v = Ik and k ≤ |t|
Rk if v = Rk and k < |t|
R|t|+1 if v = R|t|

Ik+1 if v = Ik and k > |t|
Rk+1 if v = Rk and k > |t|

For every ω-word u, this translation gives a natural bijection between the runs of A over u
and the runs of A′ over u. This translation of runs preserves the accepting condition. Hence
the language accepted by A and A′ are the same.

For the second construction, we split the S counter into two nested copies. The auto-
maton chooses nondeterministically which one to increment. Formally, we transform every
transition (p, v, q) of A into possibly multiple transitions in A′, namely the transitions

16 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

(p, v′, q) with v′ ∈ V in which:

V =















































{ǫ} if v = ǫ

{Ik} if v = Ik and k ≤ |t|
{Rk} if v = Rk and k ≤ |t|
{I|t|+1, I|t|+2} if v = I|t|+1

{R|t|+2} if v = R|t|+1

{Ik+1} if v = Ik and k > |t|+ 1

{Rk+1} if v = Rk and k > |t|+ 1

For every input ω-word u, this transformation induces a natural surjective mapping from
runs of A′ onto runs of A. Accepting runs are mapped by this translation to accepting runs
of A. Hence the language accepted by A′ is a subset of the one accepted by A. For the
converse inclusion, one needs to transform an accepting run ρ of A over u into an accepting
run of A′ over u. For this one needs to decide each time a transition (p, I|t|+1, q) is used
by ρ, whether to use the transition (p, I|t|+1, q) or the transition (p, I|t|+2, q) of A′. For this,
for all maximal subruns of ρ of the form

ρ′0(p1, I|t|+1, q1)ρ
′
1 · · · (pn, I|t|+1, qn)ρ

′
n

in which the counter |t| + 1 is never reset, and such that the counter |t| + 1 is never incre-
mented in the runs ρ′i, one replaces it by the run of A′:

ρ′′0(p1, Ix1
, q1)ρ

′′
1 · · · (pn, Ixn , qn)ρ

′′
n

where

xi =

{

|t|+ 2 if i is a multiple of ⌈√n⌉
|t|+ 1 otherwise,

and ρ′′i is ρ′i in which each counter k > |t|+ 1 is replaced by counter k + 1. This operation
transforms an accepting run of A into an accepting run of A′.

We will use the following corollary of Lemma 3.8, which says that any number of
hierarchical BS-automata can be transformed into equivalent ones that have comparable
counter types.

Corollary 3.9. Given hierarchical BS-automata A1, . . . ,An, there exist (respectively) equiv-
alent hierarchical BS-automata A′

1, . . . ,A′
n, such that for all i, j = 1 . . . n the counter type

of A′
i is a prefix of the counter type of A′

j or vice versa. Furthermore, if A1, . . . ,An are

B-automata (respectively, S-automata), then so are A′
1, . . . ,A′

n.

Recall that we want to compile a normal form expression

M · (L1 + · · ·+ Ln)
ω

into a hierarchical ωBS-automaton (or ωB, or ωS automaton, as the case may be). This
is done in the next two lemmas. First, Lemma 3.10 translates each Li into a hierarchical
word sequence automaton, and then Lemma 3.11 combines these word sequence automata
into an automaton for the infinite words (L1 + · · ·+ Ln)

ω. Since prefixing the language M

is a trivial operation for the automata, we thus obtain the desired Lemma 3.5, which says
that expressions can be compiled into hierarchical automata.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 17

Lemma 3.10. The language of word sequences described by a pure BS-regular (respec-
tively, B-regular, respectively, S-regular) expression can be recognized by a hierarchical
word sequence BS-automaton (respectively, B-automaton, respectively, S-automaton).

Proof. By induction on the operations that appear in a pure expression.

• Languages accepted by hierarchical word sequence automata are closed under concatena-
tion. Let us compute an automaton recognizing L·L′ where L, L′ are languages recognized
by hierarchical word sequence automata A, A′ respectively. Using Corollary 3.9, we can
assume without loss of generality that the type of A is a prefix of the type of A′ (or the
other way round, which is a symmetric case). Remark that since L and L′ are pure, no
state in A or A′ is both initial and final.

We do the standard concatenation construction for finite automata (by passing from
a final state of A to the initial state of A′), except that when passing from A to A′ we
reset the highest counter available to A.

• Languages accepted by hierarchical word sequence automata are closed under the + expo-
nent. We use the standard construction: linking all final states to the initial state while
resetting all counters. In order to have non-empty words on all coordinates, the initial
state cannot be accepting (if it is accepting, we add a new initial state).

• Languages accepted by hierarchical word sequence automata are closed under the S+
exponent. We add a new counter of type S of rank higher than all others. We then
proceed to the construction for the + exponent as above, except that we increment the
new counter whenever looping from a final state to the initial one.

• For the B+ exponent, we proceed as above, except that the new counter is of type B

instead of being of type S.

The compilation of normal form expressions into automata is concluded by the following
lemma:

Lemma 3.11. Let L1, . . . , Ln be sequence languages recognized by the hierarchical BS-
automata A1, . . . ,An respectively. The language (L1 + · · ·+Ln)

ω is recognized by an ωBS-
automaton. Likewise for ωB-automata and ωS-automata.

Proof. Thanks to Corollary 3.9, we can assume that the counter type of Ai is a prefix of
the counter type of Aj , for i ≤ j. We use this prefix assumption to share the counters
between the automata: we assume that the counters in Ai are a subset of the counters in
Aj, for i ≤ j. Under this assumption, the hierarchical automaton for infinite words can
nondeterministically guess a factorization of the infinite word in finite words, and nondeter-
ministically choose one of the automata A1, . . . ,An for each factor.

3.6. From automata to expressions. This section is devoted to showing the remaining
implication in Theorem 3.3:

Lemma 3.12. Every language recognized by an ωBS-automaton (respectively, an ωB-
automaton, an ωS-automaton) can be defined using an ωBS-regular (respectively, ωB-
regular, ωS-regular) expression.

Before we continue, we would like to remark that although long, the proof does not
require any substantially original ideas. Basically, it consists of observations of the type:
“if a word contains many a’s and a b, then it either has many a’s before the b or many a’s

18 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

after the b”. Using such observations and Kleene’s theorem for finite words, we obtain the
desired result.

We begin by introducing a technical tool called external constraints. These constraints
are then used in Section 3.6.2 to prove Lemma 3.6.

3.6.1. External constraints. External constraints provide a convenient way of constructing
ωBS-regular languages. Let e be one of 0,+, S,B. Given a symbol a 6∈ Σ and a word
sequence language L over Σ ∪ {a}, we denote by L[a : e] the word sequence language

L ∩ ((Σ∗ · a)e · Σ∗)

with the standard convention that L0 = [[ε]]. This corresponds to restricting the word
sequences in L to ones where the number of occurrences of a satisfies the constraint e.

Here we show that external constraints can be eliminated:

Lemma 3.13. BS-regular languages of word sequences are closed under external con-
straints. In other words, if L is a BS-regular language over Σ and a is a letter in Σ,
then L[a : e] is a BS-regular language over Σ. B-regular languages are closed under exter-
nal constraints of type 0,+, B. S-regular languages are closed under external constraints of
type 0,+, S.

Proof. Structural induction. The necessary steps are shown in Figure 2. For some of the
equivalences, we use closure properties of Fact 2.3.

3.6.2. Controlling counters in BS-regular expressions. In this section we show how BS-
regular languages can be intersected with languages of specific forms. We use this to write
an ωBS-regular expression that describes successful runs of an ωBS-regular automaton,
thus completing the proof of Lemma 3.12.

In the following lemma, the languages L should be thought of as describing runs of a
BS-automaton. The idea is that the language K in the lemma constrains runs that are
good from the point of view of one of the counters. The set of labels I can be thought of as
representing the transitions which increment the counter, R as representing the transitions
which reset the counter, and A as representing the transitions which do not modify it. The
intersection in the lemma forces the counter operations to be consistent with the acceptance
condition.

Given a word sequence language L and a subset A of the alphabet, denote by L ✶ A∗

the set of word sequences that give a word sequence in L if all letters from A are erased
(i.e., a very restricted form of the shuffle operator). For instance B∗

✶ A∗ is the same as
(A+B)∗.

Lemma 3.14. Let Σ be an alphabet partitioned into sets A, I,R. Let L be a BS-regular
word sequence language over Σ. Then K ∩ L is also BS-regular, for K being one of:

(IBR)+IB ✶ A∗, (ISR)+I∗ ✶ A∗ , I∗(RIS)+ ✶ A∗, IS(RIS)+ ✶ A∗ .

Similarly, B-regular languages are closed under intersection with the first language, and
S-regular languages are closed under intersection with the three other languages.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 19

ε[a : +] = ∅
ε[a : e] = ε for e ∈ {0, B}
ε[a : S] = ε̄

ε̄[a : e] = ε̄ for e ∈ {0, B, S}
ε̄[a : +] = ∅

b[a : +] = ∅ for b 6= a

b[a : 0] = b for b 6= a

b[a : S] = b̄ for b 6= a

b[a : B] = b for b 6= a

a[a : 0] = ∅
a[a : S] = ā

a[a : e] = a for e ∈ {B,+}

(L+ L′)[a : e] = L[a : e] + L′[a : e] for e ∈ {0,+, B, S}

(L · L′)[a : e] = L[a : e] · L′[a : e] for e ∈ {B, 0}
(L · L′)[a : e] = L[a : e] · L′ + L · L′[a : e] for e ∈ {+, S}

L∗[a : 0] = (L[a : 0])∗

L∗[a : +] = L∗ · L[a : +] · L∗

L∗[a : B] = (L[a : B] · (L[a : 0])∗)B

L∗[a : S] = L∗ · (L[a : +] · L∗)S + L∗ · L[a : S] · L∗

LB [a : 0] = (L[a : 0])B

LB[a : +] = LB · L[a : +] · LB

LB [a : B] = (L[a : B])B

LB[a : S] = ε̄+ LB · L[a : S] · LB

LS [a : 0] = (L[a : 0])S

LS[a : +] = LS · L[a : +] · L∗ + L∗ · L[a : +] · LS

LS [a : B] = (L[a : B] · (L[a : 0])∗)B · (L[a : 0])S · (L[a : B] · (L[a : 0])∗)B

LS [a : S] = LS · L[a : S] · L∗ + L∗ · L[a : S] · LS + (L∗ · L[a : +])S · L∗

Figure 2: Elimination of external constraints.

Proof. In the proof we rewrite K ∩ L into an expression with external constraints, which
will use and constrain letters from some new alphabet Σ′ disjoint with Σ. In the proof, we
will consider equality up to the removal of letters from Σ′. We then eliminate the external
constraints using Lemma 3.13, and then erase the letters from Σ′ (erasing letters is allowed,
since languages described by our expressions are closed under homomorphic images).

We begin by showing that (Ie ✶ A∗) ∩ L is BS-regular, for e = 0,+, B, S. Let a ∈ Σ′

be a new symbol. The transformation is simple: replace everywhere in the expression the
letters i in I by i · a, and constrain the resulting language by [a : e].

20 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

For K = (IBR)+IB ✶ A∗, the construction is by induction on the size of the expression
defining L. We use the following equalities (in which K ′ = IB ✶ A∗):

K ∩ b = b if b ∈ R and ∅ otherwise

K ∩ (L+ L′) = (K ∩ L) + (K ∩ L′)

K ∩ (L · L′) = (K ∩ L) · ((K ∩ L′) + (K ′ ∩ L′)) + (K ′ ∩ L) · (K ∩ L′)

K ∩ L∗ = ((K ′ ∩ L∗) · (K ∩ L))+ · (K ′ ∩ L∗) .

The remaining cases, namely K ∩LB and K ∩LS, can be reduced to the L∗ case as follows.
First one rewrites LB (respectively, LS) as (La)∗[a : B] (respectively, (La)∗[a : S]), where
a ∈ Σ′ is a new letter (recall that we consider here equality of languages up to removal of
letters from Σ′). Second, we use the associativity of intersection, i.e.,

K ∩ ((La)∗[a : e]) = (K ∩ (La)∗)[a : e] , for e = B,S .

For the case where K is either ((ISR)+I∗) ✶ A∗ or (I∗(RIS)+) ✶ A∗, a slightly more
tedious transformation is involved. This is also done by induction. To make the induction
pass, we generalize the result to languages K of the form

Ke,f = IeR(ISR)∗If ✶ A∗ , where e, f ∈ {∗, S} .

The transformations for L = b and L+ L′ are as follows:

Ke,f ∩ b =

{

b if b ∈ R and e = f = ∗,
∅ otherwise,

Ke,f ∩ (L+ L′) = (Ke,f ∩ L) + (Ke,f ∩ L′) .

For sequential composition L · L′, we use the convenient operation ⊔ over the exponents
{∗, S}, defined by

∗ ⊔ ∗ = ∗, and e ⊔ f = S otherwise.

The transformation for sequential composition L · L′ is then the following:

Ke,f ∩ (L · L′) =
∑

e′⊔f ′=S

(Ke,e′ ∩ L) · (Kf ′,f ∩ L′)

+
∑

e′⊔f ′=e

(Ie
′ ∩ L) · (Kf ′,f ∩ L′)

+
∑

e′⊔f ′=f

(Ke,e′ ∩ L) · (If ′ ∩ L′)

The rule for L∗ is the most complex one. For conceptual simplicity we use an infinite sum.
This can be transformed into a less readable but correct expression using standard methods
for regular languages.

For n ≥ 1, let Ln be the mix of all languages of the form

(Ie0 ∩ L∗) · (Kf1,g1 ∩ L) · (Ie1 ∩ L∗) · · · (Kfn,gn ∩ L) · (Ien ∩ L∗) ,

where the exponents ei, fi, gi ∈ {∗, S} satisfy

gi ⊔ ei ⊔ fi+1 = S , e0 ⊔ f1 = e , and gn ⊔ en = f .

The language Ln corresponds to those word sequences, where the reset is done in n separate
iterations of L. The language Ke,f ∩ L∗ is then equal to the infinite mix L1 + L2 + · · ·

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 21

We now use the above lemma to complete the proof of Lemma 3.12. Consider an ωBS-
automaton A. We will present an expression not for the recognized words, but the accepting
runs. The result then follows by projecting each transition onto the letter it reads. Without
loss of generality we assume that a transition uniquely determines this letter.

Given a counter α, let Iα represent the transitions that increment this counter, let Rα

represent the transitions that reset it and let Aα be the remaining transitions. Let ΓB be
the set of bounded counters of A and let ΓS be its unbounded counters. Given a state q,
we define Pref q to be the language of finite partial runs starting in the initial state and
ending in state q, and Loopq to be the language of nonempty finite partial runs starting and
ending in state q. Those languages are regular languages of finite words, and hence can be
described via regular expressions. We use those expressions as word sequence expressions.

The following lemma concludes the proof of Lemma 3.12, by showing how the operations
from Lemma 3.14 can be used to check that a run is accepting.

Lemma 3.15. A run ρ visiting infinitely often a state q is accepting iff there is a partition
of ΓS into two sets ΓS,∗ and Γ∗,S (either of which may be empty) such that

ρ ∈ Prefq · (Loopq ∩ LB ∩ LS,∗ ∩ L∗,S)
ω ,

where the languages LB, LS,∗ and L∗,S are defined as follows:

LB =
⋂

α∈ΓB

((IBα Rα)
+IBα) ✶ A∗

α ,

Le,f =
⋂

α∈Γe,f

(IeαRα(I
S
αRα)

∗Ifα) ✶ A∗
α , for (e, f) = (∗, S), (S, ∗) .

Proof. It is not difficult to show that membership in Prefq(Loopq ∩ LB ∩ LS,∗ ∩ L∗,S)
ω is

sufficient for ρ to be accepting.
For the other direction, consider an accepting run ρ. Let us consider an increasing

infinite sequence of positions u1, u2, . . . in the run ρ such that for each n, all counters are
reset between un and un+1 and the run assumes state q at position un. Such a sequence can
be found since each counter is reset infinitely often. Consider now an unbounded counter
α. For each n we define bαn to be the number of increments of α in ρ happening between un
and the last reset before un, likewise, we define a

α
n to be the number of increments of α in ρ

happening between un and the next reset of α after un. By extracting a subsequence, we
may assume that either bαn is always greater than aαn, or a

α
n is always greater than bαn. In the

first case bαn is strongly unbounded and we put α into Γ∗,S ; in the second case aαn is strongly
unbounded and we put α into Γ∗,S . We iterate this process for all unbounded counters.

4. Monadic Second-Order Logic with Bounds

In this section, we introduce the logic MSOLB. This is a strict extension of monadic second-
order logic (MSOL), where a new quantifier U is added. This quantifier expresses that a
property is satisfied by arbitrarily large sets. We are interested in the satisfiability problem:
given a formula of MSOLB, decide if it is satisfied in some ω-word. We are not able to
solve this problem in its full generality. However, the diamond properties from the previous
sections, together with the complementation result from Section 5, give an interesting partial
solution to the satisfiability problem.

22 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

In Section 4.1 we introduce the logic MSOLB. In Section 4.2 we present some decidable
fragments of the logic MSOLB, and restate the diamond picture in this new framework.
In Section 4.3 we show how the unbounding quantifier can be captured by our automaton
model. In Section 4.4 we present an application of our logical results; namely we provide
an algorithm that decides if an ω-automatic graph has bounded degree.

4.1. The logic. Recall that monadic second-order logic (MSOL for short) is an extension
of first-order logic where quantification over sets is allowed. Hence a formula of this logic
is made of atomic predicates, boolean connectives (∧,∨,¬), first-order quantification (∃x.ϕ
and ∀x.ϕ) and set quantification (also called monadic second-order quantification) (∃X.ϕ

and ∀X.ϕ) together with the membership predicate x ∈ X. A formula of MSOL can be
evaluated in an ω-word. In this case, the universe of the structure is the set N of word
positions. The formula can also use the following atomic predicates: a binary predicate
x ≤ y for order on positions, and for each letter a of the alphabet, a unary predicate a(x)
that tests if a position x has the label a. This way, a formula that uses the above predicates
defines a language of ω-words: this is the set of those ω-words for which it is satisfied.

In the logic MSOLB we add a new quantifier, the existential unbounding quantifier U,
which can be defined as the following infinite conjunction:

UX.ϕ :=
∧

N∈N

∃X. (ϕ ∧ |X| ≥ N) .

The quantified variable X is a set variable and |X| denotes its cardinality. Informally speak-
ing, UX.ϕ(X) says that the formula ϕ(X) is true for sets X of arbitrarily large cardinality.
If ϕ(X) is true for some infinite set X, then UX.ϕ(X) is immediately true. Note that ϕ

may contain other free variables than just X.
From this quantifier, we can construct other meaningful quantifiers:

• The universal above quantifier A is the dual of U, i.e., AX.ϕ is a shortcut for ¬UX.¬ϕ.
It is satisfied if all the sets X above some threshold of cardinality satisfy property ϕ.

• Finally, the bounding quantifier B is syntactically equivalent to the negation of the U

quantifier. Historically, this was the first quantifier to be studied, in [1]. It says that a
formula BX.ϕ holds if there is a bound on the cardinality of sets satisfying property ϕ.

Over finite structures, MSOLB and MSOL are equivalent: a subformula UX.ϕ can
never be satisfied in a finite structure, and consequently can be removed from a formula.
Over infinite words, MSOLB defines strictly more languages than MSOL. For instance the
formula

BX. [∀x∈X. a(x)] ∧ [∀x ≤ y ≤ z. (x, z ∈ X) → (y ∈ X)]

expresses that there is a bound on the size of contiguous segments made of a’s. Over the
alphabet {a, b}, this corresponds to the language (aBb)ω. As mentioned previously (recall
Corollary 2.10), this language is not regular. Hence, this formula is not equivalent to any
MSOL formula. This motivates the following decision problem:

Is a given formula of MSOLB satisfied over some infinite word?

We do not know the answer to this question in its full generality (this problem may yet
be proved to be undecidable). However, using the diamond (Figure 1), we can solve this
question for a certain class of formulas. This is the subject of Sections 4.2 and 4.3. In
Section 4.4, we use the logic MSOLB to decide if a graph has bounded outdegree, for
graphs interpreted in the natural numbers via monadic formulas.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 23

4.2. A decidable fragment of MSOLB. A classical approach for solving satisfiability
of monadic second-order logic is to translate formulas into automata (this is the original
approach of Büchi [3, 4] for finite and infinite words, which has been later extended by Rabin
to infinite trees [12], see [14] for a survey). To every operation in the logic corresponds a
language operation. As languages recognized by automata are effectively closed under those
operations, and emptiness is decidable for automata, the satisfaction problem is decidable
for MSOL. We use the same approach for MSOLB. Unfortunately, our automata are not
closed under complement, hence we cannot use them to prove satisfiability for the whole
logic, which is closed under complement.

ωBS-regular languages
BS-formulas

ωS-regular languages
S-formulas

ωB-regular languages
B-formulas

ω-regular languages
MSOL-formulas

⊂⊂

⊂⊂

¬

∨,∧,¬,∃,∀

∨,∧,∃,∀,U ∨,∧,∃,∀,A

∨,∧,∃,U

Figure 3: Logical view of the diamond

For this reason, we consider the following fragments of the logic MSOLB, which are not,
in general, closed under complementation.

Definition 4.1. We distinguish the following syntactic subsets of MSOLB formulas:

• The B-formulas include all of MSOL and are closed under ∨,∧,∀,∃ and A.
• The S-formulas include all of MSOL and are closed under ∨,∧,∀,∃ and U.
• The BS-formulas include all B-formulas and S-formulas, and are closed under ∨,∧,∃
and U.

Note that in this definition, B-formulas and S-formulas are dual in the sense that the
negation of an S-formula is logically equivalent to a B-formula, and vice versa. The above
fragments are tightly connected to ωBS-regular languages according to the following fact:

Fact 4.2. BS-formulas define exactly the ωBS-regular languages. Likewise for B-formulas,
and S-formulas, with the corresponding languages being ωB-regular and ωS-regular.

Proof. (Sketch.) Thanks to the closure properties of ωBS-regular languages, each BS-
formula can be translated into an ωBS-regular language. We use here the standard coding
of the valuation of free variables in the alphabet of the word, see, e.g. [14]. Closure under

24 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

∨ and ∧ is a direct consequence of closure under ∪ and ∩. Closure under ∃ corresponds to
closure under projection, which is straightforward for non-deterministic automata. Closure
under universal quantification follows as dual of the existential quantifications (using the
complementation result, Theorem 5.1). Closure under U of ωS-regular and ωBS-regular
languages is the subject of Section 4.3, and more precisely Proposition 4.4. Closure under A
of ωB-regular languages is obtained by duality (once more using Theorem 5.1).

For the converse implication, a formula of the logic can use existential set quantifiers
in order to guess a run of the automaton, and then check that this run is accepting using
the new quantifiers.

These fragments are summarized in the logical view of the diamond presented in Fig-
ure 3. Also, from this fact we get that BS-formulas are not expressively complete for
MSOLB, since MSOLB is closed under negation, while ωBS-regular languages are not
closed under complementation.

Since emptiness for BS-regular languages is decidable by Fact 2.6, we obtain the fol-
lowing decidability result:

Theorem 4.3. The problem of satisfiability over (ω,<) is decidable for BS-formulas.

In the proof of Fact 4.2, we left out the proof of closure under U. We present it in the
next section.

4.3. Closure under existential unbounding quantification (U). Here we show that
the classes of ωS- and ωBS-regular languages are closed under application of the quanti-
fier U. This closure is settled by Proposition 4.4.

In order to show this closure, we need to describe the quantifier U as a language op-
eration, in the same way existential quantification corresponds to projection. Let Σ be an
alphabet, and consider a language L ⊆ (Σ×{0, 1})ω . Given a word w ∈ Σω and a set X ⊆ N,
let w[X] ∈ (Σ × {0, 1})ω be the word obtained from w by setting the second coordinate to
1 at the positions from X and to 0 at the other positions. We define U(L) to be the set of
those words w ∈ Σω such that for every N ∈ N there is a set X ⊆ N of at least N elements
such that w[X] belongs to L.

Restated in terms of this operation, closure under unbounding quantification becomes:

Proposition 4.4. Both ωS and ωBS-regular languages are closed under U.

We begin with a simple auxiliary result. A partial sequence over an alphabet Σ is a
word in ⊥∗Σω, in which ⊥ 6∈ Σ is a fresh symbol. A partial sequence is defined at the
positions where it does not have value ⊥, it is undefined at positions of value ⊥. We say
that two partial sequences meet if there is some position where they are both defined and
have the same value.

Lemma 4.5. Let I be an infinite set of partial sequences over a finite alphabet Σ. There is
a partial sequence in I that meets infinitely many partial sequences from I.

Proof. A constrainer for I is an infinite word c over P (Σ) such that for each i ∈ N, the i-th
position of every sequence in I is either undefined or belongs to ci. The size of a constrainer
is the maximal size of a set it uses infinitely often.

We prove the statement of the lemma by induction over the size of a constrainer for I.
Since every I admits a constrainer of size |Σ|, this concludes the proof.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 25

The base case is when I admits a constrainer of size 1; in this case, every two partial
sequences in I meet, so any partial sequence in Isatisfies the statement of the lemma.
Consider now a set I with a constrainer c of size n. Take some sequence s in I. If s meets
infinitely many sequences from I, then we are done. Otherwise let J ⊆ I be the (infinite)
set of sequences that do not meet s. One can verify that d is a constrainer for J , where d is
defined by di = ci \ {si}. Moreover, d is of size n− 1 (since si = ⊥ can hold only for finitely
many i). We then apply the induction hypothesis.

Let L be a language of infinite words over Σ×{0, 1} recognized by an ωBS-automaton.
We want to show that the language U(L) is also recognized by a bounding automaton.
Consider the following language:

K = {w[X] : for some Y ⊇ X, w[Y] ∈ L} .

This language is downward closed in the sense that if w[X] belongs to K, then w[Y] belongs
to K for every Y ⊆ X. Furthermore, clearly U(L) = U(K). Moreover, if L is recognized by
an ωBS-automaton (resp. ωS-automaton), then so is K. Let then A be an ωBS-automaton
recognizing K. We will construct an ωBS-automaton recognizing U(K).

Given a word w ∈ Σω, we say that a sequence of setsX1,X2, . . . ⊆ N is an an unbounding
witness for K if for every i, the word w[Xi] belongs to K and the sizes of the sets Xi

are unbounded. An unbounding witness is sequential if there is a sequence of numbers
a1 < a2 < · · · such that for each i, all elements of the set Xi are between ai and ai+1 − 1.

The following lemma is a consequence of K being downward closed.

Lemma 4.6. A word that has an unbounding witness for K also has a sequential one.

Let X1,X2, . . . be a sequential unbounding witness and let a1 < a2 · · · be the appro-
priate sequence of numbers. Let ρ1, ρ2, . . . be accepting runs of the automaton A over the
words w[X1], w[X2], . . . Such runs exist by definition of the unbounding witness. A sequen-
tial witness X1,X2, . . . is called a good witness if every two runs ρi and ρj agree on almost
all positions.

Lemma 4.7. A word belongs to U(K) if and only if it admits a good witness.

Proof. By Lemma 4.6, a word belongs to U(K), if and only if it admits a sequential witness.
Let Xi, ai and ρi be as above. For i, let si be the partial sequence that has ⊥ at positions
before ai+1 and agrees with ρi after ai+1. By applying Lemma 4.5 to the set {s1, s2 . . .}, we
can find a run ρi and a set J ⊆ N such that for every j ∈ J , the runs ρi and ρj agree on some
position xj after aj+1. For j ∈ J , let ρ′j be a run that is defined as ρj at positions before xj
and is defined as ρi at positions after xj. Since modifying the counter values over a finite set
of positions does not violate the acceptance condition, the run ρ′j is also an accepting run

over the word w[Xj]. For every j, k ∈ J , the runs ρ′j and ρ′k agree on almost all positions

(i.e., positions after both xj and xk). Therefore the sequential witness obtained by using
only the sets Xj with j ∈ J is a good witness.

Lemma 4.8. Words admitting a good witness can be recognized by a bounding automaton.

Proof. Given a word w, the automaton is going to guess a sequential witness

a1 < a2 < · · · X1 ⊆ [a1, a2 − 1],X2 ⊆ [a2, a3 − 1] . . .

and a run ρ of A over w and verify the following properties:

• The run ρ is accepting;

26 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

• There is no bound on the size of the Xi’s;
• For every i, some run over w[Xi] agrees with ρ on almost all positions.

The first property can be obviously verified by an ωBS-automaton. For the second property,
the automaton nondeterministically chooses a subsequence of X1,X2, . . . where the sizes are
strongly unbounded. The third property is a regular property. The statement of the lemma
then follows by closure of bounding automata under projection and intersection.

4.4. Bounds on the out-degree of a graph interpreted on sets. In this section,
somewhat disconnected from the rest of the paper, we show how to use the logic MSOLB for
solving a non-trivial question concerning ω-automatic structures. An ω-automatic (directed)
graph (of injective presentation) is a graph described by two formulas of MSOL, which are
interpreted in the natural numbers (hence the term ω-automatic). The vertexes of the
ω-automatic graph are sets of natural numbers. The first formula δ(X) has one free set
variable, and says which sets of natural numbers will be used as vertexes of the graph. The
second formula ϕ(X,Y) has two free set variables, and says which vertexes of the graph
are connected by an edge (if ϕ(X,Y) holds, then both δ(X) and δ(Y) must hold). The
original idea of automaticity has been proposed by Hodgson [9] via an automata theoretic
presentation. The more general approach that we use here of logically defining a structure
in the powerset of another structure is developed in [6]. We show in this section that it is
possible to decide, given the formulas δ(X) and ϕ(X,Y) of MSOL defining an ω-automatic
graph, whether this graph has bounded out-degree or not.

Let ϕ(X,Y) be a formula of MSOLB with two free set variables. This formula can be
seen as an edge relation on sets, i.e., it defines a directed graph with sets as vertexes. We
show here that MSOLB can be used to say that this edge relation has unbounded out-degree.
The formula presented below will work on any structure—not just (ω,<)—but the decision
procedure will be limited to infinite words, since it requires testing satisfiability of MSOLB
formulas.

In the following, we say that a set Y is a successor of a set X if ϕ(X,Y) holds. We
begin by defining the notion of an X-witness. This is a set witnessing that the set X has
many successors. (The actual successors of X form a set of sets, something MSOLB cannot
talk about directly.) An X-witness is a set Y such that every two elements x, y ∈ Y can be
separated by a successor of X, that is:

∀x, y ∈ Y. x 6= y → ∃Z.ϕ(X,Z) ∧ (x ∈ Z ↔ y 6∈ Z) . (4.1)

We claim that the graph of ϕ has unbounded out-degree if and only if there are X-witnesses
of arbitrarily large cardinality. This claim follows from the following fact:

Fact 4.9. If X has more than 2n successors, then it has an X-witness of size at least n. If
X has n successors, then all X-witnesses have size at most 2n.

Proof sketch. For the first statement, one first shows thatX has at least n successors that are
boolean independent, i.e., there existsX1, . . . ,Xn successors ofX such that for all i = 1 . . . n,
Xi is not a boolean combination ofX1, . . . ,Xi−1,Xi+1, . . . ,Xn. From n boolean independent
successors one can then construct by induction an X-witness of size n.

For the second statement, consider X with n successors as well as an X-witness. To
each element w of the X-witness, associate the characteristic function of ‘w ∈ Y ’ for Y

ranging over the successors of X. If the X-witness had more than 2n elements, then at

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 27

least two would give the same characteristic function, contradicting the definition of an X-
witness.

As witnessed by (4.1), being an X-witness can be defined by an MSOL formula. There-
fore, the existence of arbitrarily large X-witnesses is expressible by an MSOLB formula with
a single U operator at an outermost position. This formula belongs to one of the classes
with decidable satisfiability in Theorem 4.3 below. This shows:

Proposition 4.10. It is decidable if an ω-automatic graph has unbounded out-degree.

5. Complementation

5.1. The complementation result. The main technical result of this paper is the follow-
ing theorem:

Theorem 5.1. The complement of an ωS-regular language is ωB-regular, while the com-
plement of an ωB-regular language is ωS-regular.

The proof of this result is long, and takes up the rest of this paper. We begin by
describing some proof ideas. For the sake of this introduction, we only consider the case of
recognizing the complement of an ωS-regular language by an ωB-regular automaton.

Consider first the simple case of a language described by an ωS-automaton A which has
a single counter. Furthermore, assume that in every run, between any two resets, the incre-
ments form a single connected segment. In other words, between two resets of the counter,
the counter is first left unaffected for some time, then during the n following transitions
the counter is always incremented, then it is not incremented any more before reaching
the second reset. Below, we use the name increment interval to describe an interval of
word positions (a set of consecutive word positions) corresponding to a maximal sequence
of increments. We do not, however, assume that the automaton is deterministic (the whole
difficulty of the complementation result comes from the fact that we are dealing with nonde-
terministic automata). This means that the automaton resulting from the complementation
construction must check that all possible runs of the complemented automaton are rejecting.

The complement ωB-automaton B uses a single B-counter, which ticks as a clock along
the ω-word (independently of any run of A). A tick of the clock is a reset of the counter.
Between every two ticks, the counter is constantly incremented. Since the counter is a B-
counter, the ticks have to be at bounded distance from each other. We say that an interval
of word positions is short (with respect to this clock) if it contains at most one tick of the
clock. If the clock ticks at most every N steps, then short intervals have length at most
2N − 1. Reciprocally, if an interval has length at most N , then it is short with respect to
every clock ticking with a tempo greater than N . According to these remarks, being short
is a fair approximation of the length of an interval.

The complement automaton B works by guessing the ticks of a clock using non-deter-
minism together with a B-counter, and then checks the following property: every run of A
that contains an infinite number of resets, also contains an infinite number of short incre-
ment intervals. Once the clock is fixed, checking this is definable in monadic second-order
logic, i.e., can be checked by a finite state automaton without bounding conditions. Using
this remark it is simple to construct B.

28 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

It is easy to see that if B accepts an ω-word, then this word is not accepted by A. The
converse implication is a consequence of the following compactness property: if no run of A
is accepting, then there is a threshold N ∈ N such that every run of A either has less than N

increments between two resets infinitely often, or does finitely many resets. Such a property
can be established using Ramsey-like arguments.

Consider now a single counter ωS-automaton, but without the constraint of increments
being performed during intervals. In our construction, we use an algebraic decomposition
result, Simon’s factorization forest theorem [13]. Using Simon’s theorem, we reduce the
complementation problem to a bounded number of instances of the above construction. In
this case, the complement ωB-automaton uses one counter for each level of the factorization,
the result being a structure of nested clocks. As above, once the ticks of the clocks are fixed,
checking if a run makes few increments can be done by a finite state automaton without
any bounding conditions.

Finally, for treating the general case of ωS-automata with more than one counter, we
use automata in their hierarchical form and do an induction on the number of counters.

5.2. Overview the complementation proof. Theorem 5.1 talks about complementing
two classes, and two proofs are necessary. The two proofs share a lot of similarities, and we
will try to emphasize common points.

From now on, a hierarchical automaton A with states Q, input alphabet Σ and coun-
ters Γ is fixed. Either all the counters are of type S or all the counters are of type B. We
will denote this type by T ∈ {B,S}, and by T̄ we will denote the other type. We say f ∈ NN

is a B-function if it is bounded, and an S-function if it is strongly unbounded. We set �
to be ≤ if T = S and ≥ if T = B. The idea is that greater means better. For instance, if
n � m, then replacing n increments by m increments leads to a run that is more likely to
be accepting.

In this terminology, a run of an ωT -automaton is accepting if its counter values (at the
moment before they are reset) are greater than some T -function for the order �. When
complementing an ωT -automaton our goal is to show that all runs are rejecting, i.e., for
every run, either a counter is reset a finite number of times, or infinitely often the number
of increments between two resets is smaller than a T̄ -function with respect to the order �.

Our complementation proof follows the scheme introduced by Büchi in his seminal
paper [3] (we also refer the reader to [15]). Büchi establishes that languages recognized by
nondeterministic Büchi automata are closed under complement. In this proof Büchi did not
determinize the automata as usual in the finite case (this is impossible for Büchi automata).
Instead, he used a novel technique which allows to directly construct a nondeterministic
automaton for the complement of a recognizable language. The key idea is that—thanks to
Ramsey’s theorem—each ω-word can be cut into a prefix followed by an infinite sequence of
finite words, which are indistinguishable in any context by the automaton (we also say that
those words have same type). Whether or not the ω-word is accepted by that automaton
depends only on the type of the prefix and the type appearing in the infinite sequence.
The automaton accepting the complement guesses this cut and checks that the two types
correspond to a rejected word. For this reason the proof can be roughly decomposed into
two parts. The first part shows that each word can be cut in the way specified. The second
part shows that a cut can be guessed and verified by a Büchi automaton.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 29

Our proof strategy is similar. That is why, in order to help the reader gather some
intuition, we summarize below Büchi’s complementation proof, in terms similar to our own
proof for the bounding automata. Then, in Section 5.2.2, we outline our own proof.

5.2.1. The Büchi proof. In this section, we present a high-level overview of Büchi’s comple-
mentation proof.

A Büchi specification describes properties of a finite run of a given Büchi automaton. It
is a positive boolean combination of atomic specifications, which have three possible forms:

(1) The run begins with state p;
(2) The run ends with state q;
(3) The run contains/does not contain an accepting state.

We will use the letter τ to refer to specifications, be they Büchi, or the more general form
introduced later on for bounding automata.

The following statement shows the Büchi strategy for complementation. The statement
could be simplified for Büchi automata, but we choose the presentation below to stress the
similarities with our own strategy, as stated in Proposition 5.3.

Proposition 5.2. Let B be a Büchi automaton with input alphabet Σ. One can compute
Büchi specifications τ1, . . . , τn and regular languages L1, . . . , Ln ⊆ Σ∗ such that the following
statements are equivalent for every infinite word u ∈ Σω:

(A) The automaton B rejects the word u;
(B) There is some i = 1, . . . , n such that u admits a factorization u = wv1v2 · · · where:

(i) The prefix w belongs to Li;
(ii) For every j, every run ρ over the finite word vj satisfies τi.

Moreover, for each i = 1, . . . , n, the language Ki ⊆ Σ∗ of words where every run satisfies τi
is regular.

In the above statement, the prefix w could also be described in terms of specifications,
but we stay with just the regular languages Li to accent the similarities with Proposition 5.3.

Proposition 5.2 immediately implies closure under complementation of Büchi automata,
since the complement of the language recognized by B is the union

L1K
ω
1 + · · · + LnK

ω
n ,

which is clearly recognizable by a Büchi automaton.
The “Moreover..” part of the proposition is straightforward, while the equivalence of

conditions (A) and (B) requires an application of Ramsey’s Theorem.
Our proof follows similar lines, although all parts require additional work. In particular,

our specifications will be more complex, and will require more than just a regular language
to be captured. The appropriate definitions are presented in the following section.

5.2.2. Preliminaries. Below we define the type of a finite run. Basically, the type corre-
sponds to the information stored in a Büchi specification, along with some information on
the counter operations. The type contains: 1) the source and target state of the run, like
in a Büchi specification; and 2) some information on the counter operations that happen in

30 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

the run. Since we want to have a finite number of types, we can only keep limited informa-
tion on the counter operations (in particular, we cannot keep track of the actual number of
increments). Formally, a type t is an element of:

Q× {∅, {-}, {-◦, ◦-}, {-◦, ◦-◦, ◦-}}Γ ×Q .

To a given run, we associate its type in the following way. The two states contain respectively
the source (i.e. first) and target (i.e. last) state of the partial run. (A partial run is a finite
run that does not necessarily begin at the beginning of the word, and does not necessarily
end at the end of the word.) The middle component associates to each counter α ∈ Γ a
counter profile denoted—by slight abuse—t(α). The counter profile is t(α) = ∅ when there
is no increment nor reset on counter α. The counter profile is t(α) = {-} when the counter
is incremented but not reset. The counter profile is t(α) = {-◦, ◦-} when the counter is reset
just once, while t(α) = {-◦, ◦-◦, ◦-} is used for the other cases, when the counter is reset at
least twice.

Note that the counter profiles are themselves sets, and elements of these sets have a
meaningful interpretation. Graphically, each symbol among -, -◦, ◦-, ◦-◦ represents a possible
kind of sequence of increments of a given counter. The circle ◦ symbolizes a reset starting
or ending the sequence, while the dash - represents the sequence of increments itself. For
instance, -◦ identifies the segment that starts at the beginning of the run and end at the
first occurrence of a reset of the counter. Given a type t, we use the name t-event for any
pair

(α, c) ∈ Γ× {-, -◦, ◦-◦, ◦-} , with c ∈ t(α) .

The set of t-events is denoted by events(t). Given a t-event (α, c) and a finite run ρ of type
t, the value val(ρ, α, c) is the natural number defined below:

val(ρ, α, -) the number of increments on counter α in the run.
val(ρ, α, -◦) the number of increments on counter α before the first reset of counter α.
val(ρ, α, ◦-) the number of increments on counter α after the last reset of counter α.
val(ρ, α, ◦-◦) the minimal (with respect to �) number of increments on counter α

between two consecutive resets on counter α.

We comment on the last value. When T = S, val(ρ, α, ◦-◦) is the smallest number of
increments on counter α that is done between two successive resets of α. When T = B, this
is the largest number of increments. At any rate, this is the worst number of increments,
as far as the acceptance condition is concerned.

A specification is a property of finite runs. It is a positive boolean combination of the
following two kinds of atomic specifications:

(1) The run has type t.
(2) The run satisfies val(ρ, α, c) � K.

The first atomic specification is defined by giving t. The second atomic specification is
defined by giving α and c, but not K, which remains undefined. The number K is treated
as a special parameter, or free variable, of the specification. This parameter is shared by all
atomic specifications. Given a value of K ∈ N, we define the notion that a run ρ satisfies a
specification τ under K in the natural manner.

Unlike the Büchi proof, it is important that the boolean combination in the specification
is positive. The reason is that we will use T̄ -automata to complement T -automata, and
therefore we only talk about one type of behavior (bounded, or strongly unbounded).

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 31

5.2.3. The decomposition result. In this section we present the main decomposition result,
which yields Theorem 5.1.

Proposition 5.3. For every ωT -automaton A one can effectively obtain regular languages
L1, . . . , Ln and specifications τ1, . . . , τn such that the following statements are equivalent for
every ω-word u:

(A) The automaton A rejects u;
(B) There is some i = 1, . . . , n such that u admits a factorization u = wv1v2 · · · where:

(i) The prefix w belongs to Li, and;
(ii) There is a T̄ -function f such that for every j, every run ρ over vj satisfies τi under

f(j).

Moreover, for each i = 1, . . . , n, one can verify with a word sequence T̄ -automaton Bi if a
sequence of words v1, v2, . . . satisfies condition (ii). (Equivalently, the set of word sequences
satisfying (ii) is T̄ -regular.)

First we note that the above proposition implies Theorem 5.1, since property (B) can
be recognized by an ωT̄ -automaton. This is thanks to the “Moreover...” and the closure of
ωT̄ -automata under finite union and the prefixing of a regular language.

The rest of this paper is devoted to showing the proposition. In Sections 5.3 and 5.4 we
show the first part, i.e., the equivalence of (A) and (B). Section 5.3 develops extensions of
Ramsey’s theorem. Section 5.4 uses these results to show the equivalence. In Sections 5.5
and 5.6 we prove the “Moreover...” part. Section 5.5 contains the construction for a single
counter, while Section 5.6 extends this construction to multiple counters. The difficulty in
the “Moreover...” part is that (ii) talks about “every run ρ”, and therefore the construction
has to keep track of many simultaneous runs.

5.3. Ramsey’s theorem and extensions. Ramsey-like statements (as we consider them
in our context) are statements of the form“there is an infinite set D ⊆ N and some index i ∈
I such that the property Pi(x, y) holds for any x < y in D”. This statement is relative to a
family of properties {Pi}i∈I . In general, the family {Pi}i∈I may be infinite. The classical
theorem of Ramsey, as stated below, follows this scheme, but for a family of two properties:
P1 = R and P2 = N2 \R.

Theorem 5.4 (Ramsey). Given R ⊆ N2 and an infinite set E ⊆ N, there is an infinite
set D ⊆ E such that;

• for all x < y in D, (x, y) ∈ R, or;
• for all x < y in D, (x, y) 6∈ R.

In the original statement of Ramsey’s theorem, the set E is not used (i.e. E = N).
We use the more general, but obviously equivalent, formulation to compose Ramsey-like
statements as follows. Assume that there are two Ramsey-like statements, one using prop-
erties {Pi}i∈I , and the other using {Qj}j∈J . We can apply the two in cascade and obtain
a new statement of the form “there is an infinite set D ⊆ N and indexes i ∈ I, j ∈ J such
that both Pi(x, y) and Qj(x, y) hold for any x < y in D”. This is again a Ramsey-like
statement. This composition technique is heavily used below. We will simply refer to it as
the compositionality of Ramsey-like statements and shortcut the corresponding part of the
proofs.

The following lemma is our first Ramsey-like statement which uses an infinite (even
uncountable) number of properties.

32 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

Lemma 5.5. For any h : N2 → N there is an infinite set D ⊆ N such that either

• there is a natural number M such that h(x, y) ≤ M holds for all x < y ∈ D, or;
• there is an S-function g such that h(x, y) > g(x) holds for all x < y ∈ D.

Note that in the above statement, only values h(x, y) for x < y are relevant. This will
be the case in the other Ramsey-like statements below.

Proof. By induction we construct a sequence of sets of natural numbers D0 ⊇ D1 ⊇ · · · .
The set D0 is defined to be N. For n > 0, the set Dn is defined to be the infinite set
D obtained by applying Ramsey’s theorem to E = Dn−1 \ {minDn−1} with the binary
property R = h(x, y) ≤ n.

Two cases may happen. Either for some n, the value of h(x, y) is at most n for all x < y

taken fromDn. In this case the first disjunct in the conclusion of the lemma holds (withD =
Dn and M = n). Otherwise, for all n, the value h(x, y) is greater than n for all x < y taken
from Dn. In this case, we set D to be {minDi : i ∈ N} and g to satisfy g(minDi) = i. The
second conclusion of the lemma holds.

Definition 5.6. A separator is a pair (f, g) where f is a T̄ -function and g is a T -function.

The following lemma restates the previous one in terms of separators.

Lemma 5.7. For any h : N2 → N there is an infinite set D ⊆ N and a separator (f, g) such
that either;

• for all x < y ∈ D, h(x, y) � f(x), or;
• for all x < y ∈ D, h(x, y) ≻ g(x).

Lemma 5.8 below generalizes Lemma 5.7: instead of having a single element h(x, y) for
each x < y, we have a set Ex,y of vectors. The conclusion of the lemma describes which
components of the input vectors from Ex,y are bounded or unbounded simultaneously.

When applied to complementing automata, each set h(x, y) will gather information
relative to the possible runs of the automaton over the part of a word that begins in position
x and ends in position y. Since the automaton is nondeterministic, h(x, y) contains not a
single element, but a set of elements, one for each possible run. Since the automaton has
many counters, and a counter may come with several events, elements of h(x, y) are vectors,
with each coordinate corresponding to a single event.

Before stating the lemma, we introduce some notation. Let C be a finite set, which
will be used for coordinates in vectors. Given a vector v ∈ NC , a set of coordinates σ ⊆ C

and a natural number M , the expression v �σ M means that v(α) � M holds for all
coordinates α ∈ σ. We use a similar notation for ≻, i.e. v ≻σ M means that v(α) ≻ M

holds for all coordinates α ∈ σ . Note that 6�σ is different from ≻σ. The first says that
≻{α} holds for some coordinate α ∈ σ, while the second says that ≻{α} has to hold for all
coordinates α ∈ σ.

Lemma 5.8. Let C be a finite set, and for every natural numbers x < y ∈ N, let Ex,y ⊆ NC

be a finite nonempty set of vectors. There is a family of coordinate sets Θ ⊆ P(C), an
infinite set D ⊆ N and a separator (f, g) such that for all x < y in D,

(1) for all v ∈ Ex,y, there is a coordinate set σ ∈ Θ such that v �σ f(x), and;
(2) for all coordinate sets σ ∈ Θ, there is v ∈ Ex,y such that v �σ f(x) and v ≻C\σ g(x).

Proof. If we only take (1) into account, we can see Θ as a disjunction of conjunctions
of boundedness constraints, i.e., a DNF formula. The property (1) says that each vector

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 33

satisfies one of the disjuncts. Keeping this intuition in mind, for two coordinate sets σ, σ′ ⊆
C we write σ ⇒ σ′ if σ ⊇ σ′. Given two families of coordinate sets Θ,Θ′ ⊆ P(C), we
write Θ ⇒ Θ′ if for every disjunct σ ∈ Θ there is a disjunct σ′ ∈ Θ′ such that σ ⇒ σ′. This
notation corresponds to the following property: if (1) holds for Θ and Θ ⇒ Θ′, then (1)
also holds for Θ′. There is a minimum element for this preorder which is ∅ (the empty
disjunction, equivalent to false), and a maximum element {∅} (a single empty conjunction,
equivalent to true). The preorder ⇒ induces an equivalence relation ⇔, which corresponds
to logical equivalence of DNF formulas.

Let Θ ⊆ P(C) be a nonempty family of coordinate sets. For two natural numbers x < y,
we define hΘ(x, y) ∈ N to be

hΘ(x, y) = min� {M : ∀ v ∈ Ex,y. ∃ σ ∈ Θ. v �σ M} .

By applying Lemma 5.7 to the property hΘ(x, y), we obtain an infinite set D ⊆ N and a
separator (f, g) such that either;

(a) for all x < y ∈ D, hΘ(x, y) � f(x),
i.e., for all v ∈ Ex,y there exists σ ∈ Θ such that v �σ f(x), or;

(b) for all x < y ∈ D, hΘ(x, y) ≻ g(x),
i.e., there exists v ∈ Ex,y such that for all σ ∈ Θ, v 6�σ g(x).

Using compositionality of Ramsey-like statements, we can assume that the separator (f, g)
works for all possible families Θ simultaneously. Note however, that the choice of item (a)
or (b) may depend on the particular family Θ. Furthermore remark that if to Θ corresponds
property (a), and Θ ⇒ Θ′ holds, then property (a) also corresponds to Θ′. By removing
a finite number of elements of D, we can further assume that for any x in D we have
f(x) � g(x).

Let Θ ⊆ P(C) be a family of coordinate sets that satisfies property (a), but is minimal
in the sense that for every family Θ′ satisfying (a), the implication Θ ⇒ Θ′ holds. The
family Θ exists since {∅} satisfies (a) for any separator (f, g) (it is even unique up to ⇔).
Without loss of generality, we assume that Θ does not contain two coordinate sets σ′ ⊆ σ,
since otherwise we can remove the larger coordinate set σ and still get an equivalent family.

We will show that the properties (1) and (2) of the lemma hold for this family Θ.
Property (1) directly comes from (a). Let us prove (2). Fix a coordinate set σ in Θ, as well
as x < y in D. We need to show that for some v ∈ Ex,y, both v �σ f(x) and v ≻C\σ g(x).
Let Θ′ be the family of coordinate sets obtained from Θ by removing σ and adding all
coordinate sets of the form σ ∪ {β}, for β ranging over C \ σ. It is easy to see that Θ′ ⇒ Θ,
while Θ ⇔ Θ′ does not hold. In particular, by minimality of Θ, the family Θ′ cannot
satisfy property (a), and therefore it must satisfy property (b). Let v be the vector of Ex,y

existentially introduced by property (b) applied to Θ′. We will show that this vector satisfies
both v �σ f(x) and v ≻C\σ g(x).

First, we show v �σ f(x). Since the family Θ satisfies property (a), there must be a
coordinate set σ′ ∈ Θ such that v �σ′ f(x). We claim that σ′ = σ. Indeed, otherwise
σ′ would belong to Θ′, and by (b) we would have v 6�σ′ g(x). This is in contradiction
with v �σ′ f(x) since f(x) � g(x).

Second, we show v ≻C\σ g(x). Let then β be a coordinate in C \ σ. By definition
of Θ′, the coordinate set σ ∪ {β} belongs to Θ′. By (b) for Θ′, we get v(α) ≻ g(x) for
some α ∈ σ ∪ {β}. Since above we have shown v �σ f(x) and f(x) � g(x), it follows
that α = β and v(β) ≻ g(x). Since this is true for all β ∈ C \ σ, we have v ≻C\σ g(x).

34 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

5.4. Descriptions. Recall the mapping val(ρ, α, c), which describes the number of incre-
ments that run ρ does on counter c in the event α. By fixing a run ρ of type t, we can
define val(ρ) as a mapping from the set of t-events events(t) to N, i.e., a vector of natural
numbers. This vector measures the number of increments in the run ρ for each event and
each counter, keeping track of the numbers which are the worst for the acceptance condition.
Note that the coordinates of val(ρ) depend on the type t of ρ—more precisely on events(t)—
and therefore the vectors val(ρ) and val(ρ′) may not be directly comparable for runs ρ, ρ′

of different types. The key property of val is that given a sequence of finite runs ρ1, ρ2, . . .,
it is sufficient to know their respective types t1, t2, . . . and the vectors val(ρ1), val(ρ2), . . .
in order to decide whether or not the infinite run ρ1ρ2 . . . satisfies the acceptance condition.
The descriptions defined below gather this information in a finite object.

Definition 5.9 (description). A description is a set of pairs (t, γ) where t is a type and γ

a set of t-events.

The intuition is that γ is the set of events where the counter values are bad for the
automaton’s acceptance condition, i.e.. small in the case when T = S and large in the case
when T = B.

A cut is any infinite set of natural numbers D, which are meant to be word positions.
We also view a cut as a sequence of natural numbers, by ordering the numbers from D in
increasing order. Given a cut D = {d1 < d2 < · · · } and an ω-word w ∈ Σω, we define w|D
to be the infinite sequence of finite words obtained by cutting the word at all positions in D:

w|D = w[d1, . . . , d2 − 1], w[d2, . . . , d3 − 1], . . .

Note that the prefix w[0, . . . , d1 − 1] of w up to position d1 − 1 is not used here; as in the
proof of Büchi, it is treated separately.

Definition 5.10 (strong description). Let w ∈ Σω be an input ω-word, τ a description
and D ⊆ N a cut. We say that τ strongly describes w|D if there is a separator (f, g) such
that for every x < y ∈ D the following conditions hold.

• for every partial run ρ of type t over w from position x to position y, there is a pair
(t, γ) ∈ τ such that val(ρ) �γ f(x), and;

• for every pair (t, γ) ∈ τ , there is a run ρ over w of type t from position x to position y

such that val(ρ) �γ f(x) and val(ρ) ≻events(t)\γ g(x).

Lemma 5.11. For every ω-word w ∈ Σω, there is a description τ and a cut D such that τ
strongly describes w|D.
Proof. Using Ramsey’s theorem and its compositionality, we find a cut D0 and a set of types
A such that for all x < y in D0 the following conditions are equivalent;

• there is a partial run of type t between positions x and y, and;
• the type t belongs to A.

The rest follows by applying Lemma 5.8 for all types t in A, and using compositionality of
Ramsey-like statements.

The problem with strong descriptions is that an ωT̄ -automaton cannot directly check if
a description strongly describes some cut word w|D. There are two reasons for this. First,
we need to check the description for each x < y in D, and therefore deal with the overlap
between the finite words w[x, . . . , y]. Second, the second condition of strong description
involves guessing the T -function g, and this cannot be done using a ωT̄ -automaton.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 35

Hence, we reduce the property to checking weak descriptions (see Definition 5.12) which
are stable (see Definition 5.14). Lemma 5.15 shows that this approach makes sense.

Definition 5.12 (weak description). Given a type t, a set of events γ and a natural num-
ber N , a finite run ρ, is called consistent with (t, γ) under N if ρ has type t and val(ρ) �γ N .
Given a description τ , a run ρ is called consistent with τ under N if it is consistent with
some (t, γ) ∈ τ under N .

Let w ∈ Σω be an input ω-word, τ a description and D a cut. We say that τ weakly
describes w|D if there is a T̄ -function f such that for all i ∈ N, every run ρ over the i-th
word in w|D is consistent with τ under f(i).

A weak description is a weakening of strong descriptions for two reasons: only runs
between consecutive elements of the cut are considered, and only the first constraint of the
strong description is kept.

The following lemma shows that weak descriptions can be expressed by specifications.

Lemma 5.13. For every weak description there is an equivalent specification. In other
words, for every description τ there is a specification τ ′ such that the following are equivalent
for an ω-word w and a cut D ;

• the description τ weakly describes w|D, and;
• there is a T̄ -function f such that for all i ∈ N, every run ρ over the i-th word in w|D
satisfies τ ′ under f(i).

Proof. All the conditions in the definition of weak descriptions can be expressed by a spec-
ification.

In Definition 5.14, we present the notion of a stable description. The basic idea is to
mimic the notion of idempotency used in the case of Büchi.

Definition 5.14 (stability). A description τ is stable if there is a T -function h such that
for all natural numbers N and all finite runs ρ = ρ1 . . . ρk, if each ρi is consistent with τ

under N for all i = 1 . . . k, then ρ is consistent with τ under h(N).

To illustrate the above definition, we present an example. In this particular example,
the description will be stable for T = B, but it will not be stable for T = S. Let then T = B

and consider an automaton with one counter α = 1, and one state q. We will show that for
t = (q, {-}, q) (we write {-} instead of the mapping which to counter 1 associates {-}) and
γ = {(1, -)}, the description τ = {(t, γ)} is stable. In the case of τ , the function h from
the definition of stability will be the identity function h(N) = N . To show stability of τ ,
consider any finite run ρ decomposed as ρ1 · · · ρk, with each ρi consistent with τ under N .
To show stability, we need to show that

val(ρ) �γ h(N) = N .

Since T = B, the relation � is ≥, so we need to show that val(ρ) is at least N on all events
in γ. Since γ has only one event (1, -), this boils down to proving val(ρ, 1, -) ≥ N . But this
is simple, because

val(ρ, 1, -) = val(ρ1, 1, -) + · · ·+ val(ρk, 1, -) ,

and each ρi satisfies val(ρi, 1, -) ≥ N by assumption. Note that this reasoning would not
go through with T = S, which is the reason why the above description is stable only in the
case T = B.

36 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

We now show that strong descriptions are necessarily stable.

Lemma 5.15. If τ is a strong description of some w|D then τ is stable.

Proof. We prove the statement for T = S first, and then for T = B.
Case T = S. In this case � is ≤. Let ρ1, . . . , ρk be runs such that ρi is consistent

with (ti, γi) ∈ τ under N for all i = 1, . . . , k. We need to show that the composition
ρ = ρ1 · · · ρk of these runs is consistent with some (t, γ) ∈ τ under h(N), for some S-
function h independent of ρ1, . . . , ρk. The function h will be a linear function, with the
linear constant taken from the assumption that τ strongly describes w|D. Let then (f0, g0)
be the separator obtained by unraveling the definition of w|D being strongly described by τ .
We can assume without loss of generality that f0 is constant, equal to M . Since g0 tends
toward infinity, we can chose a natural number n such that g0(i) ≥ M holds for all i ≥ n.

We now mimic each run ρi by a similar run πi over the (i+n)-th word in the sequence
w|D. By definition of a strong description, one can find for i = 1, . . . , k a run πi over the
(i + n)-th word in w|D such that val(πi) ≤γj M and val(πi) >events(ti)\γi g0(i + n). From
the last inequality together with g0(i+ n) ≥ M , we obtain:

for all (α, c) ∈ events(ti), val(πi, α, c) ≤ M implies (α, c) ∈ γi . (♯)

Let π be π1 . . . πk. Since τ strongly describes w|D, the run π is consistent with (t, γ) underM
for some (t, γ) in τ . Formally,

val(π) ≤γ M (♯2) .

We will show that ρ is consistent with (t, γ) under N(M + 2), which establishes the
stability of τ , under the linear function h(N) = N(M +2). Let then (α, c) be an event in γ.
We have to prove

val(ρ, α, c) ≤ N(M + 2).

This is done by a case distinction depending on c.

c = - This means that π does not contain any reset of α. Let I ⊆ {1, . . . , k} be the set of
indexes j for which πj contains an increment of counter α. By (♯2), and since (α, -)
belongs to γ, the number of increments of counter α in π is at most M . In particular,
the set I contains at most M indexes.

Let now i ∈ I. Still by (♯2), the run π, and hence also πi, contains at most M

increments of α. By (♯), this means that (α, -) belongs to γi. Hence, since ρi is
consistent with (ti, γi) underN , ρi contains at mostN increments of α. Furthermore,
for i 6∈ I, πi does not increment α, and πi has the same type as ρi. Hence ρi does
not increment the counter α either. Summing up: at most M runs among ρ1, . . . , ρk
increment counter α, and those that do, do so at most N times.

Overall there are at most MN increments of α in ρ, i.e., val(ρ, α, c) ≤ MN .

c = -◦ Let j be the first index such that ρj contains a reset of α. Using the previous
case, but for k = j − 1, we infer that the prefix ρ1 . . . ρj−1 contains at most MN

increments of α.
By (♯2), there are at most M increments of α before the first reset in π. Since this

first reset occurs in πj, the same holds for πj . By (♯) we obtain that (α, -◦) belongs
to γj . Finally, since ρj is consistent with (tj , γj) under N , there are at most N

increments of α before the first reset in ρj.
Overall there are at most N(M + 1) increments of α before the first reset in ρ.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 37

c = ◦- As in the previous case.

c = ◦-◦ As previously, but we need the bound N(M+2) since both ends of the interval have
to be considered.

Case T = B. In this case � is ≥. Let ρ = ρ1 . . . ρk be a run such that ρi is consistent
with (ti, γi) ∈ τ under N for all i = 1, . . . , k. We will show that ρ is consistent with τ

under N , i.e. h is the identity function. Let then (f0, g0) be the separator obtained by
unraveling the definition of w|D being strongly described by τ . We can assume without loss
of generality that g0 is constant, equal to M . As previously, since f0 tends toward infinity,
we can chose a natural number n such that f0(n + 1) ≥ M(N + 2).

As in the case of T = S, we mimic each run ρi by a similar run πi over the (i + n)-th
word in w|D. By definition of a strong description, one can find for i = 1, . . . , k a run πi
over the (i+ n)-th word in w|D such that

val(πi) ≥γj f0(i+ n) and val(πi) <events(ti)\γi M .

From the last inequality we obtain:

for all (α, c) ∈ events(ti), val(πi, α, c) ≥ M implies (α, c) ∈ γi . (♯)

Let π be π1 . . . πk. Since τ strongly describes w|D, the run π is consistent with (t, γ)
under f0(n + 1) for some (t, γ) in τ . In combination with f0(n+ 1) ≥ M(N + 2), we have:

val(π) ≥γ M(N + 2) . (♯2)

We will show that ρ is consistent with (t, γ) under N , which establishes the stability
of τ . For this, let (α, c) be an event in γ, we have to prove

val(ρ, α, c) ≥ N.

This is done by a case distinction depending on c.

c = - In this case the run π does not contain any reset of α. Let I ⊆ {1, . . . , k} be the set
of indexes j for which πj does an increment of counter α. By (♯2) applied to (α, -),
there are at least MN increments (actually, at least M(N + 2) increments, but we
only need MN here) of α in π. Two cases can happen; either I contains at least N
indexes, or there is some j ∈ I such that ρj contains at least M increments of α.

Consider first the case when I has at least N indexes. Since there is at least one
increment of α in every ρi for i ∈ I, there are at least N increments of α in ρ.

Otherwise there is some j ∈ I such that πj contains at least M increments
of α. By (♯), this means that (α, -) belongs to γj. Finally, since ρj is consistent
with γj under N , we obtain that ρj , and by consequence also ρ, contains at least N
increments of α.

Overall there are at least N increments of α in ρ, i.e., val(ρ, α, c) ≥ N .

c = -◦ Let j be the first index for which πj contains a reset of α. By (♯2), there are at
least M(N + 1) increments (again, we do not need to use M(N + 2) here) of α
before the first reset in π. Two cases are possible: either MN increments of α

happen in π1 . . . πj−1, or πj contains M increments of α before the first reset of α.
In the first case we use the same argument as for c = - (note that we were just

using a bound of MN in this case) over the run π1 . . . πj−1. We obtain that there
are at least N increments of α in ρ1 . . . ρj−1.

38 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

Otherwise, there are M increments of α in πj before the first reset. Using (♯) we
deduce that (α, -◦) belongs to γj . Since ρj is consistent with (tj , γj) under N , we
deduce that there are at least N increments of α in ρj before the first reset.

Overall there are at least N increments of α in ρ before the first reset, i.e.,
val(ρ, α, c) ≥ N .

c = ◦- As in the previous case.

c = ◦-◦ As previously (this time using the bound M(N + 2)).

We will now show how to tell if a word is rejected by inspecting one of its descriptions.
This notion of rejection will be parametrized by the set S of states in which the cut may be
reached. Note that rejecting loops only make sense for stable descriptions.

Definition 5.16 (rejecting loop). We say a state q is a rejecting loop in a description τ , if
for all (t, γ) ∈ τ where the source and target state of the type t is q we have:

Case T = S. There exists a counter α such that either:

• t(α) = ∅ or t(α) = {-}, or;
• (α, ◦-◦) ∈ γ, or;
• Both (α, -◦) and (α, ◦-) belong to γ.

Case T = B. There exists a counter α such that either:

• t(α) = ∅ or t(α) = {-}, or;
• (α, c) ∈ γ for some c ∈ {-◦, ◦-◦, ◦-}.

The idea behind the above definition is as follows: if the description τ weakly describes
a cut word w|D, ρ is a run that assumes state q in every position from D, then the fact that q
is a rejecting loop implies that ρ not accepting. Since every infinite run can be decomposed
into loops, this is the key information when looking for a witness of rejection.

Given a description τ and a state p, we write pτ to denote the set of states q such that
for some (t, γ) ∈ τ , the source state of t is p and the target state of t is q. This notation is
extended to a set of states Pτ in the natural manner.

If D is a cut and w is an ω-word, then the D-prefix of w is defined to be the prefix of w
that leads to the first position in D. Every ω-word w is decomposed into its D-prefix, and
then the concatenation of words from w|D.
Lemma 5.17. Let w|D be a cut ω-word strongly described by τ . Let P be the states reachable
after reading the D-prefix of w. If w is rejected, then every state in Pτ is a rejecting loop.

Proof. We only do the proof for T = S, the case of T = B being similar. Let D =
{d1, d2, . . .}.

To obtain a contradiction, suppose that q ∈ Pτ is not a rejecting loop. By definition,
there must be a pair (t, γ) in τ—with q the source and target of t—such that for every
counter α, none of the conditions from Definition 5.16 hold. That is, the value t(α) contains
-◦ and ◦-, the event (α, ◦-◦) is outside γ, and one of the events (α, -◦), (α, ◦-) is outside γ.
Without loss of generality, let us assume (α, -◦) is outside γ.

Let (f, g) be the separator appropriate to w|D obtained from the definition of strong
descriptions. For each natural number i there is a run πi of type t between positions di and
di+1 such that val(πi, α, c) > g(di) holds for all events (α, c) not in γ.

Since t(α) contains -◦ and ◦-, the counter α is reset at least once in πi. Furthermore, since
(α, ◦-◦) is outside γ, every two consecutive resets of α in πi are separated by at least g(di)
increments. Finally, since (α, -◦) is outside γ, there are at least g(di) increments of α before

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 39

the first reset in πi. Since this holds for every counter, we obtain that the run π1π2 . . .

satisfies the accepting condition.
By assumption on q ∈ Pτ , there is some state p ∈ P and a type in τ that has source

state p and target state q. In particular, the state q can be reached in the second position
of the cut D: by first reaching p after the D-prefix, and then going from p to q. From q

in the second position of D, we can use the run π2π3 . . . to get an accepting run over the
word w. This contradicts our assumption that w was rejected by the automaton.

The following lemma gives the converse of Lemma 5.17. The result is actually stronger
than just the converse, since we use weaker assumptions (the description need only be weak
and stable, which is true for every strong description, thanks to Lemma 5.15).

Lemma 5.18. Let w be an ω-word, D ⊆ N a cut, and assume that the word sequence w|D
is weakly described by a stable description τ . Let P be the states reachable after reading the
D-prefix of w. If every state in Pτ is a rejecting loop, then w is rejected.

Proof. Let ρ be a run of the automaton over w. We will show that this run is not accepting.
Let qi be the state used by ρ at position di. For i < j, we denote by ρi,j the subrun

of ρ that starts in position di and ends in position dj . Let ti,j be the type of this run.
Consider now a run ρi,j. This run can be decomposed as

ρi,j = ρi,i+1ρi+1,i+2 · · · ρj−1,j .

Let f be the T̄ -function from the assumption that τ weakly describes w|D. By recalling the
definition of weak descriptions, there must be sets of events γi, . . . , γj−1 such that

(ti,i+1, γi) ∈ τ · · · (tj−1,j, γj−1) ∈ τ

val(ρi,i+1) �γi f(di) · · · val(ρj−1,j) �γj−1
f(dj−1) .

Let g be a function, which to every k ∈ N assigns the maximal, with respect to �, value
among f(k), f(k+1), . . . We claim that not only g is well defined, but it is also a T̄ function.
Indeed, when T̄ is B then there are finitely many values of f , so a maximal one exists, and
g has also finitely many values. If, on the other hand, T̄ is S, then � is ≥. In this case, g(k)
is the least—with respect to the standard ordering ≥ on natural numbers—number among
f(k), f(k + 1), This number is well defined, furthermore, g is an S-function since f is
an S-function.

Since f(dk) � g(di) holds for any k ≥ i, we also have

val(ρi,i+1) �γi g(di) · · · val(ρj−1,j) �γj g(di) .

By assumption on stability of τ , there is an S-function h, such that for all i < j, there is

(ti,j, γi,j) ∈ τ such that val(ρi,j) �γi,j h(g((di)) .

Using the Ramsey theorem in a standard way, we can assume without loss of generality
that all the ti,j are equal to the same type t, and all γi,j are equal to the same γ. If
t(α) = {-} holds for some counter α, then this counter is reset only finitely often, so the
run ρ is rejecting and we are done. Otherwise, t(α) = {-◦, ◦-◦, ◦-} holds for all counters α.

For the rest of the proof, we only consider the case T = S, with B being treated in a
similar way. The function g, by its definition, assumes some valueM for all but finitely many
arguments. Since τ is rejecting there exists a counter α ∈ Γ such that either (α, ◦-◦) ∈ γ or
both (α, -◦) and (α, ◦-) belong to γ. In the first case, an infinite number of times there are
at most h(M) increments of α between two consecutive resets of α. In the second case, the

40 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

same happens, but this time with at most 2h(M) increments. In both cases the run is not
accepting.

We are now ready to establish the main lemma of this section.

Lemma 5.19. Let A be an ωT -automaton. There exist regular languages L1, . . . , Ln and
stable descriptions τ1, . . . , τn such that for every ω-word w the following items are equivalent:

• A rejects w, and;
• There is some i = 1, . . . , n and a cut D such that the D-prefix of w belongs to Li, and τi
weakly describes w|D.

Proof. We need to construct a finite set of pairs (Li, τi). Each such pair (LP , τ) comes
from a set of states P and a description τ that is stable and rejects all loops in Pτ . The
language LP is the set of finite words v that give exactly states P (as far as reachability
from the initial state is concerned) after being read by the automaton.

The bottom-up implication is a direct application of Lemma 5.18, and therefore only
the top down implication remains. Let w be an ω-word rejected by A. By Lemma 5.11,
there exists a cut D and a strong—and therefore also weak—description τ of w|D. Let P be
the set of states reached after reading the D-prefix of w. Clearly the D-prefix of w belongs
to LP . By Lemma 5.15, the description τ is stable, and hence Lemma 5.17 can be applied
to show that all loops in Pτ are rejecting.

The first part of Proposition 5.2 follows, since weak descriptions are captured by speci-
fications thanks to Lemma 5.13. Finally, we need to show that our construction is effective:

Lemma 5.20. It is decidable if a description is stable.

Proof. Stability can be verified by a formula of monadic second-order logic over (N,≤).

5.5. Verifying single events. We now begin the part of the complementation proof where
we show that specifications can be recognized by automata. Our goal is as follows: given a
specification τ , we want to construct a hierarchical sequence T̄ -automaton that accepts the
word sequences that are consistent with τ . Recall that a specification is a positive boolean
combination of two types of atomic conditions. In this section we concentrate solely on
atomic specifications where the boolean combination consists of only one atomic condition
of the form:

(2) The run satisfies val(ρ, α, c) � K.

In particular, only one event (α, c) is involved in the specification. Furthermore, we also
assume that the counter α is the lowest-ranking counter 1. However, the result is stated
so that it can then be generalized to any specification.

5.5.1. Preliminaries and definitions. In this section, we define transition graphs—which
are used to represent possible runs of an automaton—and then we present a decomposition
result for transition graphs, which follows from a result of Simon on factorization forests [13].

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 41

Transition graph. For the rest of Section 5.5, we fix a finite set of states M . This set M is
possibly different from the set of states of the automaton we are complementing. The reason
is that in Section 5.6, we will increase the state space of the complemented automaton inside
an induction.

The first concept we need is an explicit representation of the configuration graph of
an automaton reading a word, called here an M -transition graph. Fix a finite set L of
transition labels, and a finite set of states M . An M -transition graph G (labeled by L) of
length k ∈ N is a directed edge labeled graph, where the nodes—called configurations of
the graph—are pairs M × {0, . . . , k} and the edge labels are of the form ((q, i), l, (r, i + 1))
for q, r in M , 0 ≤ i < k and l ∈ L. The vertexes of the graph are called configurations, their
first component is called the state, while the second is called the position. The edges of the
graph are called the transitions. We define the concatenation of M -transition graphs in a
natural way. A partial run in a transition graph is just a path in the graph. A run in a
transition graph is a path in the graph that begins in a configuration at the first position 0
and ends in a configuration at the last position. The label of a run is the sequence of labels
on edges of the path.

A transition graph of length k can also be seen as a word of length k over the alphabet

P(M × L×M) .

In this case, the concatenation of transition graphs coincides with the standard concatena-
tion of words. When speaking of regular sets of transition graphs, we refer to this represen-
tation.

Given a ωT -automaton A over the alphabet L of states Q, the product of an M -
transition graph G with A—noted G × A—is the (M × Q)-transition graph which has an
l-labeled edge from ((p, q), i) to ((p′, q′), i+ 1) whenever G has an l-labeled edge from (p, i)
to (p′, i + 1) and (q, l, q′) is a transition of the automaton A. Furthermore, in the product
graph only those configurations are kept that can be reached via a run that begins in a
configuration where the second component of the state is the initial state of A.

Factorization forest theorem of Simon, and decomposed transition graphs. From now, we
will only consider transition graphs where the first component of the labeling ranges over
the actions of a hierarchical automaton over counters, i.e., the label alphabet is of the form
Act× L, with

Act = {ε, I1, R1, I2, . . . , Rn} .

The type of a run is defined as in the previous section, i.e., a type gives the source and
target states, as well as a mapping from the set of counters to {∅, {-}, {-◦, ◦-}, {-◦, ◦-◦, ◦-}}.
Given an M -transition graph, its type is the element of

S = P(M × {∅, {-}, {-◦, ◦-}, {-◦, ◦-◦, ◦-}}Γ ×M) ,

which contains those types t such that there is a run over G of type t. This set S can be
seen as a semigroup, when equipped with the product defined by:

s1 · s2 = {t1 · t2 : t1 ∈ s1, t2 ∈ s2} .

In the above, the concatenation of two types t1 · t2 is defined in the natural way: the
source state of t2 must agree with the target state of t1, and the counter operations are

42 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

concatenated. (An example of how counter operations are concatenated is:

{-◦, ◦-} · {-◦, ◦-} = {-◦, ◦-◦, ◦-} .

In particular, the mapping that assigns the type to a counter transition graph is a semigroup
morphism, with transition graphs interpreted as words. Two M -transition graphs G,H are
called equivalent if they have the same type. This equivalence is clearly a congruence
of finite index with respect to concatenation. A transition graph G is idempotent if the
concatenation GG is equivalent to G.

We now define a complexity measure on graphs, which we call their Simon level. A
transition graph G has Simon level 0 if it is of length 1. A transition graph G has Simon
level at most k + 1 if it can be decomposed as a concatenation

G = HG1 · · ·GnH
′ ,

where all the transition graphsH,G1, . . . , Gn,H
′ have Simon level at most k and G1, . . . , Gn

are equivalent and idempotent. The following theorem, which in its original statement
concerns semigroups, is presented here in a form adapted to our context.

Theorem 5.21 (Simon [13], and [5] for the bound |S|). Given a finite set of states M , the
Simon level of M -transition graphs is bounded by |S|.

The Simon level is defined in terms of a nested decomposition of the graph into fac-
tors. We will sometimes need to refer explicitly to such decompositions; for this we will
use symbols (,), | and write G as (H|G1| . . . |Gn|H ′), and so on recursively for the graphs
H,G1, . . . , Gn,H

′. Theorem 5.21 shows that each graph admits a decomposition where the
nesting of parentheses in this notation is bounded by |S|. We refer to the transition graphs
written in this format as decomposed transition graphs. It is not difficult to see that the
set of decomposed M -transition graphs is a regular language: a finite automaton can check
that the symbols (,), | indeed describe a Simon decomposition (thanks to Simon’s theorem,
the automaton does not need to count too many nested parentheses).

A hint over a decomposed graph G is a subset of the positions labeled | in the de-
composition of G. We call those positions hinted positions. (Note that a hint is relative
not just to a transition graph G, but also to some decomposition of this transition graph.)
For K ∈ N, a hint is said to be ≥ K if at the same nesting level of the decomposition, every
two distinct hinted positions are separated by at least K non-hinted symbols |. Similarly,
a hint is ≤ K if sequences of consecutive non-hinted positions at a given Simon level have
length at most K − 1.

LetG be a transition graph of length k (in the word representation) (with labels Act×L),
along with a decomposition and a hint h. Let

G1 · · ·Gk ∈ (P(M ×Act× L×M))∗

be the interpretation of this graph as word. In the proofs below, it will be convenient
to decorate the graph—by expanding the transition labels—so that the label of each run
contains information about the decomposition and the hint. The decorated graph is denoted
by (G,h) (we do not include a name for the decomposition in this notation, since we assume
that the hint h also contains the information on the Simon decomposition). The graph (G,h)
has the same configurations, states and transitions as G; only the labeling of the transitions
changes. Instead of having a label in Act× L, as in the graph G, a transition in the graph

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 43

(G,h) has a label in

LS = Act× L× {⊥, 1, . . . , |S|} × {0, 1} .
The first two coordinates are inherited from the graph G. The other coordinates are ex-
plained below. To understand the encoding, we need two properties. First, in the de-
composition, there is exactly one symbol | between any two successive letters Gi, Gi+1 of
the M -transition graph seen as a word. Second, the decomposition is entirely described
by the nesting depths of those symbols with respect to the parentheses. Recall also that
these nesting depths are bounded by |S|. For a transition in the graph Gi, the coordinate
{⊥, 1, . . . , |S|} stores the nesting depth (with respect to the parentheses) of the symbol |
preceding the transition graph Gi; by the first property mentioned above, the undefined
value ⊥ is used only for the first transition in transition graph. Finally, the coordinate
{0, 1} says if the symbol | is included in the hint.

Runs over decomposed graphs. As remarked above, the transition graph (G,h) only changes
the labels of transitions in the graph G. Therefore with each run ρ in G we can associate
the unique corresponding run over (G,h), which we denote by (ρ, h). By abuse of notation,
we will sometimes write (ρ, h) ∈ L, where L ⊆ (LS)

∗. The intended meaning is that the
labeling of the run (ρ, h) belongs to the language L.

Recall that we are only going to be verifying properties for the counter α = 1 in this
section. We consider two runs over the same transition graph to be ≡◦--equivalent, if they
agree before the last 1-reset (i.e. use the same transitions on all positions up to and including
the last 1-reset). In the notation, the index shows where the runs can be different. Similarly,
two runs are ≡-◦-equivalent if they agree after the first 1-reset. Two runs are ≡◦-◦-equivalent
if they agree before the first 1-reset, after the last 1-reset, and over all 1-resets (but do not
necessarily agree between two successive 1-resets). Finally, two runs are ≡--equivalent if
both increment counter 1 but do not reset it. The fundamental property of ≡c-equivalence,
for c ∈ {◦-, -◦, ◦-◦, -}, is that two ≡c-equivalent runs are indistinguishable in terms of resets
and increments of counters greater or equal to 2, or in terms of events (1, c′) with c′ 6= c.
This means that as long we are working inside a ≡c-equivalence class, the values val(ρ, α, c

′)
for (α, c′) 6= (1, c) are constant. (This also is the reason why we only work with counter 1
in a hierarchical automaton.)

The key lemmas in this section are Lemmas 5.23 and 5.24. These talk about comple-
menting S-automata and B-automata respectively. They both follow the same structure,
which can be uniformly expressed in the following lemma, using the � order (which is ≤
for complementing S-automata and ≥ for complementing B-automata):

Lemma 5.22. Let c be one of -◦, ◦-◦, ◦- or -. There are two strongly unbounded functions f
and g, and a regular language Lc ⊆ (LS)

∗ such that for every natural number K, every run ρ

over every M -transition graph labeled by L whose type contains the event (1, c) satisfies:

• (correctness) if a hint h in the graph is � K and every run π ≡c ρ satisfies (π, h) ∈ Lc,
then val(ρ, 1, c) � f(K), and;

• (completeness) if a hint h in the graph is � g(K) and val(ρ, 1, c) � K then (ρ, h) belongs
to Lc.

We would like to underline here that the regular language is a regular language of finite
words in the usual sense, i.e., no counters are involved.

44 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

The above lemma says that the language Lc “approximates” the runs ρ satisfying
val(ρ, 1, c) � K. This “approximation” is given by the two functions f and g. There is
however a dissymmetry in this statement. The completeness clause states that if a run has
a bad value on event (1, c), i.e. it satisfies val(ρ, 1, c) � K, then it is detected by Lc for
all sufficiently good hints. On the other hand, in the correctness clause, all ≡c-equivalent
runs must be detected by Lc in order to say that the value of ρ is bad on event (1, c). The
reason for the weaker correctness clause is that we will not be able to check the value on
event (1, c) for every run; we will only do it for runs of a special simplified form. And the
simplification process happens to transform each run in a ≡c-equivalent one.

The proof of this lemma differs significantly depending on T = S or T = B. The two
cases correspond to Lemmas 5.23 and 5.24 which are instantiations of Lemma 5.22.

5.5.2. Case of complementing an ωS-automaton. We consider first the case of complement-
ing an S-automaton. Therefore, the order � is ≤. To aid reading, below we restate
Lemma 5.22 for the case when T = S.

Lemma 5.23. Let c be one of -◦, ◦-◦, ◦- or -. There are two strongly unbounded functions f
and g, and a regular language Lc ⊆ (LS)

∗ such that for every natural number K, every run ρ

over every M -transition graph labeled by L whose type contains the event (1, c) satisfies:

• (correctness) if a hint h in the graph is ≤ K and every run π ≡c ρ satisfies (π, h) ∈ Lc,
then val(ρ, 1, c) ≤ f(K), and;

• (completeness) if a hint h in the graph is ≥ g(K) and val(ρ, 1, c) ≤ K then (ρ, h) belongs
to Lc.

Slightly ahead of time, we remark that g will be the identity function, while f will be
a polynomial, whose degree is the maximal Simon level of M -transition graphs, taken from
Theorem 5.21.

Before proving the lemma, we would like to give some intuition about the language Lc.
The idea is that we want to capture the runs which do few increments on counter 1. However,
this “few” cannot be encoded in the state space of the automaton, since it can be arbitrarily
large. That is why we use the hint. One can think of the hint as a clock: if the hint
is ≤ K, then the clock ticks quickly, and if the hint is ≥ K, then the clock ticks slowly. The
language Lc looks at a run and compares it to the clock. For the sake of the explanation,
let us consider a piece of a run without resets of counter 1: we want to estimate if a lot of
increments of counter 1 are done (at least K) or not (at most f(K)) by comparing it to a
suitable clock (in the first case a slow clock, in the second case a quick one). The first case
is when the counter is incremented in every position between two ticks of the clock; then
the value of the counter concerned is considered ‘big’, since at least K increments are done
if the ticks are ≥ K. For the second case, when there are few increments, we have a more
involved argument that uses the idempotents from the Simon decomposition.

Proof. The language Lc is defined by induction on the Simon level of the transition graph.
We construct a language Lk

c which has the stated property for all M -transition graphs of
Simon level at most k. Since there is a bound on the Simon level, the result follows.

For k = 0, the construction is straightforward, since the transition graphs are of length 1
and there is a finite number of possible runs to be considered.

We now show how to define the language Lk+1
c for runs in transition graphs of Simon

level k + 1, based on the languages for runs in transition graphs of Simon level up to k.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 45

Consider a decomposed M -transition graph

G = (H|G1| . . . |Gn|H ′) .

of Simon level k + 1. Let h be a hint for this decomposition, which we decompose into
sub-hints (h0| · · · |hn+1) for the graphs H,G1, . . . , Gn,H

′. In the proof, instead of writing
(ρ, h) ∈ Lk+1

c , we write that ρ is c-captured. Let ρ be a run over G. The run ρ can
also be decomposed into subruns (ρ0|ρ1| . . . |ρn+1). Each of these runs ρ0, . . . , ρn+1 is over
a transition graph whose Simon level is at most k. By abuse of notation, we will talk
about a subrun ρi being c-captured, the intended meaning being that (ρi, hi) belongs to the

appropriate language Lk′

c , with k′ ≤ k being the Simon level of Gi (or H if i = 0, or H ′

if i = n+ 1).
We now proceed to define the language Lk+1

c . In other words, we need to say when ρ is
c-captured. We only do the case of c = ◦-◦, which is the most complex situation. The idea
is that a run is ◦-◦-captured if there are two consecutive resets between which the run does
few increments. We define ρ to be ◦-◦-captured if either:

(1) some ρi is ◦-◦-captured, or;
(2) for some i < j, the subrun ρi is ◦--captured, the run ρj is -◦-captured, each of ρi+1, . . . , ρj−1

is --captured, and one of the following holds:
(a) there are m ≤ m′ in {i, . . . , j} such that: (i) one of ρm, ρm+1, . . . , ρm′ does not

increment counter 1; and (ii) the source state of ρm and the target state of ρm′ are
the same state q, and G1 admits a run from q to q that increments counter 1, or;

(b) between any two hinted (by hints on level k + 1) positions in {i, . . . , j}, at least
one of the runs ρm does not increment counter 1.

It is clear that this definition corresponds to a regular property Lk+1
◦-◦ of the sequence of labels

in a hinted runs (once the hints are provided, the statement above is first-order definable).
We try to give an intuitive description of the above conditions. The general idea is that

a run gets ◦-◦-captured if it does few increments, at least relatively to the size of the hint.
The first reason why a run may do few increments between some two resets, is that it does
it inside one of the component transition graphs of smaller Simon level. This is captured
by condition 1. The second condition is more complicated. The idea behind 2(a) is that
the run is—in a certain sense—suboptimal and can be converted into a ≡◦-◦-equivalent one
that does “more” increments. Then the more optimal run can be shown—using conditions
1 and 2(b)—to do few increments, which implies that the original suboptimal run also did
few increments.

We now proceed to show that the properties defined above satisfy the completeness and
correctness conditions in the statement of the lemma.

Completeness. For this, we set g(K) = K. Let ρ be a run such that

val(ρ, 1, ◦-◦) ≤ K

and let h be hint over G that is ≥ K. We have to show that ρ is ◦-◦-captured.
Consider a minimal subrun ρi . . . ρj that resets counter 1 twice and satisfies

val(ρi . . . ρj, 1, ◦-◦) ≤ K .

In particular, the counter 1 is reset in the subruns ρi and ρj. If i = j, this means that
val(ρi, 1, ◦-◦) ≤ K, and hence ρi is ◦-◦-captured on a level below k+1 by induction hypothesis.
We conclude with item 1.

46 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

Otherwise, we have

val(ρi, 1, ◦-) ≤ K ,

val(ρi+1, 1, -) ≤ K · · · val(ρj−1, 1, -) ≤ K ,

and val(ρj, 1, -◦) ≤ K .

By induction hypothesis, we obtain the header part of item 2. Since the run ρi . . . ρj
contains less than K increments of 1, no more than K runs among ρi, . . . , ρj can increment
counter 1. Since the hint h is ≥ K, we get item (b).

Correctness. Let f ′ be the strongly unbounded function obtained by the induction hypoth-
esis for Simon level k. We set

f(K) = (2K|M | + 2)f ′(K)

Assume now that the hint h is ≤ K and take a run ρ such that every run π ≡◦-◦ ρ is ◦-◦-
captured. We need to show that

val(ρ, 1, ◦-◦) ≤ f(K) . (5.1)

As before, we decompose the run ρ into (ρ0| . . . |ρn+1).
We are going to first transform ρ into a new ≡◦-◦-equivalent run π which, intuitively, is

more likely to have many increments on counter 1. We will then show that the new run π

satisfies inequality (5.1); moreover we will show that this inequality can then be transferred
back to ρ.

We begin by describing the transformation of ρ into π. This transformation is decom-
posed into two stages.

In the first stage, which is called the local transformation, we replace the subruns
ρ0, . . . , ρn+1 with new equivalent ones of the same type. Each such replacement step works
as follows. We take some c = -◦, ◦-◦, ◦-, - and i = 0, . . . , n + 1. If there is a subrun πi ≡c ρi
that is not c-captured, then we replace ρi with πi. (We want the local transformation to
keep the ≡◦-◦-equivalence class, so we do not modify subruns before the first or after the
last reset of 1 in ρ.) The local transformation consists of applying the replacement steps as
long as possible. This process terminates, since the replacement steps for different c’s work
on different parts of the subrun and each step decreases the number of captured subruns.

In the second stage, which is called the global transformation, we add increments on
counter 1 to some subruns. The idea is that at the end of the global transformation, a run
does not satisfy condition 2(a). Just as the local transformation, it consists of applying a
replacement step as long as possible. The replacement step works as follows. We try to find
a subrun ρm . . . ρm′ as in item 2(a). By assumption 2(a) and since all the graphs Gi’s are
equivalent to G1, we can find new subruns πm, . . . , πm′ in Gm, . . . , Gm′ respectively, which
increment counter 1 without resetting it (that is, of type -) and go from q to q. We use
these runs instead of ρm . . . ρm′ . The iteration of this replacement step terminates, since
each time we add new subruns with increments.

Neither the local nor the global transformation change the ≡◦-◦-equivalence class of the
run.

Let π be a run obtained from ρ by applying first the local and then the global trans-
formation. (Since the global transformation is nondeterministic, there may be more than
one such run.) This run cannot satisfy 2(a), since the global transformation could still be
applied.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 47

Since π is ≡◦-◦-equivalent to ρ, it must be ◦-◦-captured by assumption on ρ. There are
two possible reasons: either because of 1, or because of 2(b). We will now do a case analysis
on the reasons why this happens. In each case we will conclude that the original run ρ

satisfies (5.1). As before, we decompose π into (π0| · · · |πn+1).
Assume now item 1 holds for π, i.e., some subrun πi is ◦-◦-captured for some i. We

also know that any run π′
i ≡◦-◦ πi would also be ◦-◦-captured, since otherwise πi would

be replaced in the local transformation process (the global transformation does not touch
subruns with resets on counter 1). In particular, the induction hypothesis gives

val(πi, 1, ◦-◦) ≤ K .

Moreover, the runs ρi and πi agree on the part between the first and last reset of counter 1.
This is because neither of the transformation processes touched this part. Indeed, the first
local transformation process never modified ρi for c = ◦-◦ (since otherwise it would cease
being captured), while the global process only modifies subruns without resets of counter 1.
This gives the desired (5.1), since

val(ρ, 1, ◦-◦) ≤ val(ρi, 1, ◦-◦) = val(πi, 1, ◦-◦) ≤ f ′(K) ≤ f(K) .

Otherwise, π satisfies item 2(b). Let us fix i, j as in 2(b). Let I ⊆ {i+ 1, . . . , j − 1} be
the set of those indexes l where πl does at least one increment on counter 1. A maximal
contiguous (i.e. containing consecutive numbers) subset of I is called an inc-segment. Ac-
cording to case 2(b), an inc-segment cannot contain two distinct hinted positions, its size
is therefore at most twice the maximal width K of h. Assume now that there are more
than |M | inc-segments. Then two inc-segments contain runs with the same source state,
say state q, at respective positions l and l′ with l < l′. This means that there is a run that
goes from q to q in some graph Gl+1 · · ·Gl′ and does at least one increment but no resets on
counter 1. Using idempotency and the equivalence of all the graphs G1, . . . , Gn, this implies
that the graph Gl′ admits such a run. Since ρl′ contains no increments of 1 by definition
of an inc-segment, this means that 2(a) holds; a contradiction. Consequently there are at
most |M | inc-segments, each of size at most 2K. It follows that at most 2K|M | subruns
among πi, . . . , πj contain an increment of the counter 1.

Let us come back to the original run ρ. As in the case of item 1, we use the induction
hypothesis to show that

val(ρi, 1, ◦-) = val(πi, 1, ◦-) ≤ f ′(K) ,

and val(ρj , 1, -◦) = val(πj , 1, -◦) ≤ f ′(K) .

Since the global transformation only adds increments on counter 1, we use the remarks
from the previous paragraph to conclude that there are at most 2K|M | subruns among
ρi+1, . . . , ρj−1 that increment counter 1. Furthermore, all runs ≡--equivalent to one of the
ρi+1, · · · , ρj−1 are --captured, since otherwise the local transformation would be applied,
and then one of the runs πi+1, · · · , πj−1 would not be captured. Therefore, we can use the
induction hypothesis to show that

val(ρi+1, 1, -), · · · , val(ρj−1, 1, -) ≤ f ′(K) .

All this together witnesses the expected

val(ρ, 1, ◦-◦) ≤ (2K|M |+ 2)f ′(K) .

48 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

5.5.3. Case of complementing an ωB-automaton. As when complementing an ωS-automaton,
we restate the lemma with � expanded to its definition, which is ≥ in this case.

Lemma 5.24. Let c be one of -◦, ◦-◦, ◦- or -. There are two strongly unbounded functions f
and g, and a regular language Lc ⊆ (LS)

∗ such that for every natural number K, every run ρ

over every M -transition graph labeled by L whose type contains the event (1, c) satisfies:

• (correctness) if a hint h is ≥ K in the graph and every run π ≡c ρ satisfies (π, h) ∈ Lc,
then val(ρ, 1, c) ≥ f(K), and;

• (completeness) if a hint h in the graph is ≤ g(K) and val(ρ, 1, c) ≥ K then (ρ, h) belongs
to Lc.

We remark here that f will be the identity function, while g will be more or less a k-fold
iteration of the square root, with k the maximal Simon level of M -transition graphs, taken
from Theorem 5.21.

Proof. The structure of the proof follows the one in Lemma 5.23. As in that lemma, the
language Lc is defined via an induction on the Simon level of the transition graph. We also
only treat the case of c = ◦-◦. The other cases can be treated with the same technique.

Consider a decomposed transition graph

G = (H|G1|G2| . . . |Gn|H ′)

of Simon level k + 1, along with a corresponding hint h, decomposed as (h0| . . . |hn+1).
Let ρ be a run over G, decomposed as (ρ0| . . . |ρn+1). As in Lemma 5.23, instead of saying
that (ρ, h) belongs to the language Lk+1

c , we say that ρ is c-captured; likewise for the
runs ρ0, . . . , ρn+1.

We define ρ to be ◦-◦-captured if either:

(1) some ρi is ◦-◦-captured or there is a subrun of the form ρi . . . ρj such that counter 1
is reset in both ρi and ρj but not in ρi+1, . . . , ρj−1, and either: ρi is ◦--captured, one
of ρi+1, . . . , ρj−1 is --captured, or ρj is -◦-captured;

(2) there is a subrun of the form ρi . . . ρj such that counter 1 is reset in both ρi and ρj but
not in ρi+1, . . . , ρj−1, and either
(a) there are m ≤ m′ in {i . . . j − 1} such that there is an increment of 1 in one

of ρm, . . . , ρm′ , but G1 contains a path from the source state of ρm to the target
state of ρm′ without any increment nor reset, or;

(b) there are two hinted positions m < m′ in {i + 1 . . . j − 1} such that all the sub-
runs ρm, . . . , ρm′ increment counter 1.

As in the case of T = S, this definition corresponds to a regular property Lk+1
◦-◦ of hinted

runs.
The intuition is that a ◦-◦-captured run does a lot of increments on counter 1, at least

relative to the size of the hint. The first reason for doing a lot of increments is that there
are a lot of increments in a subrun inside one of the component transition graphs, which
corresponds to item 1. The clause 2(b) is also self-explanatory: the number of increments is
at least as big as the size of the hint. The first clause 2(a) is more involved. It says that the
run is suboptimal in a sense, i.e., it can be converted into one that does fewer increments.
We will then show—using 1 and 2(b)—that the run with fewer increments also does a lot
of increments.

We now proceed to show that the above definition satisfies the completeness and cor-
rectness conditions from the statement of the lemma.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 49

Completeness. Let g′ be the strictly increasing function obtained by induction hypothesis
for Simon level k. We set g(K) to be

min

(

g′(
√
K),

√
K − 2

|M |+ 1

)

.

Assume now that the hint h is ≤ g(K) and that the run ρ satisfies val(ρ, 1, ◦-◦) ≥ K. We
want to show that ρ is ◦-◦-captured.

Let ρi . . . ρj be a minimal part of ρ for which

val(ρi . . . ρj, 1, ◦-◦) ≥ K .

The general idea is very simple. There are two possible cases: either one of the sub-
runs ρi, . . . , ρj does more than

√
K increments on counter 1, or there are at least

√
K

subruns among ρi, . . . , ρj that increment counter 1. In either case the run ρ will be ◦-◦-
captured.

In the first case, we use the induction hypothesis and

g′(
√
K) ≥ g(K)

to obtain item 1 in the definition of being ◦-◦-captured.
The more difficult case is the second one. We will study the subruns ρi+1, . . . , ρj−1 that

do not reset counter 1. As in the previous lemma, we consider the set I ⊆ {i+1, . . . , j− 1}
of those indexes l where ρl does at least one increment on counter 1. By our assumption, I
contains at least

√
K − 2 indexes (we may have lost 2 because of ρi and ρj).

A maximal contiguous subset of I is called an inc-segment. There are two possible cases.
Either there are few (at most |M |) inc-segments, in which case one of the inc-segments must
perform many increments and the run ρ is ◦-◦-captured by item 2(b), or there are many
inc-segments, in which case the run ρ is ◦-◦-captured by item 2(a). The details are spelled
out below.

Consider first the case when there are at least |M | + 1 inc-segments. In this case, we
can find two inc-segments that begin with indexes, respectively, m′ > m > 1, such that the
states qm−1 and qm′−1 are the same. Since inc-segments are maximal, the index m− 1 does
not belong to I and hence the run ρm−1 does not increment counter 1 and goes from state
qm−2 to state qm−1. Since the transition graphs Gm−1 and G1 are equivalent, there is such
a run in G1, too. Since the run ρm−1 · · · ρm′−1 goes from qm−2 to qm′−1 = qm−1, we obtain
item 2(a) and thus ρ is ◦-◦-captured.

We are left with the case when there are at most |M | + 1 inc-segments. Recall that I

contains at least
√
K − 2 elements. Since there are at most |M | + 1 inc-segments, at least

one of the inc-segments must have size at least:
√
K − 2

|M |+ 1
.

But by our assumption on the hint h, this inc-segment must contain two hinted positions,
and thus ρ is ◦-◦-captured by item 2(b).

Correctness. We set f(K) = K. Assume that the hint h is ≥ K and consider a run ρ such
that every run π ≡◦-◦ ρ is ◦-◦-captured. We need to show that

val(ρ, 1, ◦-◦) ≥ f(K) = K . (5.2)

50 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

We proceed as in the previous lemma: we first transform the run ρ into an ≡c-equivalent
run π which is more likely to have fewer increments of counter 1. We then show that the
run π satisfies property (5.2), which can then also be transferred back to ρ.

As in the previous lemma, there are two stages of the transformation: a local one, and
a global one.

The local transformation works just the same as the local transformation in the previous
lemma: if we can replace some subrun ρi by an equivalent one that is not captured, then
we do so.

The global transformation makes sure that 2(a) is no longer satisfied. It works as follows.
Assume that item 2(a) is satisfied, and let m and m′ be defined accordingly. Since G1 is
idempotent and all the G’s are equivalent, the transition graph Gm+1 . . . Gm′ is equivalent
to G1. It follows that we can find a run with neither increments nor resets that can be
plugged in place of ρm+1 . . . ρm′ . The new run obtained is ≡c-equivalent to the original one
and the value val(ρ, 1, ◦-◦) is diminished during this process. We iterate this transformation
until no more such replacements can be applied (this obviously terminates in fewer iterations
than the number of increments of counter 1 in the original run).

Consider now a run π obtained from ρ by first applying the local and then the global
transformation. Since π ≡c ρ holds, our hypothesis says that π is ◦-◦-captured. Since π does
not satisfy item 2(a) by construction, it must satisfy either item 1 or item 2(b). In case of
item 1, we do the same reasoning as in the previous lemma and use the induction hypothesis
to conclude that (5.2) holds. The remaining case is item 2(b), when there are two distinct
positions m < m′ where each of the runs πm, . . . , πm′ all increment counter 1. Since the
global transformation process only removed subruns that increment counter 1, this means
that all the runs ρm, . . . , ρm′ also increment counter 1. But since the hint was ≥ K, we
have m′ −m ≥ K and we conclude with the desired (5.2).

5.6. Verifying a specification. In this section, we conclude the proof of the “Moreover..”
part of Proposition 5.2 (and therefore also the proof of Theorem 5.1). Recall that in the
previous section, we did the proof only for atomic specifications, which talk about a single
event. The purpose of this section is to generalize those results to all specifications, where
positive boolean combinations of atomic specifications are involved.

Given a specification τ , we want to construct a sequence T̄ -automaton Aτ that verifies
if a sequence of words v1, v2, . . . satisfies:

(*) For some T̄ -function f , in every word vj every run satisfies τ under f(j).

We will actually prove the above result in a slightly more general form, where the
specification τ can be a generalized specification. The generalization is twofold.

First, a generalized specification can describe runs in arbitrary transition graphs, and
not just those that describe runs of a counter automaton. This is a generalization since tran-
sitions in a transition graph contain not only the counter actions, but also some additional
labels (recall that labels in a transition graph are of the form Act× L).

Second, in a generalized specification, atomic specifications of the form “the run has
type t” can be replaced by more powerful atomic specifications of the form “the run, when
treated as a sequence of labels in Act× L, belongs to a regular language L ⊆ (Act× L)∗”.

This more general form will be convenient in the induction proof.
In our construction we will speak quantitatively of runs of counter automata. Consider

a sequence counter automaton (we do not specify its acceptance condition) and a run ρ of

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 51

this automaton over a finite word u. The only requirement on this run is that it starts in
an initial state, ends in a final state, and is consistent with the transition function. Given
such a run ρ and a natural number K, we say that it is (≥ K)-accepting (respectively,
(≤ K)-accepting) if for each counter, any two distinct resets of this counter are separated
by at least K increments of it (respectively, at most K). The link with the acceptance
condition of B and S-sequence automata is obvious: a run sequence ρ1, ρ2, . . . is accepting
for a B-automaton if there exists a natural number K such that every run ρi is (≤ K)-
accepting. Similarly, this run sequence is accepting for an S-automaton if there exists a
strongly unbounded function f such that every run ρi is (≥ f(i))-accepting.

The heart of this section is the following lemma, which is established by repeated use
of Lemma 5.22.

Lemma 5.25. Given a set of states M and a generalized specification τ over M , there exist
two strongly unbounded functions f, g, and a counter automaton Aτ that reads finite M -
transition graphs, such that for any M -transition graph G,

• (correctness) if there is a (� K)-accepting run ρ of Aτ over G then all runs over G

satisfy τ under f(K), and;
• (completeness) if all runs in G satisfy τ under K then there is a (� g(K))-accepting run ρ

of Aτ over G.

In other words, acceptance by Aτ and being captured by the specification are asymptot-
ically the same thing. Before establishing this lemma, we show how it completes the proof.
We only do the case of T = S, the other case is done in a similar manner.

We want to verify if a sequence of words v1, v2, . . . satisfies the property (*). Since
a B-function is essentially a constant K and � is ≤, this boils down to verifying that there
is some K such that all runs in v1, v2, . . . satisfy τ under ≤ K. We take the automaton Aτ

from Lemma 5.25 and set the acceptance condition so that all of its counters are bounded.
The automaton Aτ works over transition graphs, while property (*) talks about input words
for the complemented automaton A, but this is not a problem: the automaton Aτ can be
modified so that it treats an input letter as the appropriate transition graph, taken from
the transition function of A. We claim that this is the desired automaton for property (*).
Indeed, if the automaton Aτ accepts a sequence v1, v2 . . . then its counters never exceed
some value K. But then by Lemma 5.25, all runs of A in all words vj satisfy τ under ≤ g(K).
Conversely, if all runs of A in all words vj satisfy τ under ≤ K, then by Lemma 5.25, the
automaton Aτ has an accepting run where the counters never exceed the value f(K).

Proof of Lemma 5.25. Let us fix a generalized specification τ , for which we want to construct
the automaton Aτ of Lemma 5.25. The proof is by induction on the number of pairs (α, c)
such that the atomic specification val(ρ, 1, c) � K appears in τ . If there are no such pairs,
satisfying τ under K does not depend anymore on K and can be checked by a standard
finite automaton, without counters. Up to a renumbering of counters, we assume that the
minimum counter appearing in the generalized specification is 1, and we set c to be such that
val(ρ, 1, c) � K appears is τ . Our objective is to get rid of all occurrences of val(ρ, 1, c) � K

in τ .
Given as input the M -transition graph G, the automaton Aτ we are constructing works

as follows. To aid reading, we present Aτ as a cascade of nondeterministic automata, which
is implemented using the standard Cartesian product construction.

52 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

(1) First, Aτ guesses a Simon decomposition of the transition graph G, as well as a hint h
over this decomposition (the intention is that the hint h is � K, this will be verified in
the next step). Note that neither the composition nor the hint need to be unique. The
automaton Aτ produces the relabeled transition graph (G,h), which is used as input of
the next steps.

(2) In this step, the automaton Aτ checks that the hint is � K. This step requires (hi-
erarchical) counters—the automaton follows the structure of the decomposition and
uses a counter for each level to verify that the number of hinted positions is consistent
with � K.

(3) The automaton Aτ accepts the graph G if the M -transition graph (G,h) is accepted by
Aτ↑ in which τ↑ is a new generalized specification constructed from τ as follows:
(a) The regular languages in the atomic specifications are adapted to the new larger

transition alphabet (which is LS instead of L). In other words, every atomic spec-
ification of the kind: “the labeling of the run belongs to a regular language L” is
replaced by: “if the additional coordinates from LS are removed, the labeling of the
run belongs to L”.

(b) Every atomic specification val(ρ, 1, c) � K is replaced by an atomic specifica-
tion “the labeling of the run belongs to Lc”, with Lc the regular language from
Lemma 5.22. Note that this way we remove all atomic specifications that involve
val(ρ, 1, c), and therefore the induction assumption can be applied to the generalized
specification τ↑.

We now proceed to show that this automaton Aτ satisfies the statement of Lemma 5.25.
This proof is by an induction parallel to the induction used in constructing Aτ .

Completeness. Let g1 be the strongly unbounded function obtained from the complete-
ness clause in Lemma 5.22, as applied to the event (1, c) that we are eliminating. By
applying the induction assumption to the smaller specification τ↑, but a larger set of transi-
tion labels, we know there is some strongly unbounded function g2 such that if all runs in a
graph (G,h) satisfy τ↑ under K then there is a (� g2(K))-accepting run of Aτ↑ over (G,h).

Let g be the coordinate-wise maximum (with respect to �) of the functions g1, g2;
this function is clearly strongly unbounded. We claim that the completeness clause of
Lemma 5.25 holds for the function g. Indeed, let G be a graph where all runs satisfy τ

under K. We need to show that there is a run of Aτ that is (� g(K))-accepting. The
hint h guessed in step (2) of the construction is chosen so that every two hinted positions
are separated by exactly g1(K) non-hinted positions at the same level. Since g is greater
than g1 under �, step (2) can be done in a run that is (� g(K))-accepting. Thanks to the
assumption on g1 and the definition of τ↑, if a run ρ over a transition graph G satisfies τ

under K, then the run (ρ, h) satisfies the specification ρτ↑ under K. In particular, by the
assumption that every run ρ over G satisfies τ under K, we can use the completeness for
Aτ↑ to infer that Aτ↑ has a run over (G,h) that is (� g2(K))-accepting, which gives an
accepting run of Aτ .

Correctness. The correctness proof essentially follows the same scheme, but requires
more care, because of the stronger assumptions in the correctness clause of Lemma 5.22.
Let G be an M -transition graph and let K be a natural number such that there is a (� K)-
accepting run of Aτ over G. This means that the hint h from step (2) is � K, and that
(G,h) is (� K)-accepted by Aτ↑.

BOUNDEDNESS IN LANGUAGES OF INFINITE WORDS 53

By induction hypothesis, every run in (G,h) satisfies τ↑ under f(K), for some strongly
unbounded function f . In particular, for every run ρ over G, (ρ, h) satisfies τ↑ under f(K).

Let ρ be a run over G. We will prove that ρ satisfies τ under f(K). Two cases can
happen.

• For all π ≡c ρ, the run (π, h) belongs to Lc. Then by Lemma 5.22, we get val(ρ, 1, c) �
f(K). Since the boolean combination in τ is positive, this means that ρ satisfies τ if it
satisfies the specification τ ′ obtained from τ by replacing each occurrence of val(ρ, 1, c) �
f(K) with true. However, by our assumption, the run (ρ, h) satisfies the specification τ↑
under f(K), so also ρ satisfies τ ′ under f(K).

• Otherwise, for some π ≡c ρ, the run (π, h) does not belong to Lc. Since all runs (ρ, h)
in (G,h) satisfy τ↑ under f(K), this run π must satisfy the generalized specification
τ ′ obtained from τ by replacing every occurrence of val(ρ, 1, c) � K with false. But a
property of the ≡c-equivalence is that no atomic specification different from val(ρ, 1, c) �
K can see the difference between two ≡c-equivalent runs. In particular, ρ also satisfies τ ′

under f(K). By consequence, ρ satisfies τ under f(K).

6. Future work

We conclude the paper with some open questions.
The first set of questions concerns our proofs. In our proof of Theorem 3.3, the

translation from non-hierarchical automata to hierarchical ones is very costly, in particular
it uses ωBS-regular expressions as an intermediate step. Is there a better and more direct
construction? Second, our complementation proof is very complicated. In particular, our
construction is non-elementary (it is elementary if the number of counters is fixed). It seems
that a more efficient construction is possible since the, admittedly simpler, but certainly
related, limitedness problem for nested distance desert automata is in PSPACE [10].

The second set of questions concerns the model presented in this paper. We provide
here a raw list of such questions. Are the ωBS-automata (resp. ωB, resp. ωS) equiva-
lent to their deterministic form? (We expect a negative answer.) Is there a natural form
of deterministic automata capturing ωBS-regularity (in the same way deterministic parity
automata describe all ω-regular languages)? Are ωBS-automata equivalent to their alter-
nating form? (We expect a positive answer, at least for the class of ωB and ωS-automata.)
Does the number of counters induce a strict hierarchy of languages? (We expect a positive
answer.) Similarly, does the nesting of B-exponents (resp. S-exponents) induce a strict
hierarchy of languages? (We conjecture a positive answer.) Is there an algebraic model for
ωBS-regular languages (resp. ωB, ωS-regular languages), maybe extending ω-semigroups?
Other questions concern decidability. Is it decidable if an ωBS-regular language is ω-regular
(resp. ωB-regular, resp. ωS-regular)? (We think that, at least, it is possible, given an ωB

or ωS-regular language, to decide whether it is ω-regular or not.) Are the hierarchies con-
cerning the number of counters, and the number of nesting of exponents decidable?

Other paths of research concern the possible extensions of the model. As we have
defined them, ωBS-regular languages are not closed under complementation. Can we find
a larger class that is? What are the appropriate automata? Such an extension would lead
to the decidability of the full logic MSOLB. Last, but not least, is it possible to extend our
results to trees?

54 MIKO LAJ BOJAŃCZYK AND THOMAS COLCOMBET

References

[1] M. Bojańczyk. A bounding quantifier. In Computer Science Logic, volume 3210 of Lecture Notes in

Computer Science, pages 41–55, 2004.
[2] A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness and regular conditions.

In Foundations of Software Technology and Theoretical Computer Science, volume 2914 of Lecture Notes

in Computer Science, pages 88–99, 2003.
[3] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl. Math., 6:66–92,

1960.
[4] J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proc. 1960 Int. Congr. for

Logic, Methodology and Philosophy of Science, pages 1–11, 1962.
[5] T. Colcombet. Factorisation forests for infinite words, application to countable scattered linear orderings.

In FCT, pages 226–237, 2007.
[6] T. Colcombet and C. Löding. Transforming structures by set interpretations. Logical Methods in Com-

puter Science, 3(2), 2007.
[7] L.C. Eggan. Transition graphs and the star height of regular events. Michigan Math. J., 10:385–397,

1963.
[8] K. Hashiguchi. Algorithms for determining relative star height and star height. Inf. Comput., 78(2):124–

169, 1988.
[9] B. R. Hodgson. Décidabilité par automate fini. Ann. Sci. Math. Québec, 7(3):39–57, 1983.

[10] D. Kirsten. Distance desert automata and the star height problem. RAIRO, 3(39):455–509, 2005.
[11] F. Klaedtke and H. Ruess. Parikh automata and monadic second–order logics with linear cardinality

constraints. Technical Report 177, Institute of Computer Science at Freiburg University, 2002.
[12] M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the

AMS, 141:1–23, 1969.
[13] I. Simon. Factorization forests of finite height. Theoretical Computer Science, 72:65 – 94, 1990.
[14] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Language Theory, volume III, pages 389–455. Springer, 1997.
[15] W. Thomas. Complementation of Büchi automata revisited. In Jewels are forever. Contributions on

Theoretical Computer Science in Honor of Arto Saalomaa, pages 109 – 120. Springer, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Regular Expressions with Bounds
	2.1. Definition
	2.1.1. BS-regular expressions.
	2.1.2. BS-regular expressions.

	2.2. Summary: The Diamond
	2.3. Limits of the diamond

	3. Automata
	3.1. General form of BS-automata
	3.2. Hierarchical automata
	3.3. Equivalence.
	3.4. Word sequence automata.
	3.5. From expressions to hierarchical automata
	3.5.1. Converting an expression into normal form
	3.5.2. From normal form to automata

	3.6. From automata to expressions
	3.6.1. External constraints
	3.6.2. Controlling counters in BS-regular expressions

	4. Monadic Second-Order Logic with Bounds
	4.1. The logic
	4.2. A decidable fragment of MSOLB
	4.3. Closure under existential unbounding quantification (U)
	4.4. Bounds on the out-degree of a graph interpreted on sets

	5. Complementation
	5.1. The complementation result
	5.2. Overview the complementation proof
	5.2.1. The Büchi proof.
	5.2.2. Preliminaries
	5.2.3. The decomposition result

	5.3. Ramsey's theorem and extensions
	5.4. Descriptions
	5.5. Verifying single events
	5.5.1. Preliminaries and definitions
	Transition graph
	Factorization forest theorem of Simon, and decomposed transition graphs
	Runs over decomposed graphs
	5.5.2. Case of complementing an S-automaton
	5.5.3. Case of complementing an B-automaton

	5.6. Verifying a specification

	6. Future work
	References

